Towards an enantiospecific total synthesis of garsubellin A and related phloroglucin natural products: the α -pinene approach

Goverdhan Mehta* and Mrinal K. Bera

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India

Abstract—The first enantiospecific approach to garsubellin A and related phloroglucin natural product nemorosone, of contemporary interest from $(-)-\alpha$ -pinene, has been delineated. Through a series of stereospecific operations, the requisite stereochemistry of the prenyl groups has been secured. Kende cyclization has been employed as the key step to construct the functionalized bicyclo[3.3.1]nonane core.

In 1997, Fukuyama et al. reported the isolation of a novel polyprenylated phloroglucin natural product garsubellin A 1 from the wood of Garcinia subelliptica (Guttiferae).¹ These authors also reported that 1 enhanced in vitro choline acetyltransferase (ChAT) activity in P10 rat septal neuron cultures by 154% at $10\,\mu\text{M}$ concentration.¹ This was a very significant observation as many neurodegenerative disorders of intense contemporary concern like Alzheimer's disease have been attributed to deficiencies in the levels of neurotransmitter acetylcholine (ACh).² Consequently, inducers of the enzyme (ChAT), which is involved in the biosynthesis of ACh, have potential in developing therapies for Alzheimer's disease. Structurally, garsubellin A 1 (Fig. 1) belongs to a small but growing family of phloroglucins, characterized by the presence of a highly oxygenated and densely functionalized bicyclo[3.3.1]- nonane-1,3,5-trione core embellished with one

Figure 1. Structure of garsubellin A 1.

or more hydrophobic prenyl groups. Other prominent members of this structural class are hyperforin³ from *Hypericum perforatum* and nemorosone 3^4 from the floral resins of several *Clusia* species and among them, the former is widely recognized as the beneficial ingredient of St. John's wort. On the other hand, nemorosone 3 has been shown to exhibit a promising activity profile against epitheloid carcinoma (HeLa), epidermoid carcinoma (Hep-2), prostate cancer (PC-3) and CNS cancer (U251).^{4c}

It is therefore hardly surprising that both on account of structural complexity and biological potential, these polyprenylated pholoroglucins have received considerable attention from synthetic organic chemists in the past few years.⁵ However, to date no total synthesis of any member of this natural product family has been achieved though many interesting and novel strategies have been described towards garsubellin A **1** and related compounds.^{5a–d} We report here the first enantiospecific approach to garsubellin A **1** and nemorosone **3** from the

^{*} Corresponding author. Tel.: +91-80-293-2850; fax: +91-80-360-0936; e-mail: gm@orgchem.iisc.ernet.in

Scheme 1. Reagents and conditions: (a) OsO_4 , NMMO, $(CH_3)_2CO-H_2O-'BuOH$ (5:5:2) rt, 3 days; 70%; (b) $Ph_3P^+CH(CH_3)_2Br^-$, KO'Bu, THF, 0 °C, 1 h, 65%; (c) $NaIO_4$, THF-H₂O (1:1), 0 °C, 1 h, 88%; (d) 1 N KOH, MeOH, 0 °C, 1 h, 60%; (e) $NaBH_4$, CeCl₃, MeOH, 0 °C, 10 min, 82%; (f) *p*-NO₂C₆H₄COCl, pyridine, DMAP, DCM, rt, 80%.

readily and abundantly available monoterpene chiron (-)- α -pinene 4 that has culminated in the generation of the bicyclo[3.3.1]nonane core and the stereoselective installation of the key prenyl subunits. To the best of our knowledge, the absolute configuration of garsubellin A 1 and related phloroglucins has not been determined. Thus, the choice of α -pinene, available in both enantiomeric forms, as the starting material for synthesis is particularly appropriate.

 $(-)-\alpha$ -Pinene 4 was converted into (+)-campholenic aldehyde 5 through epoxidation and Lewis acid mediated fragmentation as described in the literature.⁶ and this aldehyde served as the starting point of our synthesis. Catalytic OsO₄-mediated dihydroxylation of 5 furnished 6 as a single diastereomer (Scheme 1). Wittig olefination on 6 led to 7^7 and installed the key C(8) prenyl side arm (see numbering in 1). The *cis*-diol moiety in 7 was cleaved with periodate and the resulting 1,5dicarbonyl compound 8 on base mediated intramolecular aldol cyclization furnished the cyclohexenone 9. Luche reduction⁸ of **9** was stereoselective and exclusively delivered the β -hydroxy compound 10 with hydride addition from the α -face opposite to the bulky prenyl side-chain.7 The stereochemical assignment in 10 was secured through a single crystal X-ray structure determination⁹ of the *p*-nitrobenzoate ester **11** prepared from 10 (Scheme 1).

Allylic alcohol **10** was subjected to a stereospecific orthoester Claisen rearrangement (Johnson modification)¹⁰ to install the second prenyl unit and it smoothly delivered **12** (Scheme 2).⁷ Further hydrolysis of ester **12** to the acid **13** and iodolactonization led to **14**. Reductive deiodination of **14** with TBTH was straightforward and furnished the bicyclic lactone **15**.⁷ Dibal-H reduction of

Scheme 2. Reagents and conditions: (a) CH₃C(OEt)₃, CH₃CH₂-COOH, 180 °C, 24 h, 75%; (b) 1 N KOH, MeOH–H₂O, 60 °C, 6 h, 80%; (c) I₂, KI, NaHCO₃, THF–H₂O, 0 °C, 12 h, 85%; (d) "Bu₃SnH, AIBN, C₆H₆, 80 °C, 1 h, 95%; (e) DIBAL-H,THF, -78 °C, 1 h, 78%.

Scheme 3. Reagents and conditions: (a) $Ph_3PCH(CH_3)_2^+Br^-$, KO'Bu, THF, 0 °C, 1 h, 65%; (b) PCC, DCM, 0 °C, 1 h, 98% (c) NaH, allyl bromide, THF, 60 °C, 4 h, 70%; (d) LDA, TMSCl, THF, -78 °C, 1 h; (e) Pd(OAc)_2, CH_3CN-DCM, rt, 12 h, 30% from **20** after two steps.

15 provided the lactol **16** with a masked aldehyde functionality required for the generation of the C(4) prenyl moiety (Scheme 2). Wittig isopropenylation of the bicyclic lactol proceeded as planned to yield **17** and installed the second prenyl unit (Scheme 3). PCC oxidation of **17** gave **18** and set the stage for the introduction of the allyl side chain required for the generation of the bridged bicyclo[3.3.1]nonane framework. Allylation of **18**, employing NaH as the base was stereoselective and furnished a single diastereomer **20**.⁷ The enolate **19** derived from **18** encounters considerable

steric hindrance on the top face due to the *gem*-dimethyl substitution and α -face attack to give **20** is clearly favored (Scheme 3).

In our synthetic strategy, Kende cyclization¹¹ had been identified as the pivotal step to construct the bicyclo[3.3.1]nonane framework. Consequently, cyclohexanone **20** was transformed to the TMS enol ether **21** then $Pd(OAc)_2$ mediated cyclization was gratifyingly successful to furnish **22** in modest yield (Scheme 3).⁷ The structure of **22** was in full conformity with its spectral characteristics and its bicyclic skeleton and prenyl and *gem*-dimethyl substitution pattern correspond to that present in garsubellin A **1** and nemorosone **3**. Further efforts are ongoing to adapt this sequence to build the functionalization pattern of the natural products on to the bicyclo[3.3.1]nonane core.

In short, employing (-)- α -pinene as the chiron, we have achieved the first enantiospecific construction of the bicyclic core present in garsubellin A and nemorosone **3** with appropriate positioning of the C(4) and C(8) prenyl chains. Kende cyclization has been employed as the key step for the generation of the functionalized bicyclo[3.3.1]nonane core.

Acknowledgements

We would like to thank the Chemical Biology Unit of JNCASR for the support of this research. One of us (M.K.B.) thanks the UGC for the award of a research fellowship.

References and notes

- Fukuyama, Y.; Kuwayama, A.; Minami, H. Chem. Pharm. Bull. 1997, 45, 947. For related garsubellins B-E, see: Fukuyama, Y.; Minami, H.; Kuwayama, A. Phytochemistry 1998, 49, 853.
- 2. Hefti, F. J. Neurobiol. 1994, 25, 1418.
- Gurevich, A. I.; Dobrynin, V. N.; Kolosov, M. N.; Poprako, S. A.; Ryabova, I.; Chernov, B. K.; Debrentzeva, N. A.; Aizeman, B. E.; Garagulya, A. D. Antibiotiki (Moscow) 1971, 16, 510.
- (a) de Oliveira, C. M. A.; Porto, A. L. M.; Bittrich, V.; Marsaioli, A. J. *Phytochemistry* **1999**, *50*, 1073; (b) Cuesta-Rubio, O.; Velez-Castro, H.; Frontana-Uribe, B. A.; Cardenas, J. *Phytochemistry* **2001**, *57*, 279; (c) Cuesta-Rubio, O.; Frontana-Uribe, B. A.; Ramirez-Apan, T.; Cardenas, J. Z. Naturforsch **2002**, *57c*, 372.
- (a) Nicolaou, K. C.; Pfefferkorn, J. A.; Kim, S.; Wei, H. X. J. Am. Chem. Soc. 1999, 121, 4724; (b) Usuda, H.; Kanai, M.; Shibasaki, M. Org. Lett. 2002, 4, 859; (c) Usuda, H.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 3621; (d) Spessard, S. J.; Stoltz, B. M. Org. Lett. 2002, 4, 1943; (e) Young, D. G. J.; Zeng, D. J. Org. Chem. 2002, 67, 3134; (f) Kraus, G. A.; Nguyen, T. H.; Jeon, I. Tetrahedron Lett. 2003, 44, 659.

- (a) Chapuis, C. Helv. Chim. Acta 1992, 75, 1527; (b) Mehta, G.; Nandakumar, J. Tetrahedron Lett. 2001, 42, 7667.
- 7. All new compounds were fully characterized on the basis of IR, ¹H and ¹³C NMR and HRMS data. Selected spectral data for key compounds: 10: IR (cm⁻¹): 3391; ¹H NMR (300 MHz, CDCl₃): δ 5.72–5.68 (m, 1H), 5.50 (d, J = 9.9 Hz, 1H), 5.12–5.06 (m, 1H), 3.87 (br s, 1H), 2.25– 2.05 (m, 2H), 1.84–1.67 (m, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.43–1.37 (m, 1H), 1.06 (s, 3H), 0.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 132.6, 130.3, 128.8, 123.8, 76.5, 43.1, 37.7, 29.3, 28.1, 26.2, 25.1, 18.2, 13.5. (+)-12: IR (cm⁻¹): 1738; $[\alpha]_D^{25}$ +13.9° (*c* 1.01, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.41–5.33 (m, 2H), 5.11 (br s, 1H), 4.14 (q, J = 6.9 Hz, 2H, 2.55–2.49 (m, 1H), 2.24–2.22 (m, 2H), 2.14-2.05 (m, 1H), 1.70 (s, 3H), 1.59 (s, 3H), 1.36-1.19 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.01 (s, 3H), 0.97–0.85 (m, 2H) 0.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.7, 139.8, 132.2, 127.1, 124.0, 60.2, 44.6, 41.1, 34.8, 34.0, 30.8, 28.7, 28.5, 25.8, 22.8, 17.8, 14.2; HRMS (ES) m/z calcd for $C_{17}H_{28}NaO_2$ [M+Na]⁺: 287.1987 found: 287.2016; (+)-15: IR (cm⁻¹): 1773; [α]²⁵_D +42.7° (*c* 0.82, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.08–5.03 (m, 1H), 4.50 (br s, 1H), 2.65 (dd, J = 16.5, 6.6 Hz, 1H), 2.35–2.01 (m, 4H), 1.72– 1.61 (m, 2H), 1.7 (s, 3H), 1.58 (s, 3H), 1.46-1.4 (m, 1H), 1.13-0.91 (m, 2H), 0.96 (s, 3H), 0.87(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 177.4, 132.7, 123.5, 80.0, 44.8, 41.9, 38.2, 35.6, 31.9, 30.7, 28.7, 28.1, 25.8, 20.8, 17.8; HRMS (ES) m/z calcd for C₁₅H₂₄NaO₂ [M+Na]⁺: 259.1674 found: 259.1689; (+)-**17**: IR (cm⁻¹): 3488; [α]_D⁵ +32.2° (*c* 1.18, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.14–5.12 (m, 2H), 3.89 (s, 1H), 2.14–1.96 (m, 3H), 1.70 (br s, 6H), 1.67-1.66 (m, 2H), 1.63 (s, 3H), 1.59 (s, 3H), 1.42-1.34 (m, 4H), 1.20–1.07 (m, 1H), 0.97 (s, 3H), 0.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 132.4, 131.7, 124.4, 122.8, 69.7, 48.0, 47.7, 42.5, 33.0, 31.2, 28.8, 28.3, 25.8 (2C), 22.4, 17.8 (2C); HRMS calcd (ES) m/z for $C_{18}H_{32}NaO$ [M+Na]+: 287.2351, found: 287.2339; (+)-18: IR (cm⁻¹): 1713; $[\alpha]_D^{25}$ 33.9° (c 0.62, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.15-5.08 (m, 2H), 2.40-2.19 (m, 4H), 2.08-2.03 (m, 2H), 1.95-1.85 (m, 1H), 1.72 (s, 3H), 1.68 (s, 3H), 1.68-1.59 (m, 2H), 1.58 (s, 6H), 1.15–1.11 (m, 1H), 1.06 (s, 3H), 0.75 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 212.4, 132.7, 132.5, 123.5, 122.1, 56.6, 50.4, 46.7, 39.5, 34.9, 29.8 (2C), 28.2, 27.5, 25.8, 25.7, 19.9, 17.8; HRMS (ES) m/z calcd for $C_{18}H_{30}NaO$: 285.2194 [M+Na]⁺, found: 285.2194. (+)-20: IR (cm⁻¹): 1706; $[\alpha]_D^{25}$ +56.9° (*c* 1.16, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.65–5.51 (m, 1H), 5.12–4.98 (m, 4H), 2.46-2.38 (m, 2H), 2.22-2.06 (m, 4H), 2.00-1.96 (m, 1H), 1.76–1.64 (m, 2H), 1.72 (s, 3H), 1.70 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.41-1.25 (m, 2H), 1.04 (s, 3H), 0.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 215.0, 134.3, 133.5, 132.8, 123.9, 120.4, 118.3, 54.3, 52.6, 42.7, 41.2, 39.0, 37.8, 33.3, 30.1, 28.7, 26.4, 26.2, 20.5, 18.4, 18.2; HRMS calcd for C₂₁H₃₄NaO: 325.2507 [M+Na]⁺, found: 325.2509. **22**: IR (cm⁻¹): 1718; $[\alpha]_D^{25}$ -22.2° (*c* 0.72, CHCl₃); ¹H NMR (300 MHz, CDCl₃): 5.83 (dt, *J* = 9.3, 3.3 Hz, 1H), 5.64– 5.57 (m, 1H), 5.18-5.08 (m, 2H), 2.41-2.39 (m, 3H), 2.23-2.06 (m, 4H), 1.92-1.87 (m, 1H), 1.84-1.78 (m, 1H), 1.71 (s, 6H), 1.57 (s, 6H), 0.98 (s, 3H), 0.9-0.78 (m, 1H), 0.8 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 216.4, 133.7, 132.3, 129.9, 126.3, 123.7, 119.9, 60.1, 49.2, 43.5, 42.9, 42.4, 38.9, 35.1, 28.0, 26.1, 26.0, 25.8, 20.8, 17.9, 17.8; HRMS (ES) m/z calcd for C₂₁H₃₂NaO: 323.2351 [M+Na]⁺, found: 323 2354
- Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
- 9. Crystal data: X-ray data were collected at 293 K on a SMART CCD–BRUKER diffractometer with graphite

monochromated MoK α radiation ($\lambda = 0.7103$ Å). Structure was solved by direct methods (SIR92). Refinement was by full-matrix least-squares procedures on F² using SHELXL-97. Compound 11: C₂₀H₂₅NO₄ MW=343, Crystal system: triclinic, space group: P-1, cell parameters: a = 6.169 (4) Å, b = 11.196 (6) Å, c = 14.154 (8) Å, $\alpha = 89.277$ (9)°, $\beta = 82.668$ (10)°, $\gamma = 77.000$ (9)°, V = 944.57 Å³, Z = 2, $D_c = 1.207$ g cm⁻³, F(000) = 367.9, $\mu = 0.08$ mm⁻¹. Total number of 1.s. parameters = 326, R1 = 0.0500 for 2742 Fo > 4sig(Fo) and 0.0625 for all 3457 data. GOF = 1.042, Restrained GOF = 1.042 for all data. An ORTEP drawing of compound 11 with 50% ellipsoidal probability has been shown below. Crystallographic data is deposited with the Cambridge Crystallographic Data Centre, CCDC 220642.

- Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.
- 11. Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784.