ON A PROBLEM RELATED TO THE CAUCHY-MACLAURIN INTEGRAL TEST

By K. S. K. IYENGAR Received February 8, 1939

- 1. GIVEN: f(x) > 0 and $f(x) \to 0$ as $x \to \infty$; $f'(x) \le 0$, $f''(x) \ge 0$; let r(x) be defined by $r(x) = \sum_{n=0}^{\infty} \left\{ \int_{x+n}^{x+n+1} f(t) dt f(x+n+1) \right\}$. It is the purpose of this note to discuss the behaviour of $\frac{r(x)}{f(x)}$ and its relation to the value of $\frac{f'(x)}{f(x)}$ for large x.
- 2. Theorem I: $\frac{1}{2}f(x+1) \leqslant r(x) \leqslant \frac{1}{2}f(x)$. Since $f''(x) \geqslant 0$, for $x \leqslant t \leqslant x+1$ we shall have

$$\frac{f(x+1) - f(x)}{1} \leqslant \frac{f(t) - f(x+1)}{t - (x+1)} \leqslant \frac{f(x+2) - f(x+1)}{+1}$$

$$\int_{x}^{x+1} \{f(t) - f(x+1)\} dt \leqslant [f(x) - f(x+1)] \int_{x}^{x+1} (x+1-t) dt$$

$$= \frac{1}{2} \{f(x) - f(x+1)\},$$

and similarly
$$\int_{x}^{x+1} \{f(t) - f(x+1)\} dt \ge \frac{1}{2} \{f(x+1) - f(x+2)\}.$$
Therefore,
$$\frac{1}{2} f(x) \ge r(x) \ge \frac{1}{2} f(x+1)$$
 (A)

Corollary: $\overset{\infty}{\Sigma}r(x+n)$ and $\overset{\infty}{\Sigma}f(x+n)$ converge or diverge together.

3. Theorem II: Besides the assumptions on f(x) given above, let $\frac{f'}{f} \to -\theta \quad (\theta > 0)$.

Then,
$$\frac{r(x)}{f(x)} \to \frac{1}{\theta} - \frac{1}{e^{\theta} - 1} = \lambda$$
, say, as $x \to \infty$

Proof: Since
$$\frac{f'}{f} \to -\theta$$
 as $x \to \infty$, $\frac{\int\limits_{x}^{x+1} f(t) dt}{-\int\limits_{x}^{x} f'(t) dt} = \frac{\int\limits_{x}^{x+1} f(t) dt}{\int\limits_{x}^{x} f(x) - f(x+1)}$

 $=\frac{1}{\theta+\epsilon}$

and

$$\frac{f(x+1)}{f(x)} = e^{-(\theta+\epsilon')}, \text{ so that } \frac{f(x+1)}{f(x)-f(x+1)} = \frac{1}{e^{\theta+\epsilon'}-1}.$$

Hence

$$\frac{\int_{x}^{x+1} f(t) dt - f(x+1)}{\int_{x}^{x} f(x) - f(x+1)} = \frac{1}{\theta + \epsilon} - \frac{1}{e^{\theta + \epsilon'} - 1} = \frac{1}{\theta} - \frac{1}{e^{\theta - 1}} + \epsilon_{x}^{"} \qquad (B)$$

$$\therefore r(x) = \sum_{n=0}^{\infty} \left\{ \int_{x+n}^{x+n+1} f(t) dt - f(x+n+1) \right\}$$

$$= \sum_{n=0}^{\infty} (\lambda + \epsilon''_{x+n}) \left\{ f(x+n) - f(x+n+1) \right\}$$

$$= (\lambda + \epsilon_{x}^{"}) f(x)$$
whence
$$\frac{r(x)}{f(x)} \to \lambda \text{ as } x \to \infty.$$

If $\theta = 0$, $\frac{f(x+1)}{f(x)} \rightarrow 1$ as $x \rightarrow \infty$,

Hence from (A), $\frac{r(x)}{f(x)} \to \frac{1}{2} \text{ as } x \to \infty.$

If $\theta = \infty$, it is obvious from (B) that $\frac{r(x)}{f(x)} \to 0$ as $x \to \infty$.

4. The Converse of Theorem II; an inequality.

Suppose it is given that $\frac{r(x)}{f(x)} \to \lambda$ as $x \to \infty$, where $0 \le \lambda \le \frac{1}{2}$, the assumptions on f, f' and f'' being the same as in § (1),

assumptions on
$$f$$
, f and f then
$$r(x) - r(x+1) = \int_{x}^{x+1} f(t) dt - f(x+1) = \lambda \{f(x) - f(x+1)\} + \epsilon_x f(x) - \epsilon_{x+1} f(x+1).$$

Now, since $f''(x) \ge 0$,

$$f(x + \frac{1}{2}) \leq \int_{x}^{x+1} f(t) dt = \lambda f(x) + \mu f(x+1) + \epsilon_{x} f(x) - \epsilon_{x+1} f(x+1)$$

$$f(x + \frac{1}{2}) \leq \int_{x}^{x+1} f(t) dt = \lambda f(x) + \mu f(x+1) + \epsilon_{x} f(x) - \epsilon_{x+1} f(x+1)$$

$$f(x + \frac{1}{2}) = f(x+1) \leq \lambda \{f(x) - f(x+1)\} + \epsilon_{x} f(x) - \epsilon_{x+1} f(x+1)$$

$$f(x+1) - f(x + \frac{5}{2}) \leq \lambda \{f(x + \frac{1}{2}) - f(x + \frac{5}{2})\} + \epsilon_{x+\frac{1}{2}} f(x + \frac{1}{2})$$

$$- \epsilon_{x+} f(x + \frac{3}{2})$$
etc.

Hence $f(x+\frac{1}{2}) \leqslant \lambda \{f(x) + f(x+\frac{1}{2})\} + \epsilon_{x}f(x) + \epsilon_{x+\frac{1}{2}}f(x+\frac{1}{2})$ and $f(x+\frac{1}{2}) \leqslant \left(\frac{\lambda}{\mu} + \epsilon_{x'}\right)f(x). \tag{C}$

Assume $\lambda \neq 0$. Then, since f''(x) > 0, if A is $\{x, f(x)\}$, Pis $\{x + \lambda, f(x + \lambda)\}$ and B is $\{x + 1, f(x + 1)\}$, the curve composed of the chords AP, PB lies above the curve y = f(x).

Hence
$$\lambda \cdot \frac{f(x) + f(x + \lambda)}{2} + \mu \frac{f(x + \lambda) + f(x + 1)}{2} \ge \int_{x}^{x+1} f(t) dt$$

$$= \lambda f(x) + \mu f(x + 1) + \epsilon_{x} f(x) - \epsilon_{x+1} f(x + 1)$$

$$\therefore f(x + \lambda) \ge \lambda f(x) + \mu f(x + 1) + 2 \epsilon_{x} f(x) - 2 \epsilon_{x+1} f(x + 1) \quad (D)$$
Also
$$f(x + \lambda) \ge (\lambda - \epsilon) f(x)$$
and
$$\frac{f(x + 1)}{f(x)} \ge (\lambda - \epsilon)^{\left[\frac{1}{\lambda}\right] + 1} = \lambda^{\left[\frac{1}{\lambda}\right] + 1} - \epsilon' = K_{\lambda} - \epsilon$$

Hence, when $\lambda \neq 0$,

$$\left(\frac{\lambda}{\mu}\right)^2 + \epsilon' \geqslant \frac{f(x+1)}{f(x)} \geqslant K_{\lambda} - \epsilon$$
 (E)

From this it is easy to deduce that $-\frac{f'}{f}$ oscillates, if at all, finitely, between two positive values for large x. There are two interesting cases when $\lambda=0$ and $\lambda=\frac{1}{2}$, where we can prove that $\frac{f'}{f}$ definitely converges as $x\to\infty$.

THEOREM III: If, as $x \to \infty$, $\frac{r(x)}{f(x)} \to 0$, then $\frac{-f'}{f} \to \infty$, and if $\frac{r(x)}{f(x)} \to \frac{1}{2}$

then $\frac{-f'}{f} \to 0$ (under the same assumptions about f, f' and f'' as before).

Proof: (i) $\lambda = 0$.

From (C) or (A),
$$\frac{f(x+1)}{f(x)} = \epsilon_x$$

$$\therefore r(x) = \int_{x}^{\infty} f(t) dt - \sum_{n=1}^{\infty} f(x+n) = \int_{x}^{\infty} f(t) dt - \epsilon_{x}' f(x)$$

therefore $\int_{x}^{\infty} f(t) dt = \epsilon_{x}'' f(x).$

Now the area between the X-axis, the lines X = x and the tangent $Y - f(x) = f'(x) (\overline{X} - x)$

is
$$-\frac{f^2(x)}{2f'(x)} < \int_{x}^{\infty} f(t) dt = \epsilon_{x}'' f(x).$$
 Hence
$$\frac{f}{f'} \to 0, \text{ as } x \to \infty.$$

(ii) $\lambda = \frac{1}{2}$.

From (D) we have

$$f(x + \frac{1}{2}) \ge \frac{1}{2} \{f(x) + f(x + 1)\} + 2 \epsilon_x f(x) - 2 \epsilon_{x+1} f(x + 1)$$

$$f(x + 1) \ge \frac{1}{2} \{f(x + \frac{1}{2}) + f(x + \frac{3}{2})\} + 2 \epsilon_{x+\frac{1}{2}} f(x + \frac{1}{2}) - 2 \epsilon_{x+\frac{3}{2}} f(x + \frac{3}{2})$$
... etc

Writing these in the form

 $f(x+\frac{1}{2})-\frac{1}{2}\left\{f(x)+f(x+1)\right\}\geqslant 2\ \epsilon_x f(x)-2\ \epsilon_{x+1} f(x+1), \text{ etc.}$ and adding, we get $-\left\{f(x)-f(x+\frac{1}{2})\right\}\geqslant 4\left\{\epsilon_x f(x)+\epsilon_{x+\frac{1}{2}} f(x+\frac{1}{2})\right\}$ [It is to be noticed that, from (A), all the ϵ 's are negative.]

Hence
$$\epsilon_{x'} \geqslant \frac{f(x) - f(x + \frac{1}{2})}{f(x)} \geqslant 0$$

$$i.e., \qquad \frac{f\left(x + \frac{1}{2}\right)}{f(x)} \rightarrow 1 \quad \text{as } x \rightarrow \infty.$$

$$\text{Also } 2\epsilon_{x'} \geqslant \left\{\frac{f_0\left(x\right) - f\left(x + \frac{1}{2}\right)}{\frac{1}{2}f(x)}\right\} = \frac{-f'\left(x + \frac{\theta}{2}\right)}{f(x)} \geqslant \frac{-f'\left(x + \frac{1}{2}\right)}{f(x)}$$

$$= \frac{-f'\left(x + \frac{1}{2}\right)}{f\left(x + \frac{1}{2}\right)} (1 + \epsilon_x).$$

$$\text{Hence} \qquad \frac{-f'}{f} \rightarrow 0 \text{ as } x \rightarrow \infty.$$

5. The problem of the asymptotic behaviour of $\frac{f'}{f}$ when $\frac{r(x)}{f(x)} \to \lambda$, as $x \to \infty$, has been partially solved in § 4. It has been there shown that, in two particular cases, viz., $\lambda = 0$ and $\lambda = \frac{1}{2}$, the behaviour of $\frac{f'}{f}$ is definite. This raises the interesting problem: Under the restrictions on f(x) given above, let $\frac{r(x)}{f(x)} \to \lambda$, as $x \to \infty$, where $0 < \lambda < \frac{1}{2}$. Then, does $\frac{f'}{f}$ necessarily tend to a definite limit as $x \to \infty$?