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Abstract—Short, simple and enantioselective syntheses of the natural product (+)-streptol, the non-peptide apoptosis inhibitor
ent-RKTS-33 and the putative structure of �parasitenone� have been accomplished from the readily available chiral building block.
�Parasitenone� has been shown to be identical with the known natural product epoxydon.
Polyketide natural products, based on the epoxyquinone
motif 1, and exhibiting a wide-ranging biological profile
ranging from phytotoxic, anti-fungal, anti-bacterial,
anti-tumour and enzyme inhibitory activity, have
surfaced regularly from diverse natural sources.1 The
variegated substitution and polyoxygenation pattern
displayed by these natural products is amply demon-
strated in cyclohexanoid natural products like (�)-phyl-
lostine 2,1a (+)-epoxydon 3a,1b (+)-epiepoxydon 3b,1c

(+)-harveynone 4,1d (�)-cycloepoxydon 51e and (+)-am-
buic acid 61f to name a few. These and related polyoxy-
genated cyclohexanoid natural products have attracted
synthetic interest from several research groups and
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many innovative strategies have been devised towards
their synthesis.2 Our group has also been drawn to this
arena and we have delineated a simple, general ap-
proach to this class of natural products from the readily
available Diels–Alder adduct 7 of cyclopentadiene and
p-benzoquinone (Scheme 1).3 Recently, an enantioselec-
tive version, based on a kinetic enzymatic resolution of
intermediate 8, has also been developed and provided
a convenient access to the enantiomerically enriched
building blocks (+)-9 and (�)-8 (Scheme 1).3g

In this letter, we describe the elaboration of the chiral
precursor (+)-9 to the natural product (+)-streptol 10,
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Scheme 1. Reagents and conditions: (a) Lipase PS-D (Amano), vinyl

acetate, rt, 28 h, (+)-9, 46%, �99% ee, (�)-8, 45%, �99% ee.
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ent-RKTS-33 11 and the putative structure of the re-
cently isolated natural product �(+)-parasitenone� 12.
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(+)-Streptol 10 (also known as valienol) was isolated
from a culture of an unidentified Streptomyces sp. by
Sakuda et al. and shown to inhibit the growth of lettuce
seedlings at a concentration above 13 ppm.4 To date,
two syntheses of racemic 10 by Suami et al.5a and Block
et al.5b and of ent-10 by Müller et al.5c have been re-
ported. Our synthetic approach to the natural enantio-
mer (+)-10 emanated from the chiral tricyclic acetate
(+)-9, which was subjected to BF3ÆEt2O mediated and
acetate-assisted regioselective cleavage of the epoxide
ring to furnish the trans-diol (�)-13 (Scheme 2).6,7

The trans-diol moiety in (�)-13 was protected as the diace-
tate, (+)-14. Thermal activation of the tricyclic adduct
(+)-14 induced a facile retro-Diels–Alder reaction, with
the elimination of cyclopentadiene, to deliver the enone
(+)-15. Reduction of the carbonyl functionality in (+)-15
under Luche conditions8 was stereoselective and fur-
nished the endo-alcohol (+)-16.7 TBS deprotection in
(+)-16 gave (+)-17 and acetate hydrolysis furnished
the natural product, streptol (+)-10 ½a�25D +91.8 (c, 0.25,
H2O); lit.5c synthetic ent-10 ½a�25D �92.5 (c 0.2, H2O).
The spectral data of our synthetic compound were
found to be identical in all respects with those reported
for the natural product.4,7
OAc

O O

OTBS

OAc

O

OTBS
O

O O

OTBS

BF3

O

OR

OR

O

OAc

TBSO
OAc

OAc

OH

OH

HO
OH

OH

OH

OAc

RO
OAc

OAc

(-)-13 R = H
(+)-14 R = Ac

(+)-16 R = TBS
(+)-17 R = H

(+)-9

(+)-15(+)-10 Streptol

a

b

c

e

f d

Scheme 2. Reagents and conditions: (a) BF3ÆEt2O, toluene, 0 �C, 1 h,
62%; (b) Ac2O, pyridine, CH2Cl2, 2 h, quant.; (c) Ph2O, 230 �C,
15 min, 91%; (d) NaBH4, CeCl3Æ7H2O, MeOH, 0 �C, 80%; (e) 40% HF,

pyridine, THF, 0 �C, 83%; (f) NaOMe, MeOH, 96%.
At this juncture, we were drawn to the literature reports
dealing with two epimeric polyoxygenated epoxyqui-
noids. The first one, by Kakeya et al. in 2003, described
RKTS-33 ent-11 as a novel non-peptide inhibitor of
death-receptor mediated apoptosis.9 The other report
in 2002 by Son et al., recorded the isolation of a new
natural product, parasitenone (+)-12 from the marine
algicolous fungus Apergillus parasiticus with promising
free radical scavenging activity.10 Interestingly, the two
compounds RKTS-33 ent-11 and (+)-parasitenone 12
were found to be epimeric at C4, belonged to opposite
enantiomeric series and exhibited very different biologi-
cal activity. Our chiral building block (+)-9 appeared
to be well poised for elaboration to RKTS-33 11 and
(+)-12.

Retro-Diels–Alder reaction of the enantiomerically pure
tricyclic acetate (+)-9 furnished epoxycyclohexenone
(+)-18,7 and further 1,2-reduction gave a diastereomeric
mixture of alcohols 19a,b (a:b = 1:2), in which the b-iso-
mer was the major product (Scheme 3). The epimeric
alcohols 19a,b were converted to their TBS ether deriva-
tives (+)-20/(+)-21, respectively, and readily separated
by column chromatography.7 The acetate in the a-iso-
mer (+)-20 was removed to give alcohol (�)-22, which
was subsequently oxidized to the enone (�)-23 (Scheme
4).7 Finally, TBS deprotection in (�)-23 furnished
RKTS-33 (�)-11 ½a�25D �275.7 (c 0.33, C2H5OH), whose
spectral data were in complete agreement with those
reported by Kakeya et al.7,9

In another sequence, the major b-isomer (+)-21 was sub-
jected to acetate hydrolysis to give alcohol (�)-24
(Scheme 5).7 MnO2 mediated allylic oxidation of (�)-
24 led to the enone (�)-25, which on TBS deprotection
furnished the enone diol (�)-12 corresponding to the
structure assigned to the natural product �parasit-
enone�.10 However, the spectral data of our synthetic
sample and those reported by Son et al. were a complete
mismatch.11 To confirm further, the stereochemical
integrity of our synthetic sample, tricyclic exo-alcohol
(±)-26, prepared by us in a different context from the
O

OAc

TBSO

(+)-9 O

OH

OAc

TBSO

O

19 α:β=1:2

OTBS

OAc

TBSO

O

OTBS

OAc

TBSO

O +

(+)-20(+)-21

a b

c

(2:1)

(+)-18

Scheme 3. Reagents and conditions: (a) Ph2O, 230 �C, 10 min, 93%;

(b) NaBH4, MeOH, �50 �C, 5 min, 87%; (c) TBSOTf, 2,6-lutidine,

CH2Cl2, �10 �C, 83%.



OTBS

OAc

TBSO

O

OTBS

OH

TBSO

O

OH

O

HO

O

(+)-21 (-)-24

(-)-12

OTBS

O

TBSO

O

(-)-25

O

O O

OH
O

HO O

OH

27 26

e

c

a

d

b
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Scheme 4. Reagents and conditions: (a) LiOH, MeOH, 0 �C, 30 min,

70%; (b) MnO2, CH2Cl2, rt, 6 h, 83%; (c) 40% HF, CH3CN, 0 �C to rt,

3 h, 80%.
tricyclic diketone 27, was subjected to thermal activation
to furnish (±)-12, spectroscopically identical with (�)-12
described above (Scheme 5). Since, the stereostructure of
26 was secured through single crystal X-ray structure
analysis,12 it reconfirmed the stereostructure of our
synthetic 12. These results clearly indicated that the
assigned structure of the natural product �parasitenone�
was untenable.10

Consequently, the question arose as to what is �parasit-
enone�? A critical examination of the spectral data re-
ported for �parasitenone� by Son et al. with other
similar epoxyquinone based natural product siblings
led us to surmise that �parasitenone� is in fact identical
with (+)-epoxydon 3a.1b This was confirmed through a
direct spectral (1H and 13C NMR) comparison between
(+)-epoxydon 3a (synthesized earlier by us)3g and �para-
sitenone� in DMSO-d6.

11 The perfect spectral match
between the two led to the inevitable conclusion that
the recently isolated natural product from Apergillus
parasiticus10 is epoxydon 3a and not �parasitenone� 12.
In short, we have utilized the readily available chiral
building block (+)-9 for the first synthesis of the natu-
rally occurring enantiomer of streptol (+)-10 and
RKTS-33 (�)-11. A synthesis of the putative structure
12 assigned to the natural product �parasitenone� has
shown that its formulation is incorrect. The identity of
the natural product �parasitenone� with the known com-
pound (+)-epoxydon 3a has been firmly established.
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0.7107 Å). The structure was solved by direct methods
(SIR92). Refinement was done by full-matrix least-squares
procedures on F2 using SHELXL-97. The non-hydrogen
atoms were refined anisotropically whereas hydrogen
atoms were refined isotropically. C12H14O4,
MW = 222.2, colourless crystal, Crystal system: ortho-
rhombic, space group: Pbca, cell parameters: a =
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