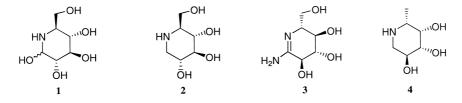
A norbornyl route to azasugars: a new synthesis of deoxynojirimycin analogues

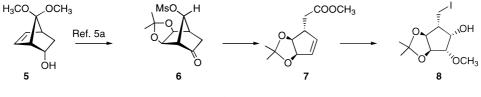
Goverdhan Mehta* and Narinder Mohal


Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

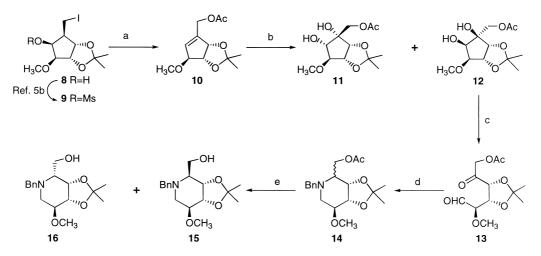
Abstract

A new synthesis of deoxynojirimycin (DNJ) analogues (galacto- and altrose configuration) has been achieved through a functionalized cyclopentene derivative crafted from the norbornyl system, employing double reductive amination as the key step. The new DNJ analogues have been evaluated against various glycosidases and found to be moderate to strong inhibitors.

Keywords: azasugars; glycosidase inhibitors; osmylation; reductive amination.

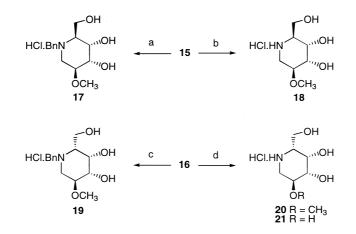

Natural and unnatural polyhydroxylated piperidines have aroused the widespread attention of organic chemists in recent years due to their very promising biological activity profile and synthetically challenging structural features present in them.¹ These polyhydroxylated piperidines generically termed as iminosugars ('azasugars'), closely resemble monosaccharides in terms of their shape and structure; they competitively inhibit glycosidases, enzymes responsible for the cleavage of glycosidic bonds. In azasugars, the ring oxygen is replaced by nitrogen, which can be protonated under physiological pH, thus mimicking the glycopyranosyl cation. Inhibition of glycosidases is projected to be useful in the treatment of carbohydrate related metabolic disorders and holds promise for the development of drugs for the treatment of cancer, diabetes, HIV and viral infections.² A large number of naturally occurring azasugars and their synthetically designed analogues are known, and nojirimycin 1, 1-deoxynojirimycin 2^{1a} (DNJ), amidine 3^{3a} and deoxy-fuconojirimycin 4^{3b} are typical examples, all of which have been found to inhibit carbohydrate processing enzymes.

* Corresponding author. E-mail: gm@orgchem.iisc.ernet.in


A wide range of synthetic strategies have been devised to access polyhydroxylated piperidines.^{1,3,4} Prominent among these, which are also of general applicability, are the restructuring or elaboration of chiral pool derived precursors (carbohydrates, amino acids, *myo*-inositol, tartaric acid etc.),^{1a,3,4} chemoenzymatic^{4b,c} and microbial (hydroxylated aromatics) approaches,^{4d} Diels–Alder^{4e} and hetero-Diels–Alder^{4f} cycloaddition based routes, and aza-Achmatowicz reaction (furan reorganization).^{4g,h} Herein, we report a new synthesis of deoxynojirimycin analogues originating from a bicyclo[2.2.1]heptane (norbornyl) system.

Recently we have developed a fragmentation reaction-based strategy to extract a highly functionalized and stereochemically well defined cyclopentene derivative 8 from the readily available norbornyl derivative 5 through the intermediacy of 6 and 7, respectively, Scheme 1.5 Cyclopentane derivative 8 has now been further restructured to DNJ analogues⁶ employing double reductive amination as the key step.

Scheme 1.


The free hydroxyl group in the iodocyclopentane 8 was transformed to a leaving group through mesylation to furnish the mesylate 9. Acetolysis of 9 led to elimination followed by allylic displacement to furnish acetoxycyclopentene 10, in which the olefinic moiety was well positioned for further manipulation. OsO₄-mediated catalytic dihydroxylation of 10 proceeded in a stereo-selective manner to give 11^7 and 12^7 (10:90), Scheme 2. While diastereomers 11 and 12 were separated and characterized, it was not considered necessary for the next step. Sodium periodate-induced glycol cleavage in 11 and 12 furnished the labile keto-aldehyde 13 which was as such subjected to double-reductive amination in the NaCNBH₃–BnNH₂ milieu to furnish 14 as a

Scheme 2. Reagents and conditions: (a) NaOAc, DMF, 105°C, 6 h, 77%; (b) OsO₄, NMMO (50% aq. sol.), Me₂CO: H₂O (4:1), 48 h, 86%; (c) NaIO₄ (1.3 equiv.), DCM, 0°C; (d) BnNH₂, AcOH, NaCNBH₃, 20 h, $-10^{\circ}C \rightarrow rt$, 30% for two steps; (e) KOH, MeOH, 2 h, 90%

mixture of two diastereomers (1:2). Base mediated hydrolysis of the acetate group in **14** and chromatographic separation of the diastereomers led to **15**⁷ and **16**,⁷ which were fully characterized as having the altrose and galactose stereochemical disposition,⁶ respectively, on the basis of incisive NMR (COSY, NOE) studies (Scheme 2).

In independent deprotection sequences, **15** and **16** were transformed to the hydrochlorides of N-benzyl DNJ derivatives **17** and **19**, respectively, Scheme 3. In a similar manner, hydrochlorides of *altro*-deoxynojirimycin methyl ether **18**⁶ and galactostatin methyl ether **20** were obtained from **15** and **16**, respectively, and duly characterized.⁷

Scheme 3. Reagents and conditions: (a) 2.5% HCl: Et_2O (1:1), 18 h, >90%; (b) H₂, Pd/C (10%), EtOH, 18 h, 60%; 2.5% HCl: Et_2O (1:1), 95%; (c) same as (a), 90%; (d) same as (b), quantitative

		compound		
Enzyme	17	18	19	20
α-glucosidase (yeast)	*c	NI ^d	784	NI
β-glucosidase (sweet almonds)	*	NI	NI	NI
α-galactosidase (green coffee beans	·) *	27	233	1.76
β-galactosidase (E. Coli)	NI	NI	NI	NI

Table 1 Inhibition constants^{a,b} (\mathbf{K}_i) in μ m

^aEach 200 μ L assay contained indicated enzyme 0.1-0.5U/mL, inhibitor **17-20** in water (2-3 mM) and nitrophenyl glycosides (2-2.5 mM) in appropriate buffer at optimal temp and pH of each enzyme. ^b Inhibition constants were determined using Dixon plots of inhibition data. ^c 10-25% inhibition was observed at higher conc. (above 800 μ M) of inhibitor. ^d No inhibition is observed up to 1mM conc. of inhibitor.

Compounds 17–20 were assayed for their glycosidase inhibition activity (Table 1). All measurements were carried out with the corresponding nitrophenyl glycoside substrates in aqueous buffer at appropriate pH. Galactostatin methyl ether 20 was found to be a selective and potent inhibitor of α -galactosidase and there was no inhibition observed for α - and β -glucosidases and β -galactosidase. It was notable that inhibitory activity of 20 was approximately 1000 fold less than of the natural product galactostatin 21.⁶ When 20 was compared with its benzyl derivative 19, a marked decline in inhibitory activity as well as selectivity was observed and the latter was only a moderate inhibitor of α -galactosidase, and a weak inhibitor of α -glucosidase. Interestingly, 18 (C₂-epimer of 20) was also found to be a selective towards glycosidase inhibition.

In short, we have devised a new synthesis of DNJ derivatives 17-20 from the cyclopentanoid building block 7. Our results of enzymatic assays reveal that *N*- and *O*-substituents have significant consequence on the glycosidase activity and selectivity.

Acknowledgements

We thank Dr. Utpal Tatu of the Department of Biochemistry for useful discussions and valuable suggestions. N.M. thanks CSIR for the award of a Research Fellowship. We thank SIF, IISc, Bangalore for recording high field NMR.

References

- Reviews: (a) Hughes, A. B.; Rudge, A. J. Nat. Prod. Reports 1994, 135 and references cited therein. (b) Ganem, B. Acc. Chem. Res. 1996, 29, 340. (c) Sears, P.; Wong, C.-H. Angew. Chem., Int. Ed. 1999, 38, 2300. (d) Heightman, T. D.; Vasella, A. T. Angew. Chem., Int. Ed. 1999, 38, 750.
- 2. Jacob, G. S. Curr. Opin. Struct. Biol. 1995, 5, 605 and references cited therein.
- (a) Tong, M. K.; Papandreou, G.; Ganem, B. J. Am. Chem. Soc. 1990, 112, 6137. (b) Fleet, G. W.; Namguong, S. K.; Barker, C.; Bainses, S.; Jacob, G. S.; Winchester, B. Tetrahedron Lett. 1989, 30, 4439.
- (a) Rudge, A. J.; Collins, I.; Holmes, A.; Baker, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 2320 and references cited therein. (b) Straub, A.; Effenberger, F. J. Org. Chem. 1990, 55, 3926. (c) Kajimoto, T.; Liu, K. K.-C.; Pederson, L. R.; Zhong, Z.; Ichikawa, Y.; Porco Jr. J. A.; Wong, C.-H. J. Am. Chem. Soc. 1991, 113, 6187. (d) Johnson, C. R.; Johns, B. A. J. Org. Chem. 1997, 62, 6046. (e) Auberson, Y.; Vogel, P. Angew. Chem., Int. Ed. 1989, 28, 1498. (f) Streith, J.; Defoin, A. Synlett. 1996, 189. (g) Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimzu, T.; Swaminathan, S.; Xi, N. *ibid* 1997, 105. (h) Martin, R.; Moyano, A.; Pericas, M. A.; Riera, A. Org. Lett. 2000, 2, 93.
- (a) Mehta, G.; Mohal, N. Tetrahedron Lett. 1999, 40, 5791. (b) Mehta, G.; Mohal, N. Tetrahedron Lett. 1999, 40, 5795.
- For the isolation and enzyme inhibitory activity of the potent DNJ, deoxygalactostatin, see: Miyake, Y.; Ebata, M. J. J Antibiotics 1987, 40, 122. For the leading references towards the synthesis of deoxygalactostatin and analogues, see: (a) Paulson, H.; Hayauchi, Y.; Sinnwell, V. Chem. Ber. 1980, 113, 2601. (b) Bernotas, R.; Pezzone, M. A.; Ganem, B. Carbohydr. Res. 1987, 167, 305. (c) Furneaux, R. H.; Tyler, P. C.; Whitehouse, L. A. Tetrahedron Lett. 1993, 34, 3609. (d) Chida, N.; Tanikawa, T.; Tobe, T.; Ogawa, S. Chem. Commun. 1994, 1247. (e) Johnson, C. R.; Golebiowski, A.; Sundram, H.; Miller, M. W.; Dwaihy, R. L. Tetrahedron Lett. 1995, 36, 653. (f) Barili, P. L.; Berti, G.; Catelani, G.; D'Andrea, F.; De Rensis, F.; Puccioni, L. Tetrahedron 1997, 53, 3407. (g) Shilvock, J. V.; Fleet, G. W. J. Synlett 1998, 554. (h) Asano, K.; Hakogi, T.; Iwana, S.; Katumura, S. Chem. Commun. 1999, 41. (i) Uriel, C.; Santoyo-Gonazaleaz, F. Synlett 1999, 593. (j) Ruiz, M.; Ruanova, T. M.; Ojea, V.; Quintela, J. M. Tetrahedron Lett. 1999, 40, 2021.
- All new compounds reported here were racemic and gave satisfactory spectral data (¹H and ¹³C NMR, IR, Mass). Selected spectral data (¹H NMR and ¹³C NMR) 15 δ_H (300 MHz, CDCl₃): 7.32–7.28 (5H, m, Ar-H), 4.18 (1H, dd,

J=2.7, 6.0 Hz, 4.08 (1H, dd, J=4.8, 6.0 Hz), 4.03 (1H, $\frac{1}{2}\text{ABq}$, J=13.2 Hz), 3.78 (1H, $\frac{1}{2}\text{ABq}$, J=13.2 Hz), 3.66 (1H, dd, J=4.2, 10 Hz), 3.54–3.45 (3H, series of m), 3.35 (3H, s), 3.15–3.10 (1H, m), 2.76 (1H, dd, J=3.3, 13.5 Hz), 2.62 (1H, dd, J=7.8, 13.5 Hz), 1.56 (3H, s), 1.36 (3H, s); δ_C (75 MHz, CDCl₃): 138.72, 128.88 (2C), 128.51 (2C), 127.42, 108.1, 76.43, 75.51, 75.01, 60.76, 60.46, 59.37, 57.20, 45.26, 28.06, 25.51. **16** $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.34–7.26 (5H, m, Ar-H), 4.31 (1H, dd, J=2.2, 6.0 Hz), 4.14 (1H, dd as t, J=6.0 Hz), 4.12–4.10 (2H, m), 3.99–3.89 (2H, series of m), 3.50–3.42 (1H, m), 3.42–3.38 (1H, m), 3.40 (3H, s), 3.0 (1H, dd, J=4.5, 11.7 Hz), 2.68 (1H, m), 1.91 (1H, dd, J = 10.8, 11.7 Hz), 1.57 (3H, s), 1.38 (3H, s); $\delta_{\rm C}$ (75 MHz, CDCl₃): 137.73 (C), 129.14 (CH, 2C), 128.35 (CH, 2C), 127.24 (C), 109.45 (C), 79.38 (CH), 78.96 (CH), 77.63 (CH), 61.71 (CH₂), 60.63 (CH), 57.86 (CH_3) , 56.69 (CH_2) 51.69 (CH_2) , 28.28 (CH_3) , 26.26 (CH_3) . 17 δ_H (300 MHz, D₂O): 7.41 (5H, br. s), 4.26-3.98 (6H, series of m), 3.55 (1H, br. s), 3.4-3.08 (3H, series of m), 3.16 (3H, s); δ_C (100 MHz, D₂O): 132.84 (2C), 131.55, 130.57 (2C), 129.36, 76.23, 67.43, 65.96, 64.62, 63.68, 58.31, 55.81, 49.07. **18** $\delta_{\rm H}$ (300 MHz, D₂O): 4.0 (1H, dd as t, J=3.6 Hz), 3.82 (1H, dt, J=3.6, 12.3 Hz), 3.70–3.65 (3H, series of m), 3.38–3.34 (1H, m), 3.29 (3H, s), 3.25–3.12 (2H, series of m); $\delta_{\rm C}$ (100 MHz, D₂O): 76.22 (CH), 67.40 (CH), 64.49 (CH), 59.00 (CH₂), 57.67 (CH₃), 56.37 (CH), 41.36 (CH₂). **19** δ_H (300 MHz, D₂O): 7.51 (5H, br. s), 4.26 (2H, m), 4.19–4.17 (3H, m), 3.68–3.60 (2H, m), 3.54 (1H, br. s), 3.43 (1H, dd, J=4.5, 12.3 Hz), 3.30 (3H, s), 2.76 (1H, dd, J=10.5, 12 Hz), $\delta_{\rm C}$ (100 MHz, D₂O): 132.85 (2C), 131.64, 130.57 (2C), 129.45, 74.91, 72.75, 70.78, 65.92, 59.68, 59.44, 58.27, 50.63. **20**: $\delta_{\rm H}$ (300 MHz, D₂O): 4.02–3.99 (m, 1H), 3.75–3.50 (5H, series of m), 3.34 (3H, s), 3.27–3.23 (1H, m), 2.70–2.62 (1H, t like m); δ_{C} (100 MHz, D₂O): 74.93 (CH), 72.56 (CH), 67.40 (CH), 60.53 (CH), 59.60 (CH₂), 58.85 (CH₃), 44.24 (CH₂).