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Usine the notation of my former papers on the same subject,! I discuss
the necessary and sufficient conditions for the existence of a metric -
homogeneous in the direction components #’. 'The general result may be
restated as follows: for trajectories ‘described without an external force
(¢ = 0), the velocity is homogeneous in the velocity components x? of degree one
or zero. 'This is a loose dynamical equivalent of the ‘discussion which
follows in geometrical terminology. For the presupposed results and
unproved identities, the paper referred to will be useful.?

The Euler equations associated with 8 f f(x, %) dt = 0 may be written
in the tensor-invariant form
[1] Sz‘fE —'Df,z '—flz' = (D f);z'_ 2flz' = — a'rf;r,‘i -+ ‘brf,r,‘i ""'f,z'= 0
Suppose the paths of the space to be given by
2] i +at (,8) =0 i=1.-m

Then [1] may be regarded as a system of partial differential equations
for the unknown metric f. This system of the second order breaks up into
n+1 equations of the first order if and only if D f=0 ie f= const.
along the paths. The resulting equations
B3  Df=—aofr+a"fr=0 fisfi—Youfr=0
may be discussed by the standard methods for linear partial differential
equations of the first order, and the existence of f is a matter of pure

algebra, the conditions involving merely the coefficient of successive derived
equations:

(4] : e f,=0
P fr=0
er.i. f;r = 0

1 Thq Qudrtgrly Jqurhal of Mathematics [Oxford Series], 1935, 6, 1-12.
2 Journal Ind. Math: Sociely, Jibilee Volume, 185-188, will also be of use in this
connection. It should be kept in mind that the parameter f is taken as nowhere expli-

citly present in f,his note. The identities as used derive from those in the two papers
cited, often for € =0, ‘
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The matrix of all these coefficients must be of rank less than # for a
solution to exist.

These special metrics have the fundamental property that any function
of any given set of possible metrics which satisfy [3] is also a metric of the
same type. We call these metrics ““invariant metrics .

All metrics, whether invariant or not, must satisfy the energy
integral

(5] 4" f;» — f = const. along the paths.

Now if this and the integral f= const. (which an invariant metric
allows) be not independent, there must subsist a relation of the type
(6] 2’ for = ¢ (f)

In this case, we apply the following lemma :
LEMMA : 4 necessary and sufficient condition that a Junction f (y1, ¥2,+ ¥,)
be of the type fF(Ay) = (A, F) is that y; dffoy; = é (f). Inm this case,
either f is homogeneous of degree zero iny (b = 0), or there exist functions
of f homogeneous of awy given degree, one of the first degree being H (f)
where H (2) = exp. [ dz/$ (2).

This shows that if the two first integrals available when an invariant
metric exists be not independent, there is a homogeneous metric for the
space.

The foregoing results are necessary preliminaries to the main deductions
of this note. It is clear that if there is a homogeneous metric of any degree
but the first, then ¢ = 0. This can be shown directly, as sach a metric is
automatically an invariant metric with related integrals as above. From
[6], we obtain
(71 & fop =" — 1) f

Applying the operator D), and keeping in.mind the results D fii=0
(for any metric) and D f.; = 0 (for invariant metrics) we obtain
(8] D @ firit = — € firi =0

This gives ¢ = 0, provided the metric is non-degenerate 1.e. | fi;; | =0
a necessary assumption. The Finslér metric, the most important of all, is
left out of this deduction. But if we recall the fact that for a Finsler
space the corresponding problem of the calculus of variations is not regular,
and that it is usually regularized by the assumption that f= const. along
the extremals, we see that the Finsler metric in use is also an invariant
metric, to which the discussion then applies. Therefore, ¢ = 0 is a
necessary condition for the homogeneity of the metric.
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There is nothing new in this result, ezécept the approach. It is the
converse which is of interest and importance. Suppose e’ = 0. Then for
any tensor,

[9] D Ty = Tinr & + 3Ty [t

This gives, for the fundamental tensor, S @7 = 0. For any vector, we
have i — Wiag = § W &iyp For any metric, f.;— f7i = 0. These
lead to fiy»r 87 =0, . either f, =0, or fis the sum of a function
homogeneous of degree onein ¢, and a function independent of z. It can
be seen directly from [1] that when & =0, the of being homogeneous of
degree two, the second part of fmust be identically a constant. If there
exist a metric, then, either it is an invariant metric, or a Finsler metric.

1f the metric for ¢ = 0 is an invariant one, we can show at once that
it must admit the integral 47 f;,=¢ (f). In fact, regard this as a further
equation for f, and add it to the system [3]. In the system [3], the first
equation is a consequence of the remaining » when ¢ = 0. 7The com-
patibility conditions for f; = 0 and g7 f;, = ¢ are identically satisfied. The
condition #” f,,=¢ and the equations [4] are seen to be compatible in
virtue of the identities Pi, 27 = 0, Ry, &7 = R¥%;, etc. which can be proved
from the fundamental identities that hold between the differential invariants
of the space, keeping in mind that here, ¢/=0, 3a’/o¢=0. Thus, if [3] has
a solution, it has one with #” f;, = ¢ added on.

Therefore, even if the metric is an invariant metric, it must be
homogeneous. All the results may be summed up as follows:
TaroREM : If there exist a metric for a given paih space where %O;-z =0, a
necessary and sufficient condition for the existence of a homogeneous metric
giving the same paths as geodesics is that o —} 47 a?, = 0. In this case,
either a Finsler metric is available for the space, ov the only possible metric is
homogeneous of degree zero in x.





