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1. Gvex: f(x) >0 and f(x) >0 as x—>e0; [/ (¥) <0, /' (x) >0;

Xx+n+l
let 7 (x) be defined by 7(x) = 2 { f foda—fx+n+ 1)} It is

n=0x+n
the purpose of this note to discuss the behaviour of 7 (%) and its relation

(%)

to the value of ]_f_ﬁc_) for large x.
) :

2. TEEOREM I: $f(x +1)<r(x) <%/f(v).
Since f" {x) > 0, for x <f< % + 1 we shall have

ftl) —f6) _fO=fE+l) _ fle+?) ]

1 -+ 1) O 1
/170 —fls + 1)@ < £ (3 ~fe+1] [ 1=

=3{f(x) =/(x + 1)}
and similarly SO —flx+ 13 di =3 {flv +1) —f(x + 2}

Therefore, @ zrx) > f(x+1) (4)
Corollary b (¥ +n) and bl f(x + n) converge or diverge together.

3. 'THEOREM II: Besides the assumptions on f(x) given above, let

l;~_> —6 (6> 0).

. ¥ (%) 1 _ L_ B -
Then, f@) Il B e A say, as ¥ —>
x+1 X+ 1
7 [iwx [ rad
P'rOOf: Since f—+ —~ §as x —>oo, _ 71;»—»_ = CESTTES)
' 1
T+ e
and A y 1
f<x+1)_ _(6 ') x+
'—f(x) e-B+e) g thatf( T FEE ) Ao
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Hence
x +1

T TEFY e #F-d @1 T

x+n+1

r(x)r—-é'oo{f Fydt —f(x —%—n-}—l)}
= OE’Y (A + Eux+n) {f (X -+ '”) "f(;\’ 4+ n 4+ 1)}

n=_0

=+ &)%)

whence ;{-—E—% —> A as x —> oo

®

£ 0 =0, Jﬂ—}i&ﬂ-—rl 2s X >0,

r(®) _,

Hence from (A), ]T~—— 1 as x —>oo.

¥ (%)

1f § = oo, it 18 obvious from (B) that 7 () —>0 as ¥ —>oo.

4 The Converse of Theoven IT ; an inequalily.
S v (x)
ab 5 X < A <%
Suppose it 15 given that [26) —> A as x — oo, where 0 < A <%, the
assumptions on f, f and f” heing the sanie as in § (1),
x+1

then 7 (%) —y(x + 1) ff 1y dt — f(x +1) =A{f(x) —flx + 1)}

boenf(x) — enes (@ 1)

Now, since [ (%) = 0,
x+ 1

fa b < [f@a =N b 1)+ enf (1) = exar (6 F1)

fle+5 Hf( S <A {f @) —flx+1)) T er f () — exerf(x +1)
Flr+l) —fl+ EEy <A {f (v + Y Sl F R erstf(x + 1)
— e ¥ +8)
............... , etc.
Hence [ -+D=<A{/(x) +/(x+ WY + eof (1) F exrtS (& 1)
and =< (G +e) 00 ©

Assume A== 0. Then, since " (x) =0, if A is {x, f (x)}, Pis{x + A fx + A}
and B is {x + 1, f(x + 1)}, the curve composed of the chords AP, PB

lies above the curve y = f (x).
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x+ 1

)‘f() ~f(w_____)thf(x—k)\) flx+1) [f

7

Hence

:)‘f()+H‘fx+l)+€xf()"€x+1f(x+
L fEFNEANE) ) F 2 f) -2 fx 1) (D)
Also flr4+N>=20A—¢f(®)

flx +1) Rl+  Rl# ook —
and T >N — € = ) € A€
ORI
Hence, when A == 0,
A2 , .
(#) +e ,/>fi%—---) >K, - (E)
From this it is easy to deduce that — § oscillates, if at all, finitely, between

two positive values for large x. There are two interesting cases when A =0

’

f )
and A =}, where we can prove that — definitely converges as x — oo.
o

f
THEOREM I11: If, as ¥ —> oo, 7—@ —0, then —f oo, and @ —1
Fas e ) joe e
then :]T{ — 0 (under the same assumptions about [, f' and f" as before).
Proof : (i) A =0,
fe+1)
From (C) or (A), oy =

o)

= [ flydt - §"°fx+n = [ dt — ¢ f ()

X

therefore /f@w:%vm.

Now the area between the X-axis, the lines X =2 and the tangent

Y -7 =/ () (X - %)

i - L8 < ffmﬁ;yfm
Hence /]‘: — 0, as ¥ —> oo,
(i) A =4
From (D) we have
flx+h>1 {f(") +f(x' + 1)} +" ekf(x) —2 ey f(x +1)

........... e‘tc'
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Writing these in the form

fle+dH —3{f(x) +flx +1)} >2 e[ (%) — 2 epprf(x + 1), ete.
and adding, we get — {f (x) — f (¥ + 1)} >4 (e /(1) + e 1S (% + )
[Tt is to he noticed that, from (A), all the €’s are negative.]

Hence 4_ € > L&) _7]%{‘&}_) >0
1.e., —-(;—(j;—j“’— - 1 asx— oco.
Mm%;>{am7fx+i1=ff<f+9 £+
Y f(x) J f ) J (%)
Hence :—3-,]5 ~> 0asx — oo.
5. The problem of the asymptotic behaviour of ?I when ;,—((% — A as

¥ — oo, has been partially solved in § 4. It has been there shown that, in

two particular cases, vz, A = 0 and A = 1, the behaviour of A is definite.

f
This raises the interesting problem : Under the vestrictions on f (x) given above,
let }—% —>A, 45 ¥ — oo, where 0 << A << 3. Then, does ]]; necessarily tend to

a definite limit as x —> oo ?




