A NEW PROOF OF MEHLER'S FORMULA AND OTHER THEOREMS ON HERMITIAN POLYNOMIALS

BY K. S. K. IYENGAR

(Department of Mathematics, Central College, Bangalore)

Received September 2, 1939

1. Many proofs of Mehler's formula, namely,

\[\sum_{\nu=0}^{\infty} \nu^{n} \psi_{\nu}(x) \cdot \psi_{\nu}(y) = \frac{1}{\sqrt{\pi} (1 - \nu^2)} e^{\frac{x^2 + y^2}{2} \left(\frac{1 + \nu^2}{1 - \nu^2} \right)}, \]

where \(\psi_{\nu}(x) = \frac{(-1)^{\nu} \cdot e^{x^2} D^{\nu} (e^{-x^2})}{\nu \cdot \sqrt{\pi} \nu^{\nu}}, \)

have been given, which for the most part have been indirect and elaborate as suggested by Prof. Watson in his Notes* in J.L.M.S. (1933). Of the three proofs given by Prof. Watson in his Notes, the first one implies a knowledge of certain results in the theory of Laguerre and Bessel functions, the second a knowledge of the formula of Saalschutz for generalised hypergeometric functions and the third, something of the theory of Fourier Transforms and of absolutely convergent infinite integrals. I have here given a proof that is different from all the known proofs of Mehler's formula which involves only a knowledge of (i) recurrence formula for \(H_{\nu}(x), \) (ii) elementary analysis of differentiating a series term by term. Hence I believe that the proof given herein besides being new is the most elementary one.

Besides this, some interesting equalities (given in 2) giving the order of \(\psi_{\nu}(x) \) for all \(n \) and \(x \) are derived by elementary methods.

2. Let \(\psi_{\nu}(x) \) be as above and \(a_{\nu} = \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{\sqrt{\pi} \cdot 2 \cdot 4 \cdot 6 \cdots 2n} \), \(n \geq 1 \)

\[a_{0} = \frac{1}{\sqrt{\pi}}. \]

We shall prove the following results:

\[(A) \ a_{\left[\frac{n}{2} \right]} = 4 \int_{0}^{x} \psi_{\nu}^{2} e^{-x^2} \cdot x \cdot dx = e^{-x^2} (\psi_{\nu}^{2} + \psi_{\nu-1}^{2}) = a_{\left[\frac{n}{2} \right]} e^{-2x^2} + 4e^{-2x^2} \int_{0}^{x} \psi_{\nu-1}^{2} e^{x^2} \cdot x \cdot dx \]

(A') (A) obviously implies \(\psi_n^2 < \frac{k}{\sqrt{n} + 1} e^{x^2} \) for all \(n \) and \(x \)

(B) \(\sum_{r=1}^{n} \psi_r^2 = \frac{\sqrt{2} n}{\pi} + 0 \cdot 1 + 0 \left(\frac{e^{x^2}}{\sqrt{n}} \right) \)

(C) From (A) is deduced the known Equation

\[
\sum_{0}^{\infty} t^n \psi_n^2 = \frac{e^{-x^2(1-t) \over 1+t}}{\sqrt{\pi}(1-t^2)}
\]

(D) If \(F(x, y, t) = e^{2xyt} \sum t^n \psi_n(x) \cdot \psi_n(y) \), it is proved that \(F \) is a function of \(x^2 + y^2 \) and Mehler's formula (as stated in the Introduction) is then deduced from (C).

3. We shall first establish:

\[
D \{ (\psi_n^2 + \psi_{n-1}^2) e^{-x^2} \} = -4xe^{-x^2} \psi_n^2 \quad (3.1)
\]

\[
D \{ (\psi_n^2 + \psi_{n-1}^2) e^x \} = 4xe^{-x^2} \psi_n^2 \quad (3.2)
\]

Proof of (3.1): Let \(H_n = (-1)^n e^{x^2} D^n (e^{-x^2}) \) and \(K_n^2 = {1 \over 2^n \cdot 1 ! \cdot \sqrt{\pi}} \); then

\[
D \{ \psi_n^2 e^{-x^2} \} = D \{ K_n^2 H_n^2 e^{-2x^2} \} = 2K_n^2 e^{-2x^2} H_n \{ D H_n - 2x H_n \}
\]

\[
= -2K_n^2 e^{-2x^2} H_n \cdot H_n + 1 \quad (\text{since } D H_n - 2x H_n = -H_n + 1)
\]

Similarly

\[
D \{ \psi_{n-1}^2 e^{-x^2} \} = -2K_{n-1}^2 e^{-2x^2} H_{n-1} H_n
\]

\[
= -4n K_n^2 e^{-2x^2} H_{n-1} \cdot H_n
\]

From (3.3) and (3.4) we obtain,

\[
D \{ (\psi_n^2 + \psi_{n-1}^2) e^{-x^2} \} = -2K_n^2 e^{-2x^2} H_n \{ H_n + 1 + 2n H_{n-1} \}
\]

\[
= -4K_n^2 e^{-2x^2} H_n \cdot x \quad (\text{since } H_n + 1 + 2n H_{n-1} = 2x H_n)
\]

thus establishing (3.1).

Writing (3.1) as

\[
D \{ (\psi_n^2 + \psi_{n-1}^2) e^{-x^2} \} = -4xe^{-x^2} \psi_n^2 \psi_{n-1}
\]

and multiplying the Equation by \(e^{2x^2} \) we obtain after rearrangement,

\[
D \{ (\psi_n^2 + \psi_{n-1}^2) e^{x^2} \} = 4xe^{-x^2} \psi_n^2 \psi_{n-1}
\]

thus proving 3.2.

4. **Proof of (A):** Integrating (3.1) in \((0, x) \) we obtain,

\[
\psi_n^2 (0) + \psi_{n-1}^2 (0) - e^{-x^2} (\psi_n^2 + \psi_{n-1}^2) = 4 \int_0^x \psi_n^2 e^{-x^2} \cdot x \cdot dx.
\]

Since

\[
\psi_{2n} (0) = \frac{1}{\sqrt{n}} \frac{1 \cdot 3 \cdots (2n - 1)}{2 \cdot 4 \cdots 2n} = a_n \quad \text{and} \quad \psi_{2n+1} (0) = 0
\]

Hence

\[
\alpha_n - e^{-x^2} (\psi_n^2 + \psi_{n-1}^2) = 4 \int_0^x \psi_n^2 \cdot e^{-x^2} \cdot x \cdot dx \quad (4.1)
\]
Proof of Mehler’s Formula & Theorems on Hermitian Polynomials

Similarly by integrating (3.2) in (0, x) we obtain,

\[e^{x^2} \left(\psi_n^2 + \psi_{n-1}^2 \right) - a_{[n]} = 4 \int_0^x \psi_{n-1}^2 e^{x^2} \cdot x \cdot dx \quad (4.2) \]

Combining (4.1) and (4.2) we obtain (A).

5. Proof of (B): Let \(S_n = \sum_{r=1}^n \psi_r^2 \).

From (3.1) we obtain,

\[\sum_{r=1}^n D \{ (\psi_r^2 + \psi_{r-1}^2) e^{-x^2} \} = D \{ e^{-x^2} (2S_n + \psi_0^2 - \psi_n^2) \} = -4xe^{-x^2} \ S_n \quad (5.1) \]

i.e., \(D \{ e^{-x^2} S_n \} + 2x \cdot e^{-x^2} S_n = \frac{1}{2} D \{ e^{-x^2} (\psi_n^2 - \psi_0^2) \} \).

The L.H.S. = \(e^{-x^2} D \ S_n \). Hence we have

\[D \ S_n = e^{x^2} \cdot \frac{1}{2} \cdot D \{ e^{-x^2} (\psi_n^2 - \psi_0^2) \} = \frac{D\psi_n^2}{2} - x \psi_n^2 + \frac{2x}{\sqrt{\pi}} e^{-x^2} \quad (5.2) \]

Since \(\psi_0^2 = \frac{e^{-x^2}}{\sqrt{\pi}} \)

Integrating (5.2) in (0, x) we obtain,

\[S_n (x) = S_n (0) + \frac{1}{2} \{ \psi_n^2 - \psi_0^2 (0) \} - \int_0^x \psi_n^2 \cdot x \cdot dx + \frac{1}{\sqrt{\pi}} (1 - e^{-x^2}) \quad (5.3) \]

By (A) \(\alpha \) and \(\beta \) are of order \(\left(\frac{e^{x^2}}{\sqrt{n}} \right) \quad (5.4) \)

Let \(n = 2p \) or \(2p + 1 \), then

\[S_n (0) = \sum_{r=1}^n \psi_r^2 (0) = \sum_{r=1}^p a_{2r} = \frac{1}{\sqrt{\pi}} \left\{ \frac{1 + \frac{1}{2} + \cdots \frac{1}{2} \cdot \cdots \cdot \frac{2p}{2} - 1}{2 \cdot 4 \cdots 2p} - 1 \right\} \]

\[= \frac{1}{\sqrt{\pi}} \left\{ \frac{3 \cdot 5 \cdots (2p + 1)}{2 \cdot 4 \cdots 2p} - 1 \right\} \]

\[= \frac{2 \sqrt{p}}{\pi} + O \left(\frac{1}{\sqrt{p}} \right) - \frac{1}{\sqrt{\pi}} \]

\[= \frac{\sqrt{2n}}{\pi} + O (1) \]

Hence (5.3) becomes

\[S_n (x) = \frac{\sqrt{2n}}{\pi} + O (1) + O \left(\frac{e^{x^2}}{\sqrt{n}} \right) \quad (5.5) \]

thus proving (B).

6. Proof of (C): Let \(F (x, t) = e^{-x^2} \sum_0^\infty t^n \psi_n^2 \). Since \(\psi_n^2 = 0 \left(\frac{e^{x^2}}{\sqrt{n} + 1} \right) \)

the series for \(F (x, t) \) converges for \(| t | < 1 \) and all \(x \).
Then
\[
\frac{d}{dx} \left\{ (1 + t) F(x, t) \right\} = \frac{d}{dx} \left\{ \sum (\psi_n^2 + \psi_{n+1}^2) e^{-x^2 \cdot t^n} \right\}
\]
\[
= \sum_0^\infty t^n \cdot \frac{d}{dx} \left\{ (\psi_n^2 + \psi_{n+1}^2) e^{-x^2} \right\}
\]
\[
= - \sum (t^n \cdot 4x \cdot e^{-x^2} \psi_n^2) = -4x \int (x, t) \quad (6.1),
\]
term by term differentiation being justified since \(\sum (4x \psi_n^2 e^{-x^2 \cdot t^n}) \) converges uniformly in any finite range for \(x \), for \(|t| < 1 \). Integrating (6.1) in \((0, x)\), we obtain:

\[
F(x, t) = F(0, t) e^{-\frac{2x^2}{1+t}}
\]

But \(F(0, t) = \frac{1}{\sqrt{\pi}} \left\{ 1 + \sum_1^\infty \frac{1 \cdot 3 \cdot (2n - 1)}{2 \cdot 4 \cdot 2n} \cdot t^{2n} \right\} = \frac{1}{\sqrt{\pi}(1 - t^2)} \)

Hence \(F(x, t) = \frac{e^{-\frac{2x^2}{1+t}}}{\sqrt{\pi}(1 - t^2)} \) (6.2)

and \(\sum t^n \psi_n^2(x) = \frac{e^{-\frac{x^2(1-t)}{1+t}}}{\sqrt{\pi}(1 - t^2)} \) (6.3)

thus proving (C).

7. Before proving (D) we shall prove the following two Lemmas:

Lemma I. Let \(\mathcal{H}_n(x) \) and \(\mathcal{K}_n \) be as defined in 3; and let

\[
\beta_n(x, y) = \mathcal{K}_{n-1} \{ y \mathcal{H}_n(y) \cdot \mathcal{H}_{n-1}(x) - x \mathcal{H}_n(x) \cdot \mathcal{H}_{n-1}(y) \}
\]

Then we shall prove the identity:

\[
\beta_n(x, y) = \beta_{n-2}(x, y) = 2(y^2 - x^2) \mathcal{K}_n \mathcal{H}_{n-1}(x) \mathcal{H}_{n-1}(y) \quad (7.1)
\]

Proof of (7.1): Now \(\mathcal{H}_n(x) = 2x \cdot \mathcal{H}_{n-1}(x) - 2(n - 1) \mathcal{H}_{n-2}(x) \) (7.2)

Hence \(y \mathcal{H}_n(y) \cdot \mathcal{H}_{n-1}(x) = 2y^2 \cdot \mathcal{H}_{n-1}(y) \mathcal{H}_{n-1}(x) -
\]
\[
\quad 2(n - 1)y \mathcal{H}_{n-2}(y) \mathcal{H}_{n-1}(x)
\]

\[
x \mathcal{H}_n(x) \cdot \mathcal{H}_{n-1}(y) = 2x^2 \cdot \mathcal{H}_{n-1}(x) \cdot \mathcal{H}_{n-1}(y) -
\]
\[
\quad 2(n - 1)x \cdot \mathcal{H}_{n-2}(x) \cdot \mathcal{H}_{n-1}(y)
\]

Hence \(\beta_n(x, y) = 2(y^2 - x^2) \mathcal{K}_n \mathcal{H}_{n-1}(x) \mathcal{H}_{n-1}(y) +
\]
\[
\mathcal{K}_{n-1} \{ x \mathcal{H}_{n-2}(x) \cdot \mathcal{H}_{n-1}(y) - y \mathcal{H}_{n-2}(y) \mathcal{H}_{n-1}(x) \}
\]

Making another application of (7.2) to the second term on the right side of (7.4), we have:

\[
\mathcal{K}_{n-1} \{ x \mathcal{H}_{n-2}(x) \cdot \mathcal{H}_{n-1}(y) - y \mathcal{H}_{n-2}(y) \mathcal{H}_{n-1}(x) \}
\]

\[
= \mathcal{K}_{n-1} \{ y \mathcal{H}_{n-2}(y) \mathcal{H}_{n-3}(x) - x \mathcal{H}_{n-2}(x) \mathcal{H}_{n-3}(y) \} = \beta_{n-2}(x, y) \quad (7.5)
\]

Hence,

\[
\beta_n(x, y) = \beta_{n-2}(x, y) = 2(y^2 - x^2) \mathcal{K}_{n-1} \mathcal{H}_{n-1}(x) \cdot \mathcal{H}_{n-1}(y),
\]
Proof of Mehler's Formula & Theorems on Hermitian Polynomials

thus establishing (7·1)

Lemma II. Let $F_1(x, y, t) = e^{\frac{-2xyt}{1-t^2}} \sum_0^\infty K_n^2 H_n(x) \cdot H_n(y) \cdot t^n$

we shall prove here $y \frac{\partial F_1}{\partial x} - x \frac{\partial F_1}{\partial y} = 0 \quad (7·6)$

Proof of (7·6):

$$\frac{\partial F_1}{\partial x} = e^{\frac{-2xyt}{1-t^2}} \sum_0^\infty K_n^2 H_{n-1}(x) H_n(y) t^n - \frac{2yt}{1-t^2} F_1(x, y, t) \quad (7·7)$$

since $d \frac{H_n(x)}{dx} = 2n H_{n-1}$ and $K_n^2 \cdot 2n = K_{n-1}^2$.

Similarly,

$$\frac{\partial F_1}{\partial y} = e^{\frac{-2xyt}{1-t^2}} \sum_0^\infty K_n^2 H_n(x) \cdot H_{n-1}(y) t^n - \frac{2xt}{1-t^2} F_1(x, y, t) \quad (7·8)$$

Hence,

$$y \frac{\partial F_1}{\partial x} - x \frac{\partial F_1}{\partial y} = e^{\frac{-2xyt}{1-t^2}} \sum \beta_n(x, y) t^n - \frac{2(y^2 - x^2)}{1-t^2} F_1(x, y, t)$$

$$= e^{\frac{-2xyt}{1-t^2}} \left\{ \frac{(1-t^2)}{1-t^2} \sum \beta_n t^n - 2(y^2 - x^2) \sum K_n^2 H_n(x) \cdot H_n(y) t^n+1 \right\}$$

$$= e^{\frac{-2xyt}{1-t^2}} \left\{ \frac{(1-t^2)}{1-t^2} \sum t^n \left[\beta_n - \beta_n - 2 - 2 K_{n-1}^2 x^2 - y^2 H_{n-1}(x) \cdot H_{n-1}(y) \right] \right\}$$

$$= 0 \text{ by Lemma I [or (7·1)]} \quad (7·9)$$

term by term differentiation being permissible since the differentiated series is uniformly convergent in any finite range of (x, y) for some t such that $|t| < 1$, by property A'

8. Proof of Mehler's formula (D):

Since by Lemma II $y \frac{\partial F_1}{\partial x} - x \frac{\partial F_1}{\partial y} = 0$,

$$F_1 = \phi_t(x^2 + y^2) \quad (8·1)$$

and if $F(x, y, t)$ be defined as in 2 (D), then

$$F(x, y, t) = F_1 \cdot e^{\frac{-x^2 + y^2}{2}} = \phi_t(x^2 + y^2) \quad (8·2)$$

i.e.,

$$\sum t^n \psi_n(x) \cdot \psi_n(y) = e^{\frac{-x^2 + y^2}{2}} \phi_t(x^2 + y^2).$$
Putting $x = y$ and applying (C) we obtain

$$
\Phi_t \left(2 \ x^2 \right) \ e^{\frac{t}{1 - t^2} \cdot 2x^2} = e^{\frac{-x^2(1 - t)}{1 + t}} \frac{1}{\sqrt{\pi} \ (1 - t^2)}
$$

i.e.,

$$
\Phi_t \left(2 \ x^2 \right) = \frac{1}{\sqrt{\pi} \ (1 - t^2)} \ e^{\frac{-x^2(1 + t^2)}{(1 - t^2)}
$$

Hence

$$
\Sigma \ t^n \ \psi_n \ (x) \cdot \psi_n \ (y) = \frac{1}{\sqrt{\pi} \ (1 - t^2)} \cdot e^{\frac{2 \ txy}{1 - t^2} - \frac{(x^2 + y^2)}{2} \ (1 + t^2)}
$$

thus proving (D).