

A PROPERTY OF INTEGRAL FUNCTIONS WITH REAL ROOTS AND OF ORDER LESS THAN TWO

BY K. S. K. IYENGAR

Received June 19, 1940

I

ERDOS AND GRUNWALD* have proved the following theorem:—

Let $f(x)$ be a real polynomial, with real roots and let (1) $x=a_1$ and $x=a_2$ be consecutive single roots of $f(x)$, (2) Y , the height of the point of intersection of the tangents to the curve $y=f(x)$ at $(a_1, 0)$, $(a_2, 0)$ above the X-axis, (3) M the maximum of $|f(x)|$ in (a_1, a_2) , then taking $a_1 < a_2$

$$\frac{2}{3} M (a_2 - a_1) \cdot \int_{a_1}^{a_2} |f(x)| \, dx \geq \frac{1}{3} |Y| \cdot (a_2 - a_1). \quad (1.1)$$

It is the object of this paper to give four very comprehensive theorems which yield the best possible inequality [given as (3.3)] of the type (1.1). It will be obvious in the course of the paper that the inequality (1.1) is the best possible only in cases of symmetry. It may be noted that the method adopted here is quite different from that of Erdos, and Grunwald.

II. Statement of Theorems

THEOREM (T₁): (1) Let $\phi(x)$, a real integral function, be defined by

$$\phi(x) = e^{\alpha x + \beta} \prod_{n=1}^{\infty} \left(1 - \frac{x}{a_n}\right) e^{\frac{x}{a_n}},$$

where α , β , a_1, \dots, a_n, \dots are all real and $\sum \frac{1}{a_n^2}$ is convergent.

(2) Let $x=a_1$, $x=a_2$ ($a_1 < a_2$) be consecutive single roots of $\phi(x)=0$ and $\phi(x) > 0$ in $a_1 < x < a_2$.

* "On polynomials with real roots", in *Annals of Mathematics*, July 1939 (3), 537, 40.

(3) $\phi'(a_1) = m_1$ and $\phi'(a_2) = -m_2$.

Then, if $A = \frac{\sqrt{m_1 m_2}}{a_2 - a_1} \cdot e^{-B\left(\frac{a_1 + a_2}{2}\right)}$ and $B = \log \frac{m_2}{m_1} / (a_2 - a_1)$

all the curves $Y = \phi(x)$ [where $\phi(x)$ satisfies conditions (2) and (3) and is of the type defined in (1)] in $a_1 \leq x \leq a_2$, lie above the minimum curve

$$Y = m(x) = A \cdot e^{Bx} \cdot (x - a_1)(a_2 - x) \quad (2.1)$$

and you can find real polynomials with real roots satisfying conditions (2) and (3) as near as you like to the minimum curve of (2.1).

THEOREM (T₂): Let $\phi(x)$ be a function satisfying conditions (1) and (2) of Theorem I and (3)':—let $\phi(x)$ attain its maximum value in $a_1 \leq x \leq a_2$ at x_0 and $\phi(x_0) = M_0$.

Then all the curves $Y = \phi(x)$, [where $\phi(x)$ satisfies (1), (2) and (3)'], in $a_1 \leq x \leq a_2$ lie below the curve

$$Y = \bar{A} (x - a_1)(a_2 - x) e^{\bar{B} \cdot x} = M(x) \quad (2.2)$$

where $\bar{B} = \frac{2x_0 - a_1 - a_2}{(x_0 - a_1)(a_2 - x_0)}$ and $\bar{A} = \frac{M_0 e^{-\bar{B}x_0}}{(x_0 - a_1)(a_2 - x_0)}$

and you can find the real polynomials with real roots satisfying (1), (2) and (3)' as near as you like to the maximum curve of (2.2).

THEOREM (T₃): The curve $Y = m(x)$ of (2.1) (of Theorem T₁) lies above the parabola which touches the lines $Y = m_1(x - a_1)$, $Y = -m_2(x - a_2)$, at $(a_1, 0)$, $(a_2, 0)$ respectively. It coincides with it in case of symmetry, namely, $m_1 = m_2$.

THEOREM (T₄): The curve $Y = M(x)$ of (2.2) (of Theorem T₂) lies below the parabola passing through $(a_1, 0)$, $(a_2, 0)$ and touching the line $Y = M_0$ at $x = x_0$. If $x_0 = \frac{a_1 + a_2}{2}$, then the parabola will coincide with $Y = M(x)$.

III

From Theorems T₁ and T₃ we obtain

$$\int_{a_1}^{a_2} \phi(x) dx \geq \int_{a_1}^{a_2} m(x) dx = (a_2 - a_1)^2 \sqrt{m_1 m_2} \left\{ \frac{1}{6} + \frac{1}{2} \int_0^{B_1} \frac{u (\sinh u - u)}{B_1^3} du \right\}$$

$$\left[\text{where } B_1 = \frac{B(a_2 - a_1)}{2}, \text{ B being defined in (2.1)} \right]$$

≥ Area of the parabola of contact (of Theorem T₃)† = $\frac{1}{3} \cdot Y(P) \cdot (a_2 - a_1)$. (3.1)
 where Y(P) is the Y co-ordinate of P, the point of intersection of tangents at (a₁, 0) (a₂, 0) to the curves Y = φ(x).

From Theorems T₂ and T₄ we get,

$$\int_{a_1}^{a_2} \phi(x) dx \geq \int_{a_1}^{a_2} M(x) dx = \frac{c^1 - u_0^2}{1 - u_0^2} \cdot 2 M_0 (a_2 - a_1) \cdot \int_0^{B_2} \frac{u \sinh u}{B_2^3} \cdot du$$

$$[\text{where } u_0 = \frac{2(x_0 - a_1) + a_2}{a_2 - a_1} \text{ and } B_2 = \frac{2u_0}{1 - u_0^2}]$$

$$\therefore \text{Area of the parabola of (Theorem T₄)‡} = \frac{2}{3} M_0 (a_2 - a_1) \quad (3.2)$$

so that combining (3.1) and (3.2), if φ(x) satisfies (1), (2), (3) and (3)' we obtain

$$\begin{aligned} & \frac{2}{3} M_0 (a_2 - a_1) \geq 2 M_0 (a_2 - a_1) \cdot \frac{c^1 - u_0^2}{1 - u_0^2} \cdot \int_0^{B_2} \frac{u \cdot \sinh u}{B_2^3} du \geq \int_{a_1}^{a_2} \phi(x) dx \geq \\ & \geq \sqrt{m_1 m_2} (a_2 - a_1)^2 \left\{ \frac{1}{6} + \frac{1}{2} \int_0^{B_1} \frac{u (\sinh u - u)}{B_1^3} \cdot du \right\} \geq \frac{1}{3} Y(P) (a_2 - a_1). \quad (3.3) \end{aligned}$$

It will be obvious from the proofs of Theorems T₃ and T₄ that equality sign can occur in the first and last inequality signs in (3.3), only in case of symmetry, i.e., m₁ = m₂ and x₀ = $\frac{a_1 + a_2}{2}$.

Note.—Generalization of Theorem T₁ is possible to the case where conditions (2) and (3) may be replaced by

$$(2)_1 \quad \phi(a_1) = 0 \text{ a zero of } q_1 \text{th degree and } \phi(a_2) = 0 \text{ of } q_2 \text{th degree and} \\ \phi(x) > 0 \text{ in } a_1 \leq x \leq a_2.$$

†, ‡ The following two elementary propositions are implied :

(1) If Y = P(x) be a parabola touching the lines Y = m₁(x - a₁) and Y = -m₂(x - a₂)

at (a₁, 0), (a₂, 0) respectively, then $\int_{a_1}^{a_2} P(x) dx = \frac{1}{3} Y(P) (a_2 - a_1) = \frac{m_1 m_2}{m_1 + m_2} \cdot \frac{(a_2 - a_1)^2}{3}$.

(2) If Y = P(x) a parabola passes through (a₁, 0) and (a₂, 0) and touches Y = M₀ at

x = x₀ then $\int_{a_1}^{a_2} P(x) dx = \frac{2}{3} M_0 (a_2 - a_1)$.

(3)₁ $\phi^{(q_1)}(a_1) = m_1$ $\phi^{(q_2)}(a_2) = \{(-1)^{q_2}\} m_2$. Then the minimum curve will be of the type $Y = A(x - a_1)^{q_1} (a_2 - x_1)^{q_2} e^{B \cdot x}$ in $a_1 \leq x \leq a_2$.

A and B being expressible in terms of m_1 m_2 , a_1 , a_2 q_1 q_2 .
similar generalization for Theorem T_2 is possible.

Proof of Theorem (T_1): Let $m(x)$ be the function defined in (2.1) and $\phi(x)$ the function satisfying (1), (2) and (3).

$$\text{Let } F(x) = \frac{\phi(x)}{m(x)}. \text{ Then from condition (3) of Theorem } T_1$$

$$F(a_1) = F(a_2) = 1 \quad (4.1)$$

and from condition (1) of Theorem T_1 we obtain

$$\frac{d^2}{dx^2} \log F(x) = - \sum_{n=3}^{\infty} \frac{1}{(x - a_n)^2} = -\mu(x), \quad (4.2)$$

where all the a_n 's for $n \geq 3$ lie outside the interval $a_1 \leq x \leq a_2$ by condition (2). Since $\log F(a_1) = \log F(a_2) = 0$, we can easily prove

$$\log F(x) = \frac{(x - a_1)(a_2 - x)}{12} \mu(\xi), \text{ where } a_1 < \xi < a_2 \quad (4.3)$$

so that $\log F(x) \geq 0$, equality occurring only when $F(x) = 1$ so that

$$\phi(x) \geq m(x). \quad (4.4)$$

To prove the latter half of the theorem, we assume without any loss of generality $a_1 = -1$, $a_2 = +1$ and let $m(x)$ stand for the corresponding minimum function of (2.1).

$$\text{Let } P(x) \text{ be defined by } P(x) = D(1 - x^2) \left(1 - \frac{x}{a}\right)^n \quad (4.5)$$

D , and a , to be suitably chosen such that $|a| > 1$ and $P'(1) = -m_2$, $P'(-1) = m_1$.

Since $P'(x) = -2Dx \left(1 - \frac{x}{a}\right)^n + (1 - x^2) \cdot D \cdot \{\dots\} \cdot$ and $P'(1) = -m_2$,

$$P'(-1) = m_1.$$

$$\text{We obtain } D \left(1 - \frac{1}{a}\right)^n = \frac{m_2}{2}, \quad D \left(1 + \frac{1}{a}\right)^n = \frac{m_1}{2}$$

$$\text{so that } a = \frac{\left(\frac{m_1}{m_2}\right)^{\frac{1}{n}} + 1}{\frac{1}{n}} \quad \text{if } m_1 \neq m_2. \quad (4.6)$$

Let $m_1 > m_2$ (argument being of the same type when $m_2 > m_1$)

and let $\theta(x) = \log \frac{P(x)}{m(x)}$.

Then $\theta(\pm 1) = 0$ and $\theta''(x) = \frac{n}{(x-a)^2}$

and if $-1 \leq x \leq 1$ $0 \leq \theta(x) \leq \frac{1}{2}(1-x^2)$. [Max. of $-\theta''(x)$ in $(-1, 1)$, since $m_1 > m_2$, $a > 1$]

and Max. of $-\theta''(x)$ will be $\frac{n}{(1-a)^2} = \frac{n}{4} \left\{ \left(\frac{m_1}{m_2} \right)^n - 1 \right\}^2$ (4.7)

and will be of order $0\left(\frac{1}{n}\right)$ for large n

so that for large n , $P(x) \sim m(x) \cdot e^{\theta\left(\frac{1}{n}\right)}$ or $|P(x) - m(x)| = 0\left(\frac{1}{n}\right)$ in $|x| < 1$. (4.8)

In case $m_1 = m_2$, $m(x)$ itself will be a quadratic, thus proving the latter half of Theorem T₁.

Proof of Theorem T₂: Let $M(x)$ be the function defined in (2.2) and $\phi(x)$ the function satisfying conditions (1), (2) and (3)', and let

$$F(x) = \log \frac{\phi(x)}{M(x)}.$$

Then from condition (3)' we obtain $F(x_0) = F'(x_0) = 0$ (4.9)

and from condition (1) $\frac{d^2}{dx^2} F(x) = -\sum_{n=3}^{\infty} \frac{1}{(x-a_n)^2} \cdot \mu(x)$, (4.10)

where all a_n 's for $n \geq 3$ lie outside $a_1 \leq x \leq a_2$

$$\begin{aligned} \text{Now } F(x) &= F(x_0) + (x - x_0) F'(x_0) + \frac{(x - x_0)^2}{2} \cdot \mu(\xi) \\ &= \frac{(x - x_0)^2}{2} \cdot \mu(\xi) \quad \text{for } a_1 \leq x \leq a_2 \end{aligned} \quad (4.11)$$

ξ being in the interval (x_0, x) .

Now $\mu(x) > 0$ in $a_1 \leq x \leq a_2$

so that $F(x) > 0$ in $a_1 \leq x \leq a_2$

equality occurring only when $F(x) = 0$.

i.e., in $a_1 \leq x \leq a_2$ $M(x) \geq \phi(x)$. (4.12)

The latter half of the Theorem T_2 can be proved in the same manner as the corresponding part of Theorem T_1 .

Proof of Theorem T_3 : Without loss of generality we take $a_1 = -1$, $a_2 = +1$, given $m_2 \neq m_1$, the parabola of contact will be given by

$$Y = \sqrt{a^2 + \beta^2 + 2 a \beta x} - a - \beta x = P(x) \quad \text{in } -1 \leq x \leq 1$$

$$\text{where } \alpha = \frac{2 m_1 m_2 (m_1 + m_2)}{(m_1 - m_2)^2} \quad \beta = \frac{2 m_1 m_2}{m_1 - m_2}. \quad (4.13)$$

$$\text{Let } F(x) = \log \frac{m(x)}{P(x)}. \quad \text{Then since } \frac{1}{P(x)} = \frac{\sqrt{a^2 + \beta^2 + 2 a \beta x} + a + \beta x}{\beta^2 (1 - x^2)}$$

$$\begin{aligned} F(x) &= \log \frac{m(x)}{\beta^2 (1 - x^2)} + \log \{\sqrt{a^2 + \beta^2 + 2 a \beta x} + a + \beta x\} \\ &= \text{,} \quad + \log \theta(x) \end{aligned} \quad (4.14)$$

$$\text{Now } F(\pm 1) = 0 \text{ and } \frac{d^2}{dx^2} F(x) = \frac{d^2}{dx^2} \log \theta(x) = \frac{\theta''}{\theta} - \frac{(\theta')^2}{\theta^2}$$

$$\text{and } \theta'' = - \frac{(a\beta)^2}{(a^2 + \beta^2 + 2 a \beta x)^{\frac{3}{2}}}. \quad (4.15)$$

Since $\theta > 0$ and $\theta'' < 0$ in $|x| \leq 1$

$$\frac{d^2}{dx^2} F(x) < 0 \quad \text{in } |x| < 1. \quad \text{Let } -\mu(x) = \frac{d^2 F}{dx^2}.$$

$$\text{Then if } |x| \leq 1 \quad F(x) = \left(\frac{1 - x^2}{2} \right) \cdot \mu(\xi) \quad -1 < \xi < 1$$

$$\text{Hence } F(x) > 0 \quad \text{in } |x| < 1$$

$$\text{or } m(x) > P(x) \quad \text{in } |x| < 1. \quad (4.16)$$

In case $m_1 = m_2$ the parabola of contact will be defined

$$\text{by } Y = \frac{m_1}{2} (1 - x^2) \quad (4.17)$$

and coincides with $Y = m(x)$ the minimum curve of (2.1).

Proof of Theorem T_4 : As in Theorem T_3 we take $a_1 = -1$, $a_2 = +1$. Let $x_0 \neq 0$. Then the parabola passing through $(\pm 1, 0)$ and touching $Y = M_0$ at x_0 will be

$$Y = \sqrt{a^2 + \beta^2 + 2 a \beta x} - a - \beta x = P(x)$$

$$\text{where } \alpha = \frac{M_0}{2x_0^2} \quad \beta = -\frac{M_0}{x_0} \quad (4.18)$$

and let

$$F(x) := \log \frac{M(x)}{P(x)}.$$

Then

$$F(x_0) = F'(x_0) = 0$$

and arguing as in Theorem T₃ we prove

$$F''(x) < 0 \quad \text{in } -1 < x < 1 \quad (4.19)$$

and as in Theorem T₂ for x in $-1 < x < 1$, $F(x) < 0$ when $x \neq x_0$,

i.e.,

$$M(x) < P(x) \quad \text{when } x \neq x_0$$

$$= P(x) \quad \text{for } x = x_0, \quad -1 < x < 1. \quad (4.20)$$

In case $x_0 > 0$ the parabola will be $Y = M_0(1 - x^2)$ and coincides with the maximum curve of (2.2). (4.21)