On the Interesting Course of Dichloroketene Addition to 1,5-Dimethyl-1,5-cyclooctadiene

Goverdhan Mehta*, M. Sreenivasa Reddy*, K. Srinivas Rao*

* School of Chemistry, University of Hyderabad, Hyderabad, India

To cite this Article Mehta, Goverdhan, Reddy, M. Sreenivasa and Rao, K. Srinivas (1990) 'On the Interesting Course of Dichloroketene Addition to 1,5-Dimethyl-1,5-cyclooctadiene', Synthetic Communications, 20: 4, 515 — 521

To link to this Article: DOI: 10.1080/00397919008244899

URL: http://dx.doi.org/10.1080/00397919008244899
ON THE INTERESTING COURSE OF DICHLOROKETENE ADDITION TO 1,5-DIMETHYL-1,5-CYCLOOCTADIENE

Goverdhan Mehta, M. Sreenivasa Reddy and K. Srinivas Rao

School of Chemistry, University of Hyderabad
Hyderabad - 500 134, India.

Abstract: Reaction of dichloroketene with 1,5-dimethyl-1,5 COD 6 charters an eventful course to furnish novel tricyclic ketone 19, through the intermediacy of tricyclic hydroxy olefin 9, in which the two carbon atoms of dichloroketene form a bridge across the eight membered ring.

There is a great deal of current interest in the synthesis of complex cyclooctanoid natural products on account of their novel structural features and biological activity.1 As a part of our synthetic interest in the area,1a,b we recognised the ubiquitous presence of a 1,5-dimethylcyclooctane core in the majority of cyclooctanoid natural products (heavy line in 2-5,2 Scheme 1). This led us to identify 1,5-dimethyl-1,5-cyclooctadiene 6, the commercially available dimer of isoprene, as a building-block for this class of com-
pounds through site-selective cyclopentannulations. In this context, we attempted cyclopentannulation of 6 through the Greene methodology of dichloroketene addition. However, the reaction of 6 with dichloroketene took an eventful and interesting course and this potentially useful observation is disclosed here.

Exposure of 6 to in situ generated dichloroketene under ultrasound irradiation led to a labile reaction mixture in which the presence of the required 2+2-adduct could be detected on the basis of spectral data. Attempted purification of this material on
silica gel column or exposure to Lewis acids resulted in the formation of two tricyclic products 8 and 9 (1:5, 63%). While the major product 9 could be purified and fully characterised, the presence of the minor product was inferred on the basis of IR, 1H NMR data. The structure of the major product 9 followed from its characteristic 13C NMR signal at δ 98.5 (-C-OH) and 1H NMR resonances at 4.78 (m, C=C-H) and δ 1.16 (s, quaternary methyl group). We envision the formation of
8 and 9 from 7 via a catalysed transannular ene reaction between the strained carbonyl group and the proximal cyclooctene double bond.\(^5\)

The tricyclic hydroxy-olefin 9 on treatment with base or more conveniently basic alumina readily rearranged to the ring contracted cyclopropyl ketone 10. Structure of 10 follows from its mass spectral data, presence of carbonyl absorption (IR: 1695 cm\(^{-1}\), \(^{13}\)C NMR: \(\delta\) 201.4) and a deshielded \(\beta\)-methyl (\(\delta\) 1.44, s) on the cyclopropyl ketone moiety in the \(^1\)H NMR spectrum. Thus, an interesting C\(_{10}\)-bridged tricyclic system became available in just two steps from 6.

Experimental Section\(^6\)

Dichloroketene addition to 1,5-dimethyl-1,5-cyclooctadiene 6:

A two necked 100 mL RB flask fitted with a reflux condenser, pressure equalising addition funnel and nitrogen inlet was charged with 6 (500 mg, 3.6 mmol), Zn-Cu couple (360 mg, 5.6 mmol) and anhydrous ether (60 mL). The flask was then partially submerged in a sonicator and positioned to produce maximum agitation. To this suspension, trichloroacetylchloride (830 mg, 4.5 mmol) in anhydrous ether (25 mL) was added (30 min) and
the temperature was carefully maintained around 20-
25°C. Sonication was continued for further 20 min.
Then the reaction mixture was diluted with ether (25
mL). The ethereal layer was decanted and the residue
was washed with ether (2 x 25 mL). The combined
ethereal solution was successively washed with water (2
x 20 mL) sat. sodium bicarbonate (2 x 20 mL), brine (2
x 20 mL) and dried over anhydrous Na₂SO₄. Removal of
solvent over rotary evaporator gave 750 mg of an oily
residue. The spectral data recorded on this sample
indicated the presence of 7. IR (neat): 1800 cm⁻¹ 1H
NMR (100 MHz, CDCl₃): δ 5.36 (1H, t, -CH=CH₂), 1.66
(3H, s, -CH₂-CH₃), 1.32 (3H, s, -CH₃). 500 mg
of the above reaction mixture was charged on a silica
gel (20 g) column. Elution with 70% benzene-hexane
furnished the unreacted 1,5-dimethyl cyclooctadiene
(160 mg). Further elution with the same solvent gave a
mixture (1:5) of tricyclic hydroxy compounds 8 and 9,
200 mg (63% based on recovered 6). Repeated chromato-
graphy on silica gel led to a further enriched sample
of 9 bp.: 135°/0.6 torr (bath). IR (neat): 3600-3300,
3070 cm⁻¹ 1H NMR (100 MHz, CDCl₃): δ 4.78 (2H, m),
3.9-1.5 (11H series of m), 1.16 (3H, s). 13C NMR (25
MHz, CDCl₃): δ 149.2, 109.4, 98.5, 80.5, 45.9, 45.2,
43.9, 30.3, 26.2, 23.8, 19.8, 18.7. Mass: M/Z: 246
(M⁺), 248 (M⁺ +2), 250 (M⁺ +4). Anal. Calcd. for
C\textsubscript{12}H\textsubscript{16}Cl\textsubscript{2}O: C, 58.31; H, 6.52. Found: C, 58.49; H, 6.43.

Rearrangement of tricyclic hydroxy compound 9 on alumina:

96 mg of 9 was charged on alumina (10 g) column. The material was allowed to be adsorbed for 3h. Elution of the column with 80% benzene-hexane furnished tricyclic ketone 10 (70 mg, 85%). bp.: 140°C/0.3 torr (bath). IR (neat): 3060, 1696, 890 cm\(^{-1}\). \(^1\)H NMR (100 MHz, CDCl\(_3\)):\(\delta\) 4.96 (1H, br s), 4.8 (1H, br s), 3.46 (1H, br s), 2.66-1.58 (9H, series of m), 1.44 (3H, s). \(^{13}\)C NMR (25 MHz, CDCl\(_3\)):\(\delta\) 201.4(s), 144.3(s), 113.6(t), 58.5(s), 53.2(d), 43.7(d), 39.5(s), 34.6(t), 33.0(t), 25.9(q), 23.9(t), 23.0(t). Mass: 210 (M\(^+\)), 212 (M\(^+\) +2). Anal. Calcd. for C\textsubscript{12}H\textsubscript{15}ClO: C, 68.08; H, 7.60. Found: C, 67.88; H, 7.58.

Acknowledgement

We thank UGC for financial support through Special Assistance and COSIST Programmes in Organic Chemistry.

References

1,5-DIMETHYL-1,5-CYCLOOCTADIENE

6. For a general write-up on experimental, see Ref.4.

(Received in UK 5 October, 1989)