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The real half-line + > z, > 2, upon which the integers are marked off unit dis-
tance apart, is mapped onto y > 0 by the transformation y = fZ dt/logt = li(x) —
li(zo). Cover the whole of y > 0 by a sequence of intervals, each of length u« > 0,
fixed. The nth such interval willbe (n — 1)u < y < nu, and 7,(w) = 7 (2o, u; n) de-
notes the number of primes in its z-image. We show that the primes in an arbi-
trary connected stretch of the y-line have a Poisson distribution in the sense of
probability theory, the sequences m,(u) constituting statistical samples thereof.
Hereafter, take all positions of the initial point (on the y-line) as equally likely and
xo neither restricted nor specified otherwise.

Textbook results in number theory and probability theory are taken for granted.
In particular,
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LemMa 1. The number of primes p < x is ~ li(x) ~ y (for any x,, as x — =).
If 0(z) = 2 log p, p < x, then 8(x) ~ x. If px be the kth prime in order, starting
Jrom py = 2, then p, ~ Ik log k.

The first of these is the prime-number theorem,! and the other two are equiva-
lent, as is well known.

LemMma 2. Forp <z, (1 — 1/p) ~ e "/log x; ~, Euler’s constant.

This is a classical theorem of Mertens.?2

LemMa 3. If for any set Z of primes, lIlp = x, p C Z, then II(1 — 1/p) ! is less
than C logsx, p C Z, x large.

Proof: The product of (1 — 1/p)~! will be greatest for any given number of
primes if the primes are 2, 3, . . . in sequence and all distinct. Then log z = log
Ilp = 2 log p by hypothesis, p € Z. Lemma 1 says that, packing the primes at
the beginning of the sequence, max p ~ 2 log p, and here J_log p = logz. By
Lemma 2 (the product being not greater than in this case) II(1 — 1/p)~! < C log,
z,pCZ. Q.E.D.

LeEMMA 4. The proportion of u-intervals for which m(xoun) > 2 is less than cu?
for small u, regardless of xy,if x is large.

Proof: The sieve of Viggo Brun leads to the theorem:* The number of primes
p < x for which p + b is also a prime is < (cx/log? x)II(1 — 1/p)~}, p[ b. The u-
intervals containing two or more primes must contain one such pair p,p + b for
some b < u log x approximately. Not all b, however, are admissible, as no odd b
will do for p > 2. The number of admissible b’s within the same u-interval is
easily seen to be not greater than the number of integers in (the z-image of) the
covering interval prime to N = 2.3 ... p, provided N < ulogz. Clearly,p + b
not a prime to N cannot be a prime except in the interval that begins from 2y = 2,
which may be ignored; moreover, such numbers are arranged cyclically modulo
N, which, being about the length of the interval on the z-axis, cannot be materially
changed in the vicinity of any given x. By Lemmas 2 and 3, the admissible set
will contain less than ¢’u log z/log; * members, for large . The bound for II(1 —
1/p) ! for primes dividing any b in the interval cannot ultimately be greater than
¢" log; . Finally, the total number of covering intervals in the range is ~z/u log
2. The estimate therefore is not in excess of (cz/log? z)(c’u log x/logs x)(c" logs x)
(ulogz/x) = ¢u. Q.E.D.

LEMMA 5. If fof1,fo . . . be the relative frequencies, D f; = 1, with which small
u-intervals containing 0,1,2, . . . primes occur in a large range of x, then fi = u + o(u).

Proof: Corresponding to the theorem cited in the prcof of Lemma 4 is an ex-
tension by P. Erdos:* The number of primes p < z for which all the numbers p +
byp+by...04+0b,0<b <b:<...<b, are also primes is less than

(cx/log2) I (1 — 1/p) CH ey =IO b I (be—b) (1)
pIE i=1 1<i<k<r

where w(p) is the number of solutions mod p of m(m + b)) ... (m + b,) = O(mod p).
From this point, the reasoning of the previous lemma holds, except that the num-
ber of choices for the set of r b’s will not exceed the binomial coefficient "C,, with
n = ¢ log z/log; x and Hp,plE cannot exceed (u log )™, with m = r2(r — 1)/2 (an
overestimate which we shall not stop to refine). The upper bound, for small u,
is therefore cu’*'/r! for each r, and the same ¢ may be taken throughout, quite ob-
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viously. TFor any w, the contribution of f,, f3, . . . to the expectation (mean value,
average) of primes per covering interval may be assessed as not exceeding cu?e.
Yor, this mean value is (0., + 1.f; + 2./ + ... ), so that f, contributes nothing.
Any term from f, onwards, as assessed above, will contribute 0(u2). The total
contribution of those terms will be 0(u2%*), as may be seen from the upper bounds
just given above. Now the mean value, by the prime number theorem, is exactly
u, over the whole y-line, no matter what the x,. It follows that for small u, f; =
u+0(u?). Q.E.D.

THEOREM. With all x, equally likely, the probability that exactly r primes will lie in
the x-tmage of O < y < 't is e” 't /r! (the Puisson distribution, with parameter t).

Proof: Given x,, there is no question of any probability; the entire sample is
completely defined for the whole y-line. But under the present conditions, the
irregularity of primes permits the use of the concept ‘“probability” the ‘“‘event”
being 0, 1, 2, . . . primes lying in the interval 0 < y < ¢. These events are exhaus-
tive and mutually exclusive. The conditions for a Poisson process are given by the
following postulates:®* The probability for one prime in ¢ < y < t + h for small
h is h + o(h); the probability for more than one prime in the small interval is
o(h); the probability for the small interval being totally void of primes is 1 —
h + o(h). Lastly, none of these are affected if it is known that k primes have
actually occurredin0 < y<¢,k=0,1,2....

These postulates are obviously satisfied in view of our lemmas above. Lemma 4
says that the probability (approximated arbitrarily closely by the corresponding
frequency) for more than one prime in the small interval is o(h). Lemma 5 gives
the probability for a single prime as A 4+ o(h). Since these two cases and that of
the h-interval being void of primes are mutually exclusive and exhaustive, the third
postulate is satisfied. Finally, the lemmas hold regardless of z, and ¢, over the
whole of the y-line, y > ¢. . Moreover, the number of primes known to have oc-
curred in 0 < y < ¢ does not in any way affect the frequencies or probabilities or
permit x, to be determined even approximately. (It is possible to go much further
in this direction, for not even the precise knowledge of the points ¢, ¢, . . . at which
these primes may actually have occurred changes the situation. If it could then
be said that there must exist a prime in ¢ < y < ¢ + &, no matter how small the 4, it
would follow that the & + 1st prime could be located from the positions on the y-
line of the first k, for all large primes and some k. This implies a recurrence rela-
tion between the primes; no such relation is known and an algebraic one of any
finite degree is demonstrably impossible. There is no finite upper bound for the
gap between consecutive primes on the y-line® and no known positive lower bound.
On the other hand, it is known that subsequences of primes (of positive density)
exist” for which the y-distance between consecutive primes is dense over a certain
positive range, whose precise termini are not known. This shows the impossibility
of using any but probability methods.) Q.E.D.

The Poisson distribution of our theorem may be quickly derived as follows.
For the argument, allow z to be any point (with equal likelihood) of a range R(x) =
2% 38/61 < o < 1. Itisknown (Ingham, A. E., Quart. J. Math., 8,255-266 (1937))
that the prime-number theorem holds asymptotically over R(x) as x = «. Iur-
ther, let I(x) be a randomly selected interval within R(x) of y-length ¢, hence con-
taining ~i¢ log x integers regardless of position (since the variation in log x is
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negligible over R(x)). No matter where I(z) is located, alternate integers in it
must be even, four out of every six (regularly arranged) divisible by 2 or 3, etc.
This regularity of deletion by the sieve of Eratosthenes extends to all the smallest
primes whose product 2.3.5...p = N < tlogz. About te "log z/log; z = tg(z)
integers in I (x) will survive. Any p not a factor of N need not be the smallest prime
factor of a surviving integer in /(x) and a prime larger than ¢ log « need not even
have a multiple in I(x), so that one of the “survivors’’ being deleted by any such
prime is now a matter of chance with probability 1/p. By the prime number
theorem, the expectation of primes in 7(z) is exactly ¢ (in the limit), hence the com-
pound probability for primality of a “survivor” is asymptotic to 1/g(z). More-
over, if some & of these survivors be tested and found composite or prime (without
revealing their numerical values), the knowledge does not modify the probability
for primality for the rest. In all this, x is merely a background parameter, whose
principal use is to furnish relative magnitudes of the various functions involved,
as ¢ —> ©,

It follows that if P, be the probability for precisely r primes in I(x), then in the
limit Py, = lim(1 — 1/¢g)¥ = ¢ ‘. Using textbook definitions and procedures, the
limit P; = lim(1 — 1/¢)*“~(tg)(1/g) = te *, and so on, with limit P, = ¢ ‘¢'/r! But
any limiting distribution over R(r) as x = = will obviously be the distribution over
the entire z-line, here the Poisson distribution with parameter ¢, as before.
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