UV-Spectra of Acetonyl Acetoneate Complexes of Tervalent Metals

In a previous communication\(^1\) it has been shown by Basu and Chatterjee that the UV-spectra of a number of bivalent metal chelates can be explained on the assumption that the atomic orbitals of the central metal atom are suitably disposed to form \(\pi\)-bonds in conjugation with \(\text{C}\equiv\text{C}\) and \(\text{C}\equiv\text{O}\) bonds of the legand molecule. In order to test the usefulness of the assumption further, the work has been extended to the acetonyl acetoneate complexes of a number of tervalent metals. Kozo Sone\(^2\) has reported that the absorption spectra of these chelates cannot be correlated with their stabilities. Tervalent chromium in \(d^5\) hybridisation state can form three strong \(\pi\)-bonds with \(d\) atomic orbitals. So if such \(\pi\)-bonds exist in acetonyl acetoneate complex of chromium, the complex with the structure (fig. 1) is expected to show strong forward shift in the 275 nm legand band. In fact the chromium complex in alcoholic solution

![Diagram](image-url)
shows an absorption band at 335 μ, indicating the existence of π-bonds mentioned above. Along with this forward shift, chromium complexes show a backward shift with an absorption band at 255 μ, similar to that observed in the copper complexes. This indicates that along with the structure with doubly linked chromium, singly bonded co-valent structure also makes appreciable contribution to the overall structure of the molecule.

Acetonyl acetonate complex of tervalent cobalt shows only backward shift with one band at 257 μ and the other at 230 μ. The 257 μ band is similar to the one observed in the case of chromium and may safely be ascribed to the singly linked co-valent structure of the complex. Since there is no forward shift the π-bonded structure makes no contribution what-so-ever. Right at this moment we are not in a position to make any assignment to the 230 μ band of the complex. The 275 μ i band is not affected in any way in the complexes of tervalent iron, aluminium and manganese. This evidently proves that as compared to the free state the legand molecule does not find itself in any different surroundings inside these complexes, or in other words these complexes are ionic.

Magnetic measurements also show that the complexes of iron, aluminium and manganese are ionic. But the magneto-chemical measurements class all the acetonyl acetonate metal complexes as ionic9), which, however, is not consistent with their absorption spectra. Spectrophotometry appears to be a better method in classifying these metal chelates into ionic and co-valent groups.

Department of Chemistry, College of Science, 92 Upper Circular Road, Calcutta-9, and Department of Chemistry, Swen- dranath College, Calcutta-9, India

Sadhan Basu and Kumar Krishna Chatterjee

Eingegangen am 18. Februar 1956