INFORMATION OF ORDER a AND TYPE B

By J. N. KAPUR, F.A.Sc.

(Indian Institute of Technology, Kanpur)

Received February 15, 1967

ABSTRACT

Information $I_{\alpha}^{\beta}(Q/P)$ of order α and type β is introduced and it is shown that for every fixed β , this information is a monotonic increasing function of α . It is also shown that information of order α and type 1 is non-negative when $\sum_{k=1}^{N} q_k = \sum_{k=1}^{N} p_k$, where (q_1, q_2, \ldots, q_n) and (p_1, p_2, \ldots, p_n) are generalised probability distributions for Q and P respectively.

1. Introduction

LET P denote the original unconditional distribution of a random variable ξ and let Q denote the conditional distribution of ξ under the condition that an event E, connected in some way with ξ , has taken place. The measure of the amount of information concerning the random variable contained in this observation is denoted by I(Q|P). If

$$P(\xi = x_k) = p_k; P(\xi = x_k | E) = q_k; (k = 1, 2, ..., N)$$
 (1)

then a possible measure of the amount of information in question is

$$I_1\begin{pmatrix}Q\\P\end{pmatrix} := \sum_{k=1}^N q_k \log_3 \frac{q_k}{p_k}.$$
 (2)

Renyil considered the problem of finding a suitable measure for generalised probability distributions for which

$$\sum_{k=1}^{N} p_{k} \leqslant 1; \quad \sum_{k=1}^{N} q_{k} = 1 \tag{3}$$

and obtained a more general measure for I(Q/P), wiz.,

$$I_{\alpha}\begin{pmatrix}Q\\P\end{pmatrix} = \frac{1}{\alpha - 1} \log_2 \frac{\sum\limits_{k=1}^{N} q_k^{\alpha}}{\sum\limits_{k=1}^{N} q_k}, \quad (\alpha \neq 1).$$
(4)

When $\alpha \rightarrow 1$, we get as a limit

$$I_{1}\left(\frac{Q}{P}\right) = \frac{\sum\limits_{k=1}^{N} q_{k} \log_{2} \frac{q_{k}}{p_{k}}}{\sum\limits_{k=1}^{N} q_{k}}.$$
(5)

For a complete distribution, (5) reduces to (2). $I_{\alpha}(Q/P)$ may be called the information of order α when the distribution P is replaced by the distribution Q.

In the present paper we shall study some of the properties of $I_{\alpha}(Q/P)$ and also extend these to the more general case of information of order α and type β . Renyi's information comes out to be a particular case of this when $\beta = 1$.

2. Renyi's Postulates for Information of Order α

- (i) I(Q/P) is unchanged if the elements of P and Q are arranged in the same way so that the one-to-one correspondence between them is unchanged.
- (ii) If $P = (p_1, p_2, ..., p_N)$ and $Q = (q_1, q_2, ..., q_N)$ and $p_k \leq q_k$ for k = 1, 2, ..., N, then $I(Q/P) \geq 0$, while if $p_k \geq q_k$ for all k, then $I(Q/P) \leq 0$.

(iii)
$$I(\{1\} | \{2\}) = 1$$
. (6)

(iv) If $I(Q_1/P_1)$ and $I(Q_2/P_2)$ are defined and $P = P_1*P_2$, $Q = Q_1*Q_2$ and the correspondences between the elements of P and Q is that induced by the correspondence between the elements of P_1 and Q_1 and those of P_2 and Q_2 , then

$$I\left(\frac{Q}{P}\right) = I\left(\frac{Q_1}{P_1}\right) + I\left(\frac{Q_2}{P_2}\right). \tag{7}$$

(v) There exists a continuous and strictly increasing function y = g(x) defined for all real x, such that if $I(Q_1/P_1)$ and $I(Q_2/P_2)$ are defined and

$$0 < W\left(P_{1}\right) + W\left(P_{2}\right) \leqslant 1 \quad \text{and} \quad 0 < W\left(Q_{1}\right) + W\left(Q_{2}\right) \leqslant 1, \qquad (8)$$

and the correspondence between the elements of P_1UP_2 , Q_1UQ_2 is that induced between the elements of P_1 and Q_1 and between those of P_2 and Q_2 , then we have

$$g\left[1\left\{\begin{matrix} (Q_1UQ_2)\\ (P_1UP_2)\end{matrix}\right\}\right]$$

$$= \frac{W(Q_1) g\left[I\left(\frac{Q_1}{P_1}\right)\right] + W(Q_2) g\left[I\left(\frac{Q_2}{P_2}\right)\right]}{W(Q_1) + W(Q_2)}.$$
(9)

Under these postulates Renyi showed that g(x) is either a linear or an exponential function and these functions give rise to (5) and (4) respectively.

3. Our Postulates for Information of Order a and Type eta

The first four postulates are the same as those of Renyi. In the fifth postulate, the weights are replaced by

$$W_{\beta}(P) = p_{1}^{\beta} + p_{2}^{\beta} + \dots + p_{N}^{\beta}; \ W_{\beta}(Q) - q_{1}^{\beta} + q_{2}^{\beta} + \dots + q_{N}^{\beta},$$
(10)

so that (8) and (9) are replaced respectively by

$$0 < W_{\beta}(P_{\mathbf{x}}) + W_{\beta}(P_{\mathbf{x}}) \leq 1 \quad \text{and} \quad 0 < W_{\beta}(Q_{\mathbf{x}}) + W_{\beta}(Q_{\mathbf{x}}) \leq 1$$

$$\tag{11}$$

and

$$g[I\{(Q_1UQ_2)|(P_1UP_2)\}]$$

$$= \frac{W_{\beta}(Q_{i}) g \left[I\left(\frac{Q_{i}}{P_{i}}\right) \right] + W_{\beta}(Q_{g}) g \left[I\left(\frac{Q_{g}}{P_{g}}\right) \right]}{W_{\beta}(Q_{i}) + W_{\beta}(Q_{g})}$$
(12)

The advantage of using $W_{\beta}(P)$ instead of W(P) has been explained earlier.*

With this modification, and proceeding in the same way as Renyi,4 we get

$$I_{\alpha}{}^{\beta}\left(\frac{Q}{P}\right) = \frac{1}{\alpha - 1} \log_{\alpha} \frac{\sum_{k=1}^{N} q_{k}{}^{\beta} \left(\frac{q_{k}}{p_{k}}\right)^{\alpha - 1}}{\sum_{k=1}^{N} q_{k}{}^{\beta}}; \quad (\alpha = 1)$$
(13)

and

$$I_{1}^{\beta} \begin{pmatrix} Q \\ P \end{pmatrix} = \frac{\sum\limits_{k=1}^{N} q_{k}^{\beta} \log_{k} \frac{q_{k}}{p_{k}}}{\sum\limits_{k=1}^{N} q_{k}^{\beta}}.$$
 (14)

When $\beta = 1$, these reduce to Renyi's measure of information of order a and 1 respectively. Postulates (i), (ii), (iii) are easily verified. For verifying (iv), we have

$$I_{a}^{\beta}\left(\frac{Q}{P}\right) = \frac{1}{a-1} \log_{2} \frac{\sum_{k=1}^{N} \sum_{j=1}^{M} (q_{k}^{2})^{\beta} (q_{j}')^{\beta} \left(\frac{q_{k}^{2}}{p_{k}^{2}} \frac{q_{j}'}{p_{j}'}\right)^{\alpha-1}}{\sum_{k=1}^{N} \sum_{j=1}^{M} (q_{k}^{2})^{\beta} (q_{j}')^{\beta}}$$

$$= \frac{1}{a-1} \log_{2} \frac{\sum_{k=1}^{N} (q_{k}^{2})^{\beta} \left(\frac{q_{k}^{2}}{p_{k}^{2}}\right)^{\alpha-1} \sum_{j=1}^{M} (q_{j}')^{\beta} \left(\frac{q_{j}'}{p_{j}'}\right)^{\alpha-1}}{\sum_{k=1}^{N} (q_{k}^{2})^{\beta} \sum_{j=1}^{M} (q_{j}')^{\beta}}$$

$$= I_{a}^{\beta} \left(\frac{Q_{2}}{P_{a}}\right) + I_{a}^{\beta} \left(\frac{Q_{1}}{P_{1}}\right). \tag{15}$$

Similarly it is verified that (12) will be satisfied. The postulates are also easy to verify in the limit when $\alpha \rightarrow 1$.

4. Non-Negative Character of $I_{\alpha}(Q/P)$ when $\alpha > 1$

According to postulate (ii), $I_a(Q/P)$ can be both positive and negative. We show however that if

$$\sum_{k=1}^{N} p_k \le \sum_{k=1}^{N} q_k \tag{16}$$

then

$$I_{a}\left(\frac{Q}{P}\right) \geqslant 0. \tag{1.7}$$

This includes the case when P and Q are complete probability distributions.

We use Jensen's theorem which states³:

"Let a_1, a_2, \ldots, a_N be arbitrary positive numbers, then if $\phi''(t)$ exists and $\phi(t)$ is convex in $\alpha \le t \le \beta$, then

$$\phi\left(\frac{a_{1}t_{1} + a_{2}t_{2} + \dots + a_{N}t_{N}}{a_{1} + a_{2} + \dots + a_{N}}\right) \leqslant \frac{a_{1}\phi(t_{1}) + \dots + a_{N}\phi(t_{N})}{a_{1} + a_{2} + \dots + a_{N}}.$$
 (18)

Further if $\phi(t)$ is continuous and convex, sign of equality can hold only if all t's are equal or $\phi(t)$ is linear.

The inequality is reversed if the function $\phi(t)$ is concave." We apply the theorem to the function

$$\phi(t) = \log x^{\mathbf{z}-1} \tag{19}$$

which is convex if $\alpha < 1$ and concave if $\alpha > 1$.

Case (i).—If a > 1, this gives

$$\frac{\sum\limits_{k=1}^{N}q_k\log\left(\frac{q_k}{p_k}\right)^{\alpha-1}}{\sum\limits_{k=1}^{N}q_k} \leqslant \log\left(\frac{\sum\limits_{k=1}^{N}q_k\left(\frac{q_k}{p_k}\right)^{\alpha-1}}{\sum\limits_{k=1}^{N}q_k}\right)^{\alpha-1}$$

or

$$(a-1)^{\sum_{k=1}^{N} q_k \log \frac{q_k}{p_k}} \leq (a-1)^{\sum_{k=1}^{N} q_k \left(\frac{q_k}{p_k}\right)^{\alpha-1}} \sum_{k=1}^{N} q_k$$

$$\sum_{k=1}^{N} q_k$$

$$\sum_{k=1}^{N} q_k$$
(20)

or

$$I_{\alpha}\left(\frac{Q}{P}\right) \geqslant \frac{1}{\alpha - 1} \frac{\sum\limits_{k=1}^{N} q_k \log \frac{q_k}{p_k}}{\sum\limits_{k=1}^{N} q_k}.$$
 (21)

Again from the same theorem (since $\log x$ is concave),

$$\frac{\sum\limits_{k=1}^{N} q_k \log \frac{p_k}{q_k}}{\sum\limits_{k=1}^{N} q_k} \leqslant \log \left(\frac{\sum\limits_{k=1}^{N} q_k \frac{p_k}{q_k}}{\sum\limits_{k=1}^{N} q_k} \right) = \log \frac{\sum\limits_{k=1}^{N} p_k}{\sum\limits_{k=1}^{N} q_k} \leqslant 0, \tag{22}$$

since we are assuming

$$\sum_{k=1}^{N} p_k \leqslant \sum_{k=1}^{N} q_k.$$

From (21) and (22)

$$I_a\left(\frac{Q}{P}\right) \geqslant 0 \text{ when } a > 1.$$
 (23)

The inequality sign holds when all q_k/p_k are equal. In this case $I_a(Q/P) = 0$, i.e., no information is obtained by the observation of E.

Case (ii).—The proof for $\alpha \leq 1$ will be given in the next section.

5. Monotonic Character of $I_a(Q/P)$

$$\frac{d}{da} \left[I_a \left(\frac{Q}{P} \right) \right] = \frac{d}{da} \left[\frac{1}{a-1} \log \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1}}{\sum\limits_{k=1}^{N} q_k} \right] \\
= \frac{1}{a-1} \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1} \log \left(\frac{q_k}{p_k} \right)}{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1}} - \frac{1}{(a-1)^2} \log \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1}}{\sum\limits_{k=1}^{N} q_k} \\
= \frac{1}{(a-1)^2} \left\{ \sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1} \log \left(\frac{q_k}{p_k} \right)^{a-1} - \log \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k} \right)^{a-1}}{\sum\limits_{k=1}^{N} q_k} \right\}.$$

Applying Jensen's theorem to the convex function $x \log x$ and putting

$$a_k = q_k, \quad t_k = \left(\frac{q_k}{p_k}\right)^{\alpha-1},$$

we get

$$\frac{\sum\limits_{k=1}^{N}q_k\left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N}q_k}\log\frac{\sum\limits_{k=1}^{N}q_k\left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N}q_k}\leq\frac{\sum\limits_{k=1}^{N}q_k\left(\frac{q_k}{p_k}\right)^{a-1}\log\left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N}q_k}$$

or

$$\log \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N} q_k} \leqslant \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k}\right)^{a-1} \log \left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k}\right)^{a-1}}.$$
 (25)

Thus

$$\frac{d}{da}\left[\mathbf{I}_a\left(\frac{\mathbf{Q}}{\mathbf{P}}\right)\right] \geqslant 0$$
,

so that $I_{\alpha}(Q/P)$ is a monotonic increasing function of α for all α . Now

$$I_0\left(\frac{\mathbf{Q}}{\mathbf{p}}\right) = -\log_2 \frac{\sum\limits_{k=1}^{\mathbf{N}} q_k \left(\frac{p_k}{q_k}\right)}{\sum\limits_{k=1}^{\mathbf{N}} q_k}$$

$$= -\log_3 \frac{\sum\limits_{k=1}^{N} p_k}{\sum\limits_{k=1}^{N} q_k} = \log_3 \frac{\sum\limits_{k=1}^{N} q_k}{\sum\limits_{k=1}^{N} p_k}.$$
 (26)

71

If

$$\sum_{k=1}^{N} p_k \leqslant \sum_{k=1}^{N} q_k, \tag{27}$$

$$I_0\left(\frac{Q}{P}\right) \geqslant 0. \tag{28}$$

Since $I_{\alpha}(Q/P)$ is a monotonic increasing function of α , $I_{\alpha}(Q/P) \cdot 0$ for all α . This completes the proof of the result of the last section for $\alpha \leq 1$.

6. The Case when
$$\sum_{k=1}^{N} p_k \neq \sum_{k=1}^{N} q_k$$

It is obvious from (26) that if

$$\sum_{k=1}^{N} q_k > \sum_{k=1}^{N} p_k,$$

then $I_0(Q/P) > 0$ and as such the non-negative character of $I_\alpha(Q/P)$ is maintained for all α whenever

$$\sum_{k=1}^{N} q_k \geqslant \sum_{k=1}^{N} p_k.$$

If

$$\sum_{k=1}^{N} q_k < \sum_{k=1}^{N} p_k,$$

then $I_0(Q/P)$ is negative and there will be a range of values of a for which $I_{\alpha}(Q/P)$ will be negative.

To examine whether it will be positive somewhere, we consider the variation as $\alpha \to \infty$.

Since

$$\sum_{k=1}^{N} q_k < \sum_{k=1}^{N} p_k,$$

two possibilities arise.

(i) $q_k < p_k$ for all k. In this case

$$I_{1}\left(\frac{Q}{P}\right) = \frac{\sum_{k=1}^{N} q_{k} \log\left(\frac{q_{k}}{p_{k}}\right)}{\sum_{k=1}^{N} q_{k}}.$$
(29)

Since $q_k < p_k$ for all k, $\log q_k/p_k < 0$ for all k and as such

$$I_1\left(\frac{Q}{P}\right) < 0. \tag{30}$$

For a > 1,

$$\left(\frac{q_k}{p_k}\right) < 1$$
 implies $\left(\frac{q_k}{p_k}\right)^{a-1} < 1$

so that

$$\sum\limits_{k=1}^{N}q_{k}\left(\frac{q_{k}}{p_{k}}\right)^{a-1}<\sum\limits_{k=1}^{N}q_{k}$$

and

$$\frac{1}{a-1}\log_2\frac{\sum\limits_{k=1}^{N}q_k\left(\frac{q_k}{p_k}\right)^{\alpha-1}}{\sum\limits_{k=1}^{N}q_k}<0. \tag{31}$$

Thus $I_{\alpha}(Q/P)$ is negative for all α . This is of course one of the postulates for Renyi's information of order α .

(ii)
$$\sum\limits_{k=1}^{N}q_{k}<\sum\limits_{k=1}^{N}p_{k},$$

but at least for one k, $q_k > p_k$.

Let q_M/p_M be the largest of $\{q_k/p_k\}$, and let q_M be the largest of $\{q_k\}$,

$$\underset{a \to \infty}{L_t} \frac{1}{a-1} \log \frac{\sum\limits_{k=1}^{N} q_k \left(\frac{q_k}{p_k}\right)^{a-1}}{\sum\limits_{k=1}^{N} q_k}$$

$$= \underset{\alpha \to \infty}{\operatorname{L}t} \frac{1}{\alpha - 1} \log \frac{q_{\mathsf{M}} \binom{q_{\mathsf{M}}}{p_{\mathsf{M}}}^{\alpha - 1}}{q_{\mathsf{M}}}$$

$$= \log \binom{q_{\mathsf{M}}}{p_{\mathsf{M}}}. \tag{32}$$

Since $q_M/p_M > 1$, $I_\infty(Q/P) > 0$ and as such $I_\infty(Q/P) > 0$ for some value of a, but if q_M is not the largest, even $I_\infty(Q/P)$ may be negative.

We can see the result in another way.

Let

$$\sum_{k=1}^{N} q_k = A, \quad \sum_{k=1}^{N} p_k = B$$

$$q_{k'} = \frac{q_k}{A}, \quad p_{k'} = \frac{p_k}{D},$$

so that

$$\begin{split} & \sum_{k=1}^{R} q_{k'} = 1 = \sum_{k=1}^{N} p_{k'} \\ & I_{a} \begin{pmatrix} Q \\ \overline{P} \end{pmatrix} = \frac{1}{a-1} \log \frac{\sum_{k=1}^{M} Aq_{k'} \begin{pmatrix} Aq_{k'} \\ Bp_{k'} \end{pmatrix}^{a-1}}{\sum_{k=1}^{N} Aq_{k'}} \\ & = \frac{1}{a-1} \log \binom{A}{B}^{a-1} + \frac{1}{a-1} \log \frac{\sum_{k=1}^{M} q_{k'} \binom{q_{k'}}{p_{k'}}^{a-1}}{\sum_{k=1}^{M} q_{k'}}. \end{split}$$

From what we proved in Section 5, the second term is positive. If $A \ge B$, the first term is also non-negative and as such $I_a(Q/P)$ is always positive except when $p_k = q_k$. If A < B, the first term is negative and $I_a(Q/P)$ may be positive or negative.

7. Monotonic Character of $I_{\alpha}^{\beta}(Q/P)$

For a fixed β , the proof of Section 5 applies except that here we replace a_k by q_k^B and so we have

$$\frac{d}{d^{a}}\left[I_{a}{}^{\beta}\left(\begin{matrix} \mathbf{Q}\\ \mathbf{P}\end{matrix}\right)\right]>0$$

so that for every fixed value of β , the information of order α and type β is monotonic increasing. Again

$$I_{0}^{\beta}\left(\frac{Q}{P}\right) = -\log \frac{\sum\limits_{k=1}^{N} q_{k}^{\beta}\left(\frac{p_{k}}{q_{k}}\right)}{\sum\limits_{k=1}^{N} q_{k}^{\beta}}.$$

If all $p_k/q_k > 1$, this is negative; if all $p_k/q_k < 1$, this expression is positive, but if some are greater than and other less than unity, then this expression can be positive or negative. When

$$\sum_{k=1}^{N} p_k q_k^{\beta-1} < \sum_{k=1}^{N} q_k^{\beta},$$

the information of order α and type β will always be positive.

Again consider

$$\begin{split} & I_{1}^{\beta} \left(\frac{\mathbb{Q}}{\mathbb{P}} \right) = \frac{\sum\limits_{k=1}^{N} q_{k}^{\beta} \log \frac{q_{k}}{p_{k}}}{\sum\limits_{k=1}^{N} q_{k}^{\beta}} \\ & \frac{d}{d^{\beta}} \left[I_{1}^{\beta} \left(\frac{\mathbb{Q}}{\mathbb{P}} \right) \right] \\ & = \frac{1}{\left(\sum\limits_{k=1}^{N} q_{k}^{\beta} \right)^{2}} \left\{ \sum\limits_{k=1}^{N} q_{k}^{\beta} \sum\limits_{k=1}^{N} q_{k}^{\beta} (\log q_{k})^{2} - \left(\sum\limits_{k=1}^{N} q_{k}^{\beta} \log q_{k} \right)^{2} \right. \\ & \left. - \sum\limits_{k=1}^{N} q_{k}^{\beta} \sum\limits_{k=1}^{N} q_{k}^{\beta} \log q_{k} \log p_{k} \right. \\ & \left. + \sum\limits_{k=1}^{N} q_{k}^{\beta} \log p_{k} \sum\limits_{k=1}^{N} q_{k}^{\beta} \log q_{k} \right\}. \end{split}$$

The first two terms are ≥ 0 , but the last two terms can change sign.

If $\log p_k = A \log q_k$ and A < 1, then the whole expression is positive and the information is a monotonic increasing function of β . If A > 1, then this expression is negative and the information in a monotonic decreas-

ing function of β . No completely general statement about the monotonic character of information of order 1 and type β can however be made.

REFERENCES

1. Renyi, A.	 "On measures of information and entropy," Proc 4th Berkeley
	Symp. Math. Stat. and Prob., 1961, 1, 545-61.

- 2. Kapur, J. N. .. "Generalised entropy of order a and type p," The Missha. Seminar, 1967, 4.
- 3. Phillips, E. G. ... Analysis, 1948, Chapter VI.