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1. Introduction

‘THE Cascade Theory was first put forward by Bhabha and Heitler (1937)
and Carlson and Openheimer (1937). It explains the behaviour of the soft
component of cosmic radiation. For purposes of calculation, the above
authors made approximations to the cross-sections given by Bethe and
Heitler (1934) for radiation loss by electrons and pair-creation by quanta.
Landau and Rumer (1938) have given the exact solution of the problem,
when the cross-sections for radiation loss and pair-creation are given the
limiting forms they assume for high energies, i.e., when screening is com-
plete. None of these authors has taken proper account of collision loss.
Snyder (1938), taking a broad approximation for the cross-sections for
radiation loss and pair-cteation, and Serber (1938), with those for complete
screening, have attempted to take account of collison loss quantitatively but
their solutions do not satisfy the boundary conditions, either for the case of
the electron-started cascade, or for the case of the photon-started one.
Indeed, the proof supplied by these two authors that their solutions satisfy
the boundary conditions approximately is not valid and, in view of this, the
reliability of their numerical results is seriously open to doubt.

A solution for the case of complete screening, also taking into account
collision loss and exactly satisfying the boundary conditions has been given
by Bhabha® and Chakrabarty in a paper to be shortly published. In a
recent paper (1941) Corben has given an approximate solution for the general
problem, allowing for incomplete screening, by making empirical approxi-
mations to the Bethe-Heitler cross-sections and also taking collision loss into
account. His method consists in transforming the original equations into
a difference-differential equation, of the third order, of a very complicated

1 T am much indebted to Dr. Bhabha for kindly showing me the manuscript of this paper.
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type, which is at least as difficult to solve exactly as the original equations.
An approximate solution is then obtained for this difference—differential
equation, which leads to his approximate solution for the Cascade Problem.
As remarked by Corben himself, his method does not lead to even
a formal expression for the exact solution of the Cascade Problem
(with his approximations for the cross-sections). Moreover, we have
no exact measure, anywhere in his procedure, for the degree of accuracy of
his solution, so that, although his differential equations of the cascade
may be considered to be a slight extension of the form taken by the previous
workers, his approximations cannot be shown to be any better than theirs.
Also, his mode of taking collision loss into account, based on the method of
Snyder and Serber, suffers from the same serious defects as theirs.

Summarising, the present position may be stated as follows:—-(a) There
has been no exact solution of the General Problem of the Cascade Theory
in which the exact Bethe-Heitler cross-sections for pair-creation and
radiation loss are used and collision loss is taken into account. (b) In the
case of complete screening with collision loss, Bhabha and Chakrabarty
have given a solution satisfying the boundary conditions exacily. While
their solution can be rigorously proved to be exact, as I have indicated in a
note in section 7, Bhabha and Chakrabarty’s procedure for proving their
solution is purely formal. However, their solution gives by taking the first
term only a powerful approximation and hence is of great value for numerical

calculation. As already remarked, the Snyder-Serber-Corben attempts are
very seriously defective.

In this paper, we have solved the general problem rigorously when the
exact expressions of the Bethe-Heitler cross-sections, valid over the whole
range of energy, are used and collision loss is also taken into account. The
solution for the particular case of complete screening is obviously deducible
from that of the general case. An approximate solution for this particular
case, in a form suitable for calculation, is deduced. Further, the exact solu-
tion for this particular case, satisfying the boundary conditions, is given in
alternative forms. Also, Bhabha and Chakrabarty’s solution is shown to be
equivalent to these. It is worthy of note that the approximation yielded by
- using the first term only in Bhabha and Chakrabarty’s solution agrees

to a high degree of accuracy with our approximations of the same case,
derived from the solution of the general problem.

In section 2, a brief statement is given of the general problem of the
Cascade Theory, with collision loss and with the exact Bethe-Heitler cross-
sections and the form of its solution. This solution is rigorously established
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in section 5. In section 3, we state briefly :—(i) the approxunate solution
for the particular case of complete screening derived from the solution of the
general problem, in the form of a contour integral (ii) the exact solution for
the same case in two equivalent forms. These are rigorously established
in sections 6 anda/. In section 4 are given simple, analytical expressions
approximating to the functions® waich are solutions of the particular case of
complete screening and with no collision loss. These are new and are estab-

lished in App. 1 and 2.

2. Statement of the General Problem and its Solution

' .

Let P (E, #) dE, Q (E, t) dE give the number of particles and photons in
the Cascade Process in the energy range (E, E-+- dE) at a depth ¢, from the-
beginning of the layer. They satisfy the boundary conditions

P (E, 0)= 6 (E—E,), Q (E,0)=0 (1)
corresponding to a cascade started by an electron of energy E,.

As shown by Bhabha and Chakrabarty, the differential equations of |
the General Cascade Theory with collision loss are

2 ,3P_ ., (R(E,U)
ki ’33“E“2f =2, 9au
i)
[IR(U U—E). (U E) P (U, #). dU
E(1+35) 50
B
—P(E, 1. f Ii%ﬂl UdU] (24)
and
%9t+D(E) Q== fR(U B g, P(U,0.dU. (26)
Here,
RE U)=(1-3 5+ ) Gt )= Ga)

¥ The Mellin Transforms of these functions were first given by Landau and Rumer.
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x; (P), X5 (p) are monotonically continuous differentiable func-
tions defined in 0 < p < oo

x; (p) > 1, % (p) >4 @, a8 p >0,
x; (p) and x, (p) = 0, as p — oo}

3

and i (36)
- kU 1 mc?
pPE ET[‘J-:—EI with k= 100. —Z'—%— N
and
—— 1 . e s
*=9Tog 183 Z77%
e |
D (B)= f RE-B gy 30)
0 ’
Eliminating Q from (2¢) and (2b), they become
[3 o0
)P 2P
Xopi= f di, f 61 (V, E, t,— 1).P (V, £,). dV
0 E
o) E
[ wmprgav-rEs [ @] @
E (1 +3§) 00 ES ’
where,
2 ]
4>1=V-2 f R (E, U). R (V, U), eP (W) = 4(J,
B
V_... -~
¢,=R(V,V—E) -(*Vgp)a
_RE V).V, S C)
3— '_—"'E'z )
and
U
D (U):f REDav.

In the case of complete screening, given by p — 0, the equation (4) takes
the form
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t oo
P 2P . |
S-sk= [ [ BB 0PV 0.4y
0 E
(=) E )
+ [ fqb (V,E).P(V,1)dV—P (E, 5. f % (B, V) dV] (6)
: EQ1+9) §F
yzhere , y 1
(V,E, {1— p)= E eD ), f [U*+ o’ (E*— EU)] [U%+ o/(V2— VU)]-%%I'
. K
.ﬂ _ (V—E)2+a VE
962 (V, E) - V3 (V—- E) ’
N Vi4-o (E=V).E
(!’3 (Vn E) = EQ‘V""' s
and
7 a
D=5-%
bwith
a'Eg—}- a.

/

Let S (E, 1)® be the solution of (6) when f= 0, with the initial condition

S (E, 0)= 3 (E—Ey); (8a)
let S; (E, 1)® be the solution of the same equation, with the initial condition
S; (B, 0) =38 (E~-1); (8b)

and let
9 (B, t)y=P (E— Bt, ¥). (8¢)

Then, in section 5, I transform equation (4) into

@(E,a)%:S(E, a)+ f dt fooS! (%,m—t).F(%.%g, (9)
0 E

where F is a functional involving &7 and other known functions, and show
that the exact solution of (9) is given by

P (E, a)=2 Z, (B, a), . (100)

3 The exact solution of (6) with g = 0 has been given by Bhabha and Chakrabarty and by
Landau and Rumer (Proceedings of the Royal Society, 1938),

()
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where

L ]

Z,— S (E, d), z,—.-f dt fsl (TE:T a—17). F(Z,_). ‘%1 (10D)
[} E

for r > 0.

(10a) is obviously the formal solution of (9) and its exactness is estab-

lished by proving the'term by term integrability in (9) of b5 Z,in0g a <I::Q
' 0

B
and Ba < E < E,, so that*

P(E,a)=2 Z, (E+ Ba, a). an

3. Results for the Case of Complete Screening with Collision Loss

(a) In the particular case of complete screening, viz., of equation (6),
the exact solution is a particular case of (9). Neglecting terms of order
B2%a3, it is shown in section 6 that equation (6) is satisfied by

oc+itoco

P (E, a)—-—,)—;iF f (E—i—Ba) {fl(s, cz)+-B—fz—(Eu:Df'1(S—l, a

uﬂ%%ﬁ ffl(s~— l,a).fl(s,a——r)‘(lt}ds, (12)

where

O

fi(s, A= f S, (B, a). -1 . dE, and o > 2,

0

S; (E, @) being defined in (8b)—(as the solution of (6) with 3= 0). Between
" this approximation, viz., (12), and Bhabha and Chakrabarty’s approxima-
tion with their first term, there is complete parallelism to the same degree of
accuracy.

(b) In this particular case (i.e., of complete screening), the exact solu-
tion satisfying the boundary conditions, viz.,
P(E,0)=35(E— Eop
and -

Q(E,0=0

1 That (10 a) is the solution of (9) is established by the classical method of dominant series
in section 5 and Appendix 4.




Exact Solution of the Equations of the General Cascade Theory 201

can be put in the following equivalent forms:—

(i) P (E, )= zﬂ,l,. | (%—) (£(-5) - Ey, o).
C

The equivalence of the above to Bhabha and Chakrabarty’s solution is shewn
in a note in 7.

18,. 4,, C, etc., are defined in 7.]

4, Approximations for the Case of Complete Screening neglecting Collision
Loss

In order to establish the validity of solution (10a), it was necessary to
establish, abschatzungen for S (E, #) [defined in 8(a)] throughout its range of
existence, as the approximations given by previous workers are valid only
for certain regions. During the investigation, [ obtained some new interest-
ing results, which are established in App. 1 & 2, and are given herewith.

Let
log EE" = .

Then, for 0 < ¥y < Yo dlld t > 0, where y, is some positive constant,

S (E t) EO CI—_ ; ( alt-—l) (l __2)_+_ e-—/u,’:t {Ml y‘..)_l_ M2y1+qll‘}
2, f = Dy 1 e (13)

T D x? (4 log?® x)

0
where M, and M, are bounded functions of y and ¢ in the region concerned,
and k, a positive constant.
o' and D are as in (7) and
o' =a' (y—1)+ %, v being the Eulerian constant,

Dg"-:-' eD’“'
For very small values of y, the last term of (13) is equal to
2
o e~Dt- ‘169“3 “(1+¢); (13),
Also,

—am
S(E, 1). Bo=ye"~ ]€| < “%)’*‘ (K—e() -t

+yt M. y+ M, (14
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where

[e.o]

2 dx
K"EE’ f x (m®+ log? x)’

0

E (») being negligible for small y, and M, and M, being bounded functions
of y and ¢ in the region concerned. Formula (14) gives one a good pictute
of S(E, #) near (y=0, 1=0) and formula (13) does the same for all 71—
(of course, for y < y,).

When ¢ is fixed and y is large,

tp)3(1 ) 3/028) (¢ )23 yun),
S(E, . Bym SR AEE0) L G2 M gy

where |
p=1+/(2a'’D)and e (y) >0 asy - oo

Note.—On looking into Bhabha and Chakrabarty’s paper, I find that (15) which has been
obtained by the method of residues by me is contained in (32) of their paper, which they
obtain by the method of steepest descent and there is an overlapping of (33) of their paper with
the first term of (13). However, (32) of their paper is definitely invalid in two cases, viz., when,
(i) y is large and t— 0, (ii) y is very small for any ¢, as the authors themselves are aware. For
the case (i), Bhabha and Chakrabarty themselves have given another approximation which is
valid. For the case (ii), (13) and (13), give the correct approximation. From (15), it is obvious

? »
that the omission of the non-exponential term leads to very serious errors when i is fairly

large and hence Landau and Rumer’s calculations are very seriously defective when %’ is large.

5. Exact Solution of Equation (4) of Section II

Consider now the equation (4) of the General Cascade Theory and the
functions that occur in 1t

Let
xl + X2 - x:;.
Then ¢, (V, E) can be written as

_ % (k. Y=E) — x (0 .
o 8= Y2 {14 g) -t ) 720N s

3 V= T3
g a’
=&V, B+ yig
where
, 4. 4
@ = 73X (0)—-3 a by (3b).
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Similarly
953 (V’ E)

-5 1039 w5 (el

=&V, B+ e, (17

Here ¢, and &, are continuous functions in [0 <« E<E, 0 < E < V], where
E is some positive constant < E,.

Equation (4) can now be put as

»P p
*\7“’3»1: 44 (E).P (E, D+ o [f U(Ué)dUJ, log 5. P (E, r)]
E(I+§)
+ f ¢, (U, E) P (U, 1) dU
n f dt, f 6. (U, E, t,— ) P (U, 1) dU, (18)
where. n i '
E

by (B)= — f ¢, (U, B) dU,

Let
P (E, )=P (E-pt, 1.

Then, by putting E—8t in place of E, it can be easily shown that equation (18)
becomes

= feiog By b0 G0} 9@

+ a’[ f gZ(U /) dU+ log 8, 9 (E, t)]
'+ 31

U-E @G>0

+f & (U= 81, E— Bi). P (U, 1) dU
E

" f . f by (U— By, E— B, 1,— 1) P (U, 1) dU. (19)

0 E—-IS (t"t;)



204 K. S. K. Iyengar

It is to be noted here that the corresponding differential equation of the

Cascade Theory for complete screening, when B=0, derivable from (6)
can be put as follows

P, 1 [ (P, » R
Si._,(a f)P(.E’ N+ a [ [ U—E %gj‘ log 8. P (E, t)]
+8)

E(

+f {I—TI—I—E’-—%}-P(U, 7). dU+f dtl'f é (U,E, t,— 1. P(U, 1). dU (20)
E 0 E

[$1 is defined in (7)]

The exact solution of (20) has been given by Landau and Rumer, and also
by Bhabha and Chakrabarty.

Now (19) can be written as

b‘ag;+ (%:‘“')9 (E, - [ fm%(g%ﬁ dU+log2.9 (B, r)]

EU+5)
fLtia. P i 5 P (U, 1), dU
—f U __LI—Z ' (U’ t)dU— fdtlf (ﬁl(UaEaz‘l*Z)s ( s ¥1/»
b ) E
» , E ' 1 , v
= [a. log E—gt ¢4 (E— Bt)+ (ima)]. P (E, 1)

’

+ f {fg(U Bt, E— B1)

v E
3 +ﬁ§}@(u, f). dU

+f dt, fE{(ﬁl (U—Bt, E—Br, 1, — t)} D (U, t). dU

E-g(@-1)

+fta?r1 fm{ él(U—ﬁtl,E—ﬁr, h—1—¢, (U, E, rlhz)}.f@(u, zl)dU. @en

Let L (E, 7) stand for the left-hand side of equation (21), and F (&)
stand for the right-hand side of (21), F (&) being obviously a functional in
& and other known functions. Let S (E, ) be the solution of L (E, )= 0
with initial condition S (E,0)=38 (E— E,) and S, (E, ©) be also the solu-
tion of a (E, )=0 with initial condition S; (E,0)=8 (E—1). Then,
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I have established in App. 3,

J‘ dt f s, (¢ L, ) VePE)-SE e, @
so that equation (21) becomes
P (E, )= (E, a)+fdt fsl (_g a- )F(@)dg. (23)
Let | 0 * '
ZO=S(E,a),Z,=fdt fs1 (g awt)-F(z,_l.%U-- (24)
0 K .

It is obvious, as pointed out in section 2, that

$7,E,q) @)

&

is a formal solution of (23). The term by term integrabilify of & Z,(E, a) in
0

a< %’ is established by
the classical method of dominant series in App. 4, thus establishing (25)
as the solution of (23). From (25) it follows that

P (E, a)= ZZ,(EJrBa a) (26)

equation (23) in the range fa < E<E, and 0 <

which gives the exact solution of the General Cascade Equation (4) with the
initial condition
P (E, 0)=6 (E— E,).
r
Note,—Since Z, =S (E, a) and S(E, a)=0 when E > E,, the upper limit infinity in the

right-hand integral of (23) could be replaced by E,. If Sand S, were throughout continuous
since F () is a continuous functional in the range g a < E < E,, there would be no difficulty

in establishing the exactness of the solution 2]' zrin ga+ E < E < Ey, where E is some positive

constant. But we know that in 0  a < E’ both S (E, a) and S, (E, @) have an infinite dis-

continuity at E = E, and E =1 respectively. Hence there is need for establishing 2 Z, as the
solution of (23), which is carried out in Appendix 4.

6. Solution of the Cascade Problem with Collision Loss when Screening is
Complete

The complete solution of the above problem ie., of equation (6) is
obviously a particular case of (26), obtained by replacing the functions ¢ of
(5) in (21) by ¢’s defined in (7). But we are here interested in calculating an
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" approximation to (26) omitting terms of order (B2a®). We proceed hzrewith
to calculate Z, of (26) for this case.
Let%>a>0,,8a+ﬁ < U, V<cEjand0<y<t<a
(E some positive constant)
Consider now ¢, of (7). Then it is easy to see that

$1(V, U, t— 1) = eP2=1. ( v) - @7
where ¢ is some function of the ratio Vo
and
¢ (V—Bt,, U—Bt, t;,—0)— ¢, (V, U, £, — 1)
- U—gt —
=l (Vo) v (V) ¥
Iy —2
(@) (9] - @)oo oo
=6, (V, U, t, 1), (29)
1-— OL’ V"- Bf 1 """a r 2
V=Bt (V=ppr ~V +V"‘ (2— ) HOE G0
- 62 (Vs U: t)a {31)
and
log =g, = 5+ 0 (8% @

Further, it is obvious that | 6,}, | #,] and log UU Bt are all of order B¢ in this
region ] (33)
Now, in this particular case, from (24) we have

Z,:I drEf S, (% a—1)- EiL[_IJ- [a’(log U—-—[‘IE;) Z, (U, t +

[= o

f 8 (V, U, 1) Z,_, (V, 1, dt

u
3 U

+fdr1f V=Bt U—Bt, ,— 1). Z,_, (V. tp) dV
& Uu-Be-w

+fdt1f 0, (V, U, t,, 1) Zy_, (V. rl)dV]

=0 EZ _D)+T(Z )+ T, (Zr D+ ¥ (Z, _y). (34)
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On account of (33), we can easily establish that in this case Z,=0 (g"t¥),
from considerations similar to those of App. 4, (35)

so that for our degree of approximation, we need calculate a part of Z; only.
4 .
Now, Z,; :-ul? J, (Zo). Since ¢, (U, U, t;—1)=0 and since in J; the
range of V is of order 31,
I3 (Zy) = 0 (B%°),

so that we may neglect J; (Zo) in the calculation. Utilizing (28) and (30)
and (32), we therefore obtain, correct to (8%a®),

u Ko ‘
@(E,@:S(E,a)-,Lf dtfsl(%, a—r)-‘%i [aBtS(U [+
0 1.

fo(zma' 2 6{ S (V, ) 4V
&

f o ()8 @)

ot (V)}' SV, 1) dv] (36)
S (B, @)+ L+ L+ L. (37)

It is to be noled that the integrals I, L, I; are faltung functions and are
therefore more simply expressible in terms of their Mellin transforms.

Let

£ 0= [ 86 0 E-1dE (384)
and 0

Fs, 0= f S(E, ) E'-1 dE. (38b)
It can be casily proved® that

[l 0=E’"fi(s1) (39)

Now we shall prove that the right-hand side of equation (36) is equal to

QmEo f ( {fl (s, @)+ %ao(s_ DAG—=1, 0

g —1io0

__§<SE: D ffl(sml,a—-‘t)f,(s, t)dt} s (40)

(a0 > 2)
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Proof of (40):

Let A, B, C, D® be as defined in App. 1. The Mellin Transform of
I, + I, can be easily shown to be equal to

BE(,’—z-f t fils—1,0f, (S,a—t)-{a’—}-z—sar— Sj"_ 1}; (41)

and the Mellin Transform of I; equals

a t 7 '
B (1— 5)Eg-® f di f DDt (B.C,) fu(s,a—0) fu(s—1, £ dty
0 [)

—B U= 9By [ rdt ([t (B, ,C, ) fi (s a0, fils =1, 1)1 (42)
: o 0

=B8(1—5) B2 (J,— 1)) O (43)

It can be easily proved by change in the order of integration that
a t ’
h= [ AG—La=n@-par [ ee-0B,C) Ay (@)
4] V]

We know from Landau and Rumer’s work that

13

%.fl (Sa t) + A.rfl (S> t) = f eD (2 =% (Bs C.r) fl (S: tl) dtly (45)

so that

T, = ffl (s—1, a— 1) (a-t)-{%_ﬂ(.g, D+ A, £, (s, t)} dt (46)

_=A,-f fl(s—-l,t).fl(s,a~t).fdx—ffl (s— 1,1.‘)-.;_2‘f1 (s, a— 1).t.dt (47
Q ' o

In exactly the same manner, it can be proved that

J,=A, . f fils—1,8).f (s, a—1). th.-ffl (5,a— .2 f(s—1, 0. ¢ dt (48)
o 0

5 See Landau and Rumer’s paper, Proceedings of the Royal Society. 1938.
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so that the Mellin Transform of I; is equal to

8- B2 (A As_l)fﬂ(s— ). fi (s a—t). tdt

o d .
_ft(.i_t {fl(s,a~t)fl(s—1, f,)}dz]. (49)
Now from the definition of A in App. I, we get
_ A= (1= 2
(1-9 A= A=~ {« (1= )+ b (50)

so that from (41), (49) and (50), we obtain the Mellin Transform of
I,+L-+1; to be

B(s— 1) Eg-* fz —{fl(sa . f(s—1, z)ldr RN

=B(s— 1) E/S~ 2{a.fl(s—— i, a)—-ffl (s,a—1t) fi(s—1,0) dt}, (52)

since

fis,0)=1
so that,
F+ico

’bo f (%) J {fl (s, a)+/é§ 5= D f (s— 1, a)

G~ 400

g (E, a)__

RIS f Fsam (=1, t)dt} (53)

Replacing E by E+ Ba, we obtain
o+ §90

P, a)='2—7-717E—0 { (5% (pGarg6-DA6-

G- 30

B (SE; 1)[ fils,a—Dfi(s—1, 0 dt} ds (54)

thus proving (40) and (12).



210 ' K. S. K. Iyengar

7. The Exuct Solution of the Cascade Problem with Collision Loss (when
Screening is Complete) in other Forms

In this case, the form of the cross-section functions makes it possible to
give the solution which satisfies the boundary conditions exactly in the form
of contour integrals where the integrand can be defined in a simple form.
The apprommauo*l given in § 6, for this case, besides being highly suitable
for calculation, is highly suggestive that the exact solution of this case must
be expressible in the form :

f F(E+ B, 4,5, 8, EQ) ds. (56)

We shall show here that it is so and that the exact solution sgmtisfying the
boundary conditions is actually given by

P (E, ¢ 227}713‘; ! {E%‘Et} {Z\? (Efw) S_l..'. 8. (s, z)} ds (57)

where

5, (s, 1)= {sbo (s, 1)

and ¢, (5, 1) is defined by
bo (s, )= f; (5, ¥) as in (38a)

—‘lpl (s, 7).

T

LD G JENED

and
- (59)

g, (s, 1) = f do (5, £ — 1) Yy _y(s+ 1, 1) dty

(The contour C will be defined in the course of the argument.)

o However, i.t is simpler to show that (57) is a solution of (6) by putting
it in the following equivalent form (the equivalence is established in (65)) :—

1 E K2 oo Ve
P (E, n:mcf (2) {25 ) ‘S+’ b, (s, z->} ds, (60)

where the contour C is as follows

iH—oco iH+o

e (61)

—iH—oo

—iH+¢o

H being fairly large and o being > 1.
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It is easy to show from the definition of 4, and i, -that
22 9
(5 HA+ D)oy 5+ (AD= BO),., ) 4 (5, 9= (55 D) a5, 1) (62)

where r > 1 and A, B, C, D are as defined in App. 1. Making use of this,
it is easy to show that for any fixed valueof s, the integrand in (60) is a formal
solution of the integro-differential equation (6) (i.c., of the case of complete
screening). Now, from App. 1, we can easily prove that

(5,0 < (14 ), (63 9)
where s 1s a point on C.

‘Let Bt < E. | (635)

Then we can show that the series which forms the integrand in (60) is uni-
formly and absolutely convergent so that it becomes an exact solution of (6).
We express the integrand of (60) as

5. 7. l“'{“r . z/!,,(S 1)
By = {2 (-5 ) (64)

and show by rearrangement that it is equal to the integrand

1 (R o BT 0,050 |
EO {207 B lz, (E_ [J)l)r“”} (65)
of (57). The justification for this transformation comes from the absolute
convergence of the double series we get by expanding (E+ Br—£1)~"in (64),
easily proved by making use of (63a) and (63b). In the form (65), the
restriction 8¢ < E should be replaced by the natural one E < 0 [(65) being
valid by the principle of analytic continuation for E> 0]. Making use of the
results in App. 1 in order to make the integral (57) on C uniformly
convergent, it will be sufficient if
E, ~ Bt
log =gy > Krggyp (66)
where K is some positive constant depending upon H. So that, the integral
(57) will be the exact solution of (6). It is to be noted that when ¢ is very
small, the solution (57) will be valid for a considerable region of energy.
Further, since f, (s, 0)=1 when t=0

P (E, 0)= 3 (E— Ey) (67)
so that, the boundary condition will be exactly satisfied by the solution (57).

Note—The restrictions (i) that Bt should be < E in order that the
integrand in (60, should be convergent and (ii) that B¢ should be
A2



212 K. S. K. Iyengar

< {(E+ B1) log (BEo/E+F BY/K so that the infinite integral of (57) (on the
contour C) should exist are only sufficient conditions which I have deduced
from rough calculations. Probably, with finer calculations, the restrictions may
be liberalised. From these rough calculations, it is possible to show that ‘when

t > %7, the infinite integral (57) will be uniformly convergent for all
0 < E < E,.

Note on the Bhabha-Chakrabarty Solution of the Same Problem

"Just as we obtained (57) from (60), it is possible to obtain Bhabha and
Chakrabarty’s form from (60). Let il g g g (s, 7). Then they have
shown that for small ¢ and large s, g (5, ) ~ . In view of this, writing the
1ntegrand of (60) as :

>, ! S+r b, (s ,0)
BS S BSR Erh= Ao ©®

and rearranging the expansion, we obtain,

2 E, B ls+ 7 . é, (s, 1)

r (E + BE?T&: 3 (69)
where
_ & _ - |
b (0= (b & D G—da (50 Fg+ ) (70)
and Bhabha and Chakrabarty’s form will be
Bz 2 3 t) m
2szof (7% ) ‘("’“ (s )+ (Eif%f‘g + } s h

I wish to thank Dr. Bhabha for suggesting the problem to me and for
many helpful discussions.

Summary

A general solution is given of the integro-differential equations of the
Cascade theory for given boundary conditions, using the exact expressions
of the cross-sections for radiation loss and pair-creation as given by the
quantum theory and also taking collision loss into account. In the parti-
cular case of complete screening, an approximate solution is derived in a
form suitable for calculations. The exact solution for this case satisfying the
boundary conditions is given in two other equivalent forms, and it is shown

that the solution of Bhabha and Chakrabarty is completg#y equivalent
to them.
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APPENDIX I

Proof of the Results stated in § 4

Here, I propose proving (13), (13), and (14). Following Landau
and Rumer, and Bhabha and Chakrabarty, if

76.0= [ SE 9 EaE, (1)
0
where S (E, ) is the solution of equation (6) with 8= 0, then
216D 4+ D) Yt (AD- BO) =0, (73)
where,
s n,1 1 )
A=a {|s+ -1+ }+2 SGEI)
= 51-— Cl-’ = 1 — CL’
B=2 s (s+1)(s+ 2)}’ ¢ s+1 s(s—1y (4
7 o 4 1 |
D=g—%o'=3t%e=gprigrzm J
Then,
! ¢ +ic0 0 +ico '
E,S (E, )= ~— [ f e N+ (st f D—p (e ¥ — eN) o ds]
27 A— W .
o —ioco 0 -ioco

=Ty (y, )+ Ty (y, ).

Heze, A and p® are given by A+D= \/(-”21:9)&%;{1_!?& and y= 10g.lio
ando > 1
We shall here show that for 0 <y <y, (some constant),
! ant
Tl (y: z)“"’ Y até-1 {eic—).—ri (1 - §)+ 0‘M‘C’-At 't }’2} ‘ (76)

where | 8] < 1, M and k, are some positive constants, and o” = o’ (y— 1) -{é;
and that
Ty (v, )= [k— € Gl i+ yt My y+ My, (77)

¢ The roots A and g, here, are the u and A of Bhabha and Chakrabarty.
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where

K=2 ‘°° dx e()) >0asy—0
a x (7% log? xy ‘ ’

0
and M, and M, are bounded functions of y and ¢.

We shall also prove that
e—Di 1" (y Dyx+ 1) gD dx
x% (7% 4 log* X)
+ Me* (8, y*+ ¢ + 8, 3%) (79)

D ..
where D,= e#’, M and k, are some positive constants and |0,], |6 <1
valid for 0 < y < yy and ¢t > 0; and for small y, the first term on the right-

hand side of (79) is equal to

T, (0, 0=

2 80)
eyl € 0L (
where e (y)—>0asy -0
Proof of (76).
Let o be taken so great, that for R (s) = o,
1 vy 1 1 |
BC=— 0(?), A=d"+a (1og s+ 2-9 +0 (?z)
BC (BC) v 1 1
A= At D+0(( )-—a ta (1ogs+2§)+o(§2)
! 81)
_~_ BC (BC)? 1 (
p=D—Z— D+O((A )= DJFO(EETog‘s)’
D—pu 2 1
. — Of ———— )~
}\‘—'[J' a,2S2 (10g S"" D) + ( 0g3 S)

SN
log( = ) has
N °% (y)\ ¢
a positive lower bound on R (s)=0. Then, putting y s=s, in the integral
for T, (y,f), we obtain

Take o so great that for all y in the given range 0 < ¥ < ¥,

o+ico

T =5 f ooy tho)] | (82)

nt 5
— yat-1,€_ ¢ € 7
=) Uy f e ds, (83)
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-

' 2
where, u= — t [% +0 ({—2)}
- Now, we can put T, as follows:

leya’f-l.e—a”f {Taln f :9%” (- 1—u)ds

1 e (t)* |
o | (%) 4] (5
=y ' tema" (Ty+ Tyt Ty)

Since

[e"-—l-ul=’fe"(zz-—z)dz,,

and the real part of u < 0, we have

lez{__l__u[ g}uﬂ, . (85)
so that, '
¥ +ico
o0 2. | ds| M-r2-p2
Tl < Myerstots [ o < oy v 0
0 -ico
Similarly
M. t.y‘.’
Ty < (¥ 'ty o Traiy | &7

where M is a constant. Since o can be taken as larg: as we like, we have
((Ts+ Ty 2| < Meryte™, (8)
M and k, being some positive constants.

By a deformation of the contour, it can be easily proved that
Yy
=t (1-3) (89)

ot 2
From (88) and (89), we derive (76).
Proof of (77):
Let

1 D'_ g - )
T2=-2—;T——l_[ f -X:—:E e~ M+ o %:-5 =AY dS],
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Then, P; and P4 can be put as follows:

D"" ys t‘;_
Ps_.z_ﬂ_l f b o5 (e 1+,ut)a’s+f

B evs (1 — pt) ds]

= P3 + P53 91)
and
P,= 21” [ f D— e”‘ (e¥— 1+ A ds+ f D ‘u' e¥ (1 — X5 ds]
= P4 + P4” ) (92)
Let
P’2= PNS_ P4." .
= -;7 f (D — w) ¥ ds. (93)

By the relations (81), we can put

Vs
P'2=22t. ; f ——-f-—-—g ds+t f e’ -0 (Trl_z') ds,

3
. Pzﬂ + Pz’“ (Ds‘_ eD'al) | (94)

By methods similar to those employed in proving (76) we can easﬂy establish
that

P3|, [P <M-y-t2, (€5)
and
[Py < M.y2%.¢, (96)
where M is a positive constant. By putting D—S— = 81,
N .
2t e¥Ds*
rr —_ 97
P a'D3'2'n’if szlogsds D
and _ ‘
o+ i
ng” _ eJ/Ds-V .?._l: — YDsX¥ (98)
dy a’ 27r i s log S a’ x (712—}— log? x)
o — 400 [

the latter result being obtained by a deformation of the contour of the first
integral of (98), so that, since

P,”0,0)=0
we have from (98),

Py, )=yt [k— « ()], (99)

2 dx
K=2 2y - 0-
a,f s ),ande(y)—->0a y —>0
6

From (95), (96) and (99), we obtain an




3
A
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Proof of (79) and (80):
Now, P; of (91) can, by use of relations (81), be put as

Vs 5
P;= __1_ [e"th _if_.__ds+e"m f ___z_fi}____ (ei)_—fﬁt-..l)ds

2mi s*(A— D)? s*(A— D)?
1
-ty (2.

+ f e=s474:0 (L) |

- II+ I2+ I3. . (100)
Then t ,
-D s

-2 [ (- ‘?.‘._..ﬁderf & 0(1) as)
a T S2 log s
3 )
=1,"+ 1, (Dy=ede') (101)
By methods similar to those employed in proving (76) we can establish that
L], {Is] and |L"| <M ey (102)

where M and k, are some positive constants. As in the proof of (77), we can
easily prove that

, 2 (1= (14yDyx) e '
Il“E?D_sf x? (w2 + log? x) ax (103)
0
and for small y, ,
2y |
I)'= o 1Og Y I+ e(] (104)

From (102), (103) and (104), we obtam (79) and (80). Combmmg (76), (77),
(79) and (80), we obtain (13), (13); and (14) of section 2.

APPENDIX 2

Here, I propose proving (15). The symbols A,B,C,D, A, S(E, ©)
e‘c., are the same as in App. L.

We shall first show that

E, S (E, #)=the sum of the residues of the function

A—D D—F‘ - ) . 5
Pertas A R L L (105)
ats=1,0,—1,—2, --+,—n,etc.,
and that for fixed ¢ and large y, the significant part of E; S (E, #) is given
by the residue at s=1

Let I= (imaginary part of) and R = (real part of),
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Lemma (1).

Let

|1 (s)] =>A>0.
Then,

'IS log s+ 0 (1) (106)

Proof of (1C6):

Let 2 > o > 1. Then we know that for R (s) < o, we can find a positive
integer p, such that

c<RG+p) <o+ 1L
Writing s; = s+ p, we have

| EX RS LDy 107
s |5—p 11— ‘2'—sl+ T ——-S1+{51 (107)
Let R (s))=o0; and I (s)=u, where |u;| = A. Then,
r—o 1 S
R (5= v?v~my+u1 =3 loe [(F=g ] +0 () 09
and
(51 )~ > =0 (1), (109)
L r—8/) 1 (r——cr)‘—{-uz .
~and |
157 L log o4 w3+ 0 1), (110)
|5,
so that
%=1 log {(p—o)*+ u?}+ 0 (1),
=log s+ 0 (1), (111)
thus proving Lemma (1) ‘
Lemma (2).

Let ]l <o <2 and R (s)=—n+o, and |I[(s)] <A, some positive
constant. We shall prove that in this region

%§=bgn+00) (112)
Let

S1=S8+n.
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Then,

|_l__1_ 1 1 \

~ Since 11 (sl)i < A and R (s))=o, it follows that

%;_logn +0 (1) (114)

in this region

Consider now the integralf F(s, 1) ¥ ds along the following contour

s

B|--—-—-—"—————— == (r=A)
G
S R (y=0)  (115)
B|———-——————————— (r=-A)

X=—n-+0o \fzg
Ay

Alsolet 1 < o < 2. Co-ordinates of B;=(—n+0, A);
co-ordinates of By = (- n+o,— A);

AIG A, being the str’ught hne x =0 and B, B, being the straight line
—n-to.

Then, since by (81) of App. | and Lemma (1)

A=a'log s+ 0 (1)
for [T (s > A, )
b0 PO (16
and
A—D D—p_ 1
FEO =l ) (i)

we see at once that for ¢ > 0,

fi (s, =0 (]—;%-—,)+ 0(55-16—2—;—5) (18)
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so that, by the well-known Jordan’s Lemma

f (s, 1) & ds and f £.(s, 1) & ds

AlBl Alﬁl

tend to zero as n — eo. Similarly we show that

ffl (5, 8) ¢ ds =0 as 1 — oo (120)
BB
Hence, from (119) and (120), (105) follows.

From similar considerations, it also follows that if 0 < o, < 1 an\d
A >0, ~ |

—$A+0; 1A+ 0y tA—-o0
EO.SI(E, t)=§?7~1i[f + f + ff(s, 1) e’ ds]+residue ats=1

—iA—-co ~iA+ 01 A+oy

= L + I, + I; + residue at s=1 (121)
On the lines y= + A, f(s, f) being bounded, ‘we have
S J’cn.
L+ < M- feﬂ ai= )
and | f; (s, 7)| being regular on x= o, we have
A ' .
Ll <en [ 1hG ol d<mer (123
—-A
so that
E, S (B, £) = 0 (e?*") + residue at s= 1 124)

Estimate of residue at s= 1 (for fixed ¢ and large y)
Writing s= 1+ Z.

Now, in the neighbourhood of s=1, we have

!

8a’ (1 — %-) -~
(A— D)2+ 4 BC= '———'“"Z'“‘“"“ +Z a, Z”, (125)
[ .
so that
5 V(A-D/+ 4 BO)— Lo+ 5p, 2, | (126)
1

r 4
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50 that
A-D
A—=D= .
D 5 +VZ+2B”Z

I‘L“‘D=A;D—~‘-{% g‘oﬁfzzﬂ'-}a
and

) 2 25 v - (127

‘"f“"“"{]’i"’" 1an
so that

A—D 1

e AR J
where

oo cuc W

and % o, Z*, Z B, "3, By, Z% are all series convergent in a circle of some
positive radius, so that |a,|, |B,|, |v4| are all < k* (ky, some positive con-
stant).

Now the residue of f, (s, f) € at s=1is given by taling the integral

of?-:-l-—. (eys"k‘-g—:——g) twice along a small circle round the point s=1 or

Ti
" Z=0; i.e., the residue at s=1 (128,
1 1 oy 72
=53 f 5 (1 + 2y, Z.ﬂIZ). e“\/ZHL By L34y (1+7Z) dz, (129)
(two rounds of the circle round Z= 0)
e’ : o
=1 (L+ 2y, 2" eyt -dz, (130)

(two rounds)

where 2 y’,, Z™? converges inside some circle round Z = 0 larger than the con-
tour circle. Putting yZ= Z?, the integral becomes

¢ P ey2iz
o) (1+2ze) T 2= 0100, s

(one round)
Let — ¢ p 4/y = u. Then

7.t T8 ), {¢ (2), which is regular } | (132)
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where

) 2
— 7841 u
so that

10 D=8+ 800 + - + 2% 8, (W) + -

We shall here show that for fixed ¢z and large y,
I, )=g W) (1+ ¢

%k k3 % %
Lemma.
Let
xﬂ
f(x)=Z anxn-—“z'm'

Then, for large x > 0,

— -1 . 5—’?113. 18 (1
f(x)”“zzls.g,uz.wuz € X + €)
where
h—3.-2-23

(133)

(134

(135)

(136)

_ Method of Proof: By a method entirely analogous to that of 72,_ of
page 12, of Polya and Szego’s Aufgaben and Lehrsatze, Vol. 11, by comparing

7 3
- the given series to & ()" where a == :9’-;, we obtain the result.
g |3n 22

* * % *

Let 1 (x)=/f(x2); then it is easy to recognise that
0= [ A0 G-Ddamdg (9o { gawan
© ]

so that g; (x) can be proved to be

523
=M-&% XU (1+ ),
where ‘

M 1

= IS 3T e

We shall here show that,
r—1
g, (x) < M;.g; (x)-x 73 (M, some positive constant)

Now,

2/3
g1 () < M= -3,

(137)

(138

(139)

- (140)
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so that

Rt
gs= J‘gldt<M1fe"‘ xU3.dx
0

0
3 Mfw | ) 523
=M, %5 ¢ .x..{fi___l;fe"x -x‘1‘3dx}

3 2l
JMl_ bx 3

| Kopd X - (141)
and by mathematical induction, we can easily deduce from (141) that
3V -1 Rk
<(3) Meds o (142)
Now b= -2—;3 50 that%==2—ll-,~3 < L.
Hence |
5:6'2[3 e .
g <My e® X", (143)
so that for x > some positive x,, '
r—1 ‘
g, (x) < Mygy'x 3, (144)
thus establishing (139)
73 73
Hence En +7'}/2( u) < M“gl (u) (fftft)z \/V) — yt p) - gy (4) (145)

and since |y",| < k” (¢ is fixed), we see at once that for large »,

I(y, D=g W) (1+¢),
and therefore the residue at s=:1

(¢ p)H® erHm (t Y. 1
= UT AT 1 S
Combining (124) and (146), we obtain the result (15) of section 2.

(L4 ¢, (146)

APPENDIX 3

Proof of the Transformation (22) of Section 5.

(22) of section 5 could be established by the usual trick of change in the
order of integration. But it is far more elegant to prove it by using Mellin
Transforms—which we propose to do now.

Let f L (U, §)-U--dU=L (s, t). - (147)
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and f S, (U, ) U~+dU=£, (s, ) | (148)

the latter as defined in (12) of § 3. So that the Mellin Transform of

fdrfsl(U, _ L(U :)_,.

is equal to

a

f L(s, 1) fi (s, a— D)dt. | ~ (149)

0

Following Landau and Rumer, it can be easily proved that the Mellin
Transform of L (&) {L being the left-hand side operator of (21)} is equal to

?g + A, P~ J‘ eP-4.(B, C,) F (s, 1,) dt,=L (s, ) (150)

Q
where A, B,, C, and D are as in App. 1, so that

fL(s,t)fl(s,a-t)dt- ffl(s a— -—-5—1*—-;-dt

0

+ J.A‘“@(S’ - f1(s,a—1)- dt

- (Bs C.r)f fl (Sa a— t)-dtf eD(tlnt) @ (Sa Zl) dth

]
=]+ I~ 1 (151)
Then, integrating by parts, |

Lefi(s 0D (s, a)—fi (s, ) D s, 0)+f P (5, a—i)- L1 » @ (1)
Also it can be easily proved (by a change in the order of 1nteg1 ation) that

a 11
I,= (B, C, f D (s, a—1) di- f e £, (s, 1) dity, (153)
0 0

and

I,=A., f D(s,a=0-f, (s, )df (154)
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Since initially £, (s, 0)=1 and P (5, 0)=E,"~%, we have

L+ L—T= P (5, a)— Ef~1-f, (s, 0 +f@(s,a_ ) {§§+ Af

!

_ f ME=0.1 (5 1) dfl)} it

0

= @(‘S‘: LZ)"- E()&_l'fl (S> a): )
because I
Y g . Foo(155)
st Ach= [ i (s 0, ay |
g J
we have, therefore , .
Lit+Io—Iy= P (s, a) ~ Mellin Transform of § (E, a) (156)
Hence
fdxf ( L(U T)- __.:@(E, A9-SEq (5]
thus proving (22)

APPENDIX 4

Proof of the term-by-term integrability of 23' 1Z, (E, )| of (25), in the integral
?uation (23), where

Zr (E: d)mf df f Sl (’UF:.: a— l)' F(Z)'-la Ua r)'%Ia
0 E

[4 Eo ' .
E d
»:f dt f Sl (Us a— [)' 'Uq [Q1 (U, t)'zl'—l (Ua t)
° B

+ f & (V, U, 1)Z,_, (V. t) dv

3 U
+( [at sz, wav
& U~g(t—1) . .
+f dtlf Q4 (Va U: t: tl)'Zi’—l (Vv fl) dV],
0 U .
=N &)+ 1 (2, )+ T, (Z, )+ T, (Z,-) (158)

b
7 This result is given in Landau and Rumer’s paper.
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where, from equation (21), we have
0 (U, = log g, + $a (U= D)+ 5 — o,
g: (V. U, =& (V— B, U— ) — 0% ¢
g; (V, U, T, t)=¢, (V—Bt, U— Bt, t; — 1),
92 (V, U, 1. )= ¢, (V— pto, U= Bt, L— =, (V, U, f;— 1) |

<ict

1ol

.
|
|

> l}» (159)
I

Let @ and E be two positive numbers (a < %9, E < Eo), and let E; =
/ |

E-+ Ba and log U = y. Then, we shall prove that when 0<f<¢ and
El U EOs
1Z, (U, )| <[1+y

-
° ] LG7+1 f,-’ (160)

where G is some constant. So that, from (160), the term-by-term integra-
bility of 2 Z, (E, #) in (23) follows, thus establishing that =~ Z, (E, f) is the
solution of equation (23).

Preliminaries :

When Eq 2 UZEL,E,=V=>2U—-B(—f)>E>0and 0<t <t<a,
it is obvious that

IQI (Us t)‘a lQ2 (Vs U: t)la IQ3 (V> Ua tls t)l Ellld IQ1 (V7 U: tla f)l i
are all bounded. Woe shall indicate the upper bound of these functions in
this region by A. (161)

Now S(U, t)=2Z, (U, t) and S; (U, 1) are both solutions of equation
(6) with B = 0% and because of their initial conditions,

S; (U, HD=E,S (E, U, 1) (162)
Let log P} = Z,;. By (13) and (14) of Section 4 we have

a’l—1
S (U, )= M, 0 9+ No (0, 97—, (163)

where M, and N, are continuous functions in the whole range 0 < £, 0 < ¥

When 0 € y < log %9, M, and N, are bounded. Also from (163),
1

N AWPS
S (U, =By {Mo (0 + 2y, 0+ No 0+ Z, 0 ZEZEEDL 1)

8 S and §,, as stated before, have been given by Landau and Bhabha and Chakrabarty.
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Let K be the upper bound of Ey [M, (y+ Zy, 9)] and E, [N, (v + Z,, 1|,
when 0 <t <a and 0 y<log E" Also, let the maximum value of
1
14 ’
i Ey e (P
(y, . .1.) when 0.< y < log " be ( j). (165)
T * * %

Let us assume (160) to be true for r. We shall prove it to be true for
(r+1,

Now, Z,.1 (E, =1, (Z)+ 1. (Z,)+ 15 (Z)+ 1, (Z), 1
and

T . w6
@)= ( dy [ 8 (g 1-0) 90020
0 x

Changing the variable in J;" by putting log %"z y and log i":— ¥o, and

using mequahtxes (160), (161) and (165), we have

1.7 o ( )a/ (detry=1 ya'fx—l
<A G'+1. 1 . dt 1 e V Ay =
4\11(Zf)| Kf 1f(+ ) (1) -

Gv t y a’(t =11 Yo arls y il -1
= A K2 . 0 Yo "\ dr
K- |r ( !—la 1)+ l+ll—}~a1‘1 la’t )d1(167)

0

which, by (165),

G’ +1 ; ya/! 1 .
= Kt (p+ ) (168)

Snmlarly, changing the variable in J, by putting log E = ¥, log IET”” y and

]ogv = ', we obtain

r4+1 =ty -1 Y rgtly =1 )
2 <k f A f e L | G DE
1 "1

G’ +1 ]; ._.y)at tl) }a'h .
t," dt 1 dy 16
<AKEy: f 1 1f o) 4 09

A3 F
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which, by (165),

- t Yo o ’(t - 11
<MK By Gl+ ‘%i)-ft[dtlf (1+ {ay();: Yy ()
0 0

which, again by (165),
G?’+1 2,D 2' rel.
<K Eopry (_3_) t (171)

Similarly, making the same transformations as above in J;, we have

(po—= )ty
(H la’(1— 1) )

i
dt1

5,2 < K-S

log (U:—BTtl—t:)\) Va_;f 1
f 1, f { = }EO )

fdtlf + 20 la )W [1) i dy f(zf’) 175 dty (173)

R G’ +1 2p ] 7a1 (YO y)a’ (=41 4)
\AKEO_—|r+l_ (3‘) f 1t dey J‘(l—l_wla(t A )d.V(U

which, again by (165),

which, by (165),
<AK EO

) G?’+1 ) 2p 2 Fis. 175
<MK Eo (3_) £+ (175)
In exactly the same manner, we prove that
: G'+1/7)
5@ SAKE 7o P) 742 (176)

So that, from (168), (171), (175) and 176) we have

/41 2 9
Z,, (E, 1) t|\—]—1f {K”r +/\Kp+f\KEo(3—)

art-1

-t—zxKE-o-(%l?)“- f } {177y

r+ 2
Let G be taken initially so great that
G > M, (3, 9)] and [N, (y, 9)] of (163), | (178)
G > K. | ]
and - (179)
G>AKp+AKE9(2, ) 2 /\KEO(EP) :
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Then
G +1.¢7+1 J all-1
Z,..(E, 1) < [AK.J.-:..».-_.— +G]
lf%?())l lfjm{_ |a'l‘
re2opl o at-1 '
SRS SR s I o 8))
r+1 ot f
Thus inequality (160) is proved for (r+ 1
Also, by (178),
a't-1 |
Z.(E,£) <G (1—1—4«9-*--* ) (181)
So that, (160) is unive:sally true.
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