Hot electron transport in In (0·53) Ga (0·47) As

B R NAG
Centre of Advance Study in Radio Physics and Electronics, Calcutta University, Calcutta 700 009, India

Abstract. Monte Carlo results on the hot-electron transport coefficients of In(0·53) Ga(0·47) As are presented. The material parameters were selected by analysing the experimental hot-electron velocity-field characteristics and calculations were made by including all the relevant scattering mechanisms. Results are presented for the bulk drift velocity and diffusion coefficient and also for the velocity-field characteristics of submicron samples and 2 DEG.

Keywords. Hot-electron transport; Monte Carlo results; velocity-field characteristics; submicron transport; DEG transport.

1. Introduction

The ternary compound In (0·53) Ga (0·47) As has an energy band gap of 0·75 eV, which matches the 1·6 μm radiation at which the glass fibres have a low attenuation window. The material is also lattice-matched to InP and crystals of good quality may be grown by LPE, MBE or MOCVD. It was therefore developed to realise sources and detectors for communication systems working with 1·6 μm radiation.

It was, however, found, when good quality material became available, that it gave better performance characteristics for many devices which were earlier made with GaAs or InP. The number of devices which have been realised with In (0·53) Ga (0·47) As has been multiplying at a very rapid rate. A new device is reported almost every month. Performance characteristics of the InGaAs devices as reported in IEEE Trans. Electron Device Lett. (1987) are listed in table 1. It is evident from the reported results that In(0·53) Ga(0·47) As will be a serious competitor to GaAs and InP as the material for high-frequency and high-speed devices.

The author and his co-workers (Ahmed et al 1985; Nag et al 1986, 1987; Bose and Nag 1988) have in this context, studied the material by applying the Monte Carlo technique to assess theoretically its performance vis-a-vis that of GaAs and InP. The results of these studies are reviewed in this paper.

2. Velocity-field characteristics

The calculation of transport coefficients requires the knowledge of the physical parameters related to the energy band structure, coupling constants for the scattering mechanisms, and of the mass density, phonon spectrum and dielectric constant. Some of these parameters have been determined by experiments, some have been calculated and some others are estimated by interpolation using the values for GaAs and InAs. The parameters (Nag 1984) selected for the calculations are given in table 2. It is necessary to check if these parameters give acceptable results. For this purpose, the velocity field characteristics were first calculated with
Table 1. In (0:53) Ga (0:47) As devices.*

<table>
<thead>
<tr>
<th>Device</th>
<th>Reporting month</th>
<th>Performance characteristic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SISFET</td>
<td>January</td>
<td>$g_m = 250$ (300 K)</td>
<td>Feuer et al (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_c = 15$</td>
<td></td>
</tr>
<tr>
<td>MODFET</td>
<td>March</td>
<td>$g_m = 17.8$ (300 K)</td>
<td>Lee et al (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 89$ (77 K)</td>
<td></td>
</tr>
<tr>
<td>HPT</td>
<td>April</td>
<td>$G > 150$</td>
<td>Campbell et al (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$B = 14$</td>
<td></td>
</tr>
<tr>
<td>HBT</td>
<td>May</td>
<td>$G > 100$</td>
<td>Lee et al (1987)</td>
</tr>
<tr>
<td>DHBT</td>
<td>June</td>
<td>$G > 275$</td>
<td>Nottenburg et al (1987)</td>
</tr>
<tr>
<td>SAGM-APD</td>
<td>July</td>
<td>$\tau = 14$</td>
<td>Tsang et al (1987)</td>
</tr>
<tr>
<td>JFET</td>
<td>August</td>
<td>$g_m = 553$</td>
<td>Albrecht and Lauterbach (1987)</td>
</tr>
<tr>
<td>MODFET</td>
<td>September</td>
<td>$g_m = 271\sim 197$</td>
<td>Kuo et al (1987)</td>
</tr>
<tr>
<td>HEMT</td>
<td>September</td>
<td>$g_m = 240$ (300 K)</td>
<td>Kuroda et al (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 340$ (88 K)</td>
<td></td>
</tr>
<tr>
<td>MISFET</td>
<td>September</td>
<td>$f_c = 45$</td>
<td>Gardner et al (1987)</td>
</tr>
<tr>
<td>MISFET</td>
<td>November</td>
<td>$g_m = 132$</td>
<td>de Alamo and Mizutani (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_c = 50$</td>
<td></td>
</tr>
<tr>
<td>Photodiode</td>
<td>December</td>
<td>$\tau = 0.025$</td>
<td>Zebda et al (1987)</td>
</tr>
</tbody>
</table>

Symbols: g_m – transconductance in m s/mm; f_c – cut-off frequency in GHz; G – gain; B – bandwidth in GHz; τ – rise time in ns.

Table 2. Physical constants of In (0:53) Ga (0:47) As.

<table>
<thead>
<tr>
<th>Physical constant</th>
<th>Γ Valley</th>
<th>L valley</th>
<th>X valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of valleys</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Effective mass ratio</td>
<td>0.042 (95 K)</td>
<td>0.03745 (300 K)</td>
<td>0.26</td>
</tr>
<tr>
<td>Nonparabolicity factor (eV)$^{-1}$</td>
<td>1.167</td>
<td>0.59</td>
<td>0.65</td>
</tr>
<tr>
<td>Valley separation from Γ valley (eV)</td>
<td>—</td>
<td>0.55</td>
<td>0.67</td>
</tr>
<tr>
<td>Polar optic phonon energy (eV)</td>
<td>0.0345</td>
<td>0.0345</td>
<td>0.0345</td>
</tr>
<tr>
<td>Acoustic phonon deformation potential (eV)</td>
<td>9.2</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Alloy scattering potential (eV)</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Intervally transition | Coupling constant in units of 10^8 eV/cm | Phonon energy in eV |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma-L$</td>
<td>10</td>
<td>0.027</td>
</tr>
<tr>
<td>$\Gamma-X$</td>
<td>10</td>
<td>0.0299</td>
</tr>
<tr>
<td>$L-L$</td>
<td>10</td>
<td>0.0290</td>
</tr>
<tr>
<td>$L-X$</td>
<td>9</td>
<td>0.0293</td>
</tr>
<tr>
<td>$X-X$</td>
<td>9</td>
<td>0.0299</td>
</tr>
</tbody>
</table>

Mass density $= 5.469$ (g/cm3), sound velocity $= 4.7 \times 10^5$ (cm/s); High-frequency dielectric constant $= 11.34$; Low-frequency dielectric constant $= 13.88$; Lattice constant $= 5.86 \times 10^{-8}$ cm.

these parameters and compared with the experimental results, which were obtained earlier by Windhorn et al (1982) by using the microwave time-of-flight technique.

The calculated values are presented in figure 1 along with the experimental
results. It is seen that the calculated values agree very closely with the experiments.

Low-field mobility, peak velocity and threshold field for negative differential velocities were also calculated for the temperatures of 300 and 95 K. The values are respectively 13,770 cm²/V.s, 2.83 × 10⁷ cm/s, 3.1 kV/cm and 31,770 cm²/V.s, 4.25 × 10⁷ cm/s, 2.5 kV/cm. The values for 300 K are nearly the same as those obtained from experiments (Kowalsky et al 1984). The values for 95 K could not, however, be checked as experimental results are not available.

3. Hot-electron diffusion coefficient

The diffusion constant for high fields was obtained by using the following relations.

\[c(s) = (1/T) \int_0^T [v(t - \bar{v}) [v(t) - \bar{v}] dt, \]
\[\bar{v} = (1/T) \int_0^T v(t) dt, \]
\[D(\omega) = \int_0^\infty c(s) \cos \omega ds, \]

where \(c(s) \) is the autocovariance coefficient of velocity fluctuations, \(\bar{v} \) the average velocity, \(t \) the time, \(s \) the time interval, \(T \) the sampling time and \(D(\omega) \) the diffusion coefficient for the frequency \(\omega \).

The values of velocity were recorded in the Monte Carlo simulation at some chosen intervals. The covariance coefficient was computed by using the recorded values of velocity and the diffusion coefficient from the values of \(c(s) \) by using (3).

Calculated values of diffusion coefficient are plotted in figure 2 against electric field normalised by the threshold field for negative differential resistance. The transverse diffusion coefficient shown by the dotted line is larger than those of
GaAs (indicated by closed circles) and InP (indicated by closed squares). On the other hand, the parallel coefficient is nearly the same as those of GaAs (indicated by open squares), but larger than those of InP (indicated by open circles). The diffusion coefficient is a measure of the noise performance of the devices made with the material. The present results indicate that the performance of \(\text{In} (0.53) \text{Ga} (0.47) \text{As} \) would be similar to that of GaAs, but poorer than InP.

4. Submicron transport

Transport characteristics for submicron samples were calculated by simulating the electron trajectory in short samples. Electrons were injected in the simulation from one end of the sample by assuming that they obey a Maxwellian distribution at the lattice temperature before injection. The velocity of the simulated electron was recorded at intervals of 0.04 ps, till it reached the end of the sample. The average velocity of the electrons during the flight was calculated by using the relation

\[
v(t) = \frac{1}{N} \sum_{i=1}^{N} v_i(t)
\]

where \(v_i(t) \) is the velocity of the electron at any time \(t \) after injection and \(N \) the total number of simulated electrons.

The average velocity was found to increase with time and attain steady values after about 1 ps. The velocity showed overshoot for fields larger than the threshold.
Hot electron transport in In(0.53)Ga(0.47)As

![Graph](image)

Figure 3. Peak average velocity in submicron samples for In(0.53)Ga(0.47)As, GaAs and InP.

The threshold field and the peak velocity was found to increase with decrease in the sample length. The parameter of interest in the application of the submicron samples to devices is the peak velocity. Peak velocity for different sample lengths is shown in figure 3. Similar results for GaAs and InP are also given for comparison. It is seen that In(0.53)Ga(0.47)As gives larger peak velocities than both GaAs and InP.

5. 2 DEG transport

A novel kind of field effect transistor is being currently studied, in which the conduction band bending near the surface adjacent to the gate in a heterostructure FET is so arranged that the bent band forms a quantum well. Electrons have freedom of motion parallel to the surface in such wells as the electron momentum perpendicular to the surface is quantized. Transistors have been constructed by using such heterostructures comprising a large and a small band gap material. The mobility of electrons in such 2 DEG transistors may be very high as large electron concentration may be realised in the undoped active layer by migration from the doped high band gap gate layer. A variation of the usual field-effect transistor structure is also being studied. A gate layer is used in these structures on both the surfaces of the active layer, so that a rectangular quantum well is formed. The carrier concentration may be made higher in such systems as carriers will migrate from both the gate layers and consequently the switching time may be made smaller.

Electron transport in rectangular quantum wells of In(0.53) Ga(0.47) As was studied by the Monte Carlo method, by including band nonparabolicity and considering acoustic phonon and polar optic phonon-scattering. Calculations were simplified by using the MCA approximation. Velocity-field characteristics for the temperature of 77 K are illustrated in figure 4 for well widths of 100 and 200 Å, for
which MCA approximation does not introduce an error of more than 15%. Calculated results for GaAs are also presented for comparison.

It is seen that the velocity rises sharply up to a field of about 500 V/cm and then it increases slowly and reaches a run-away condition. The peak value of stable velocity is 3.3×10^7 cm/s for In(0.53)Ga(0.47)As compared to 2.6×10^7 cm/s for GaAs. The velocity for In(0.53)Ga(0.47)As is also found to be higher than for GaAs at all fields.

6. Conclusion

Calculated results on hot-electron transport characteristics of In(0.53)Ga(0.47)As have been reviewed. It is found that the electron velocity is higher in In(0.53)Ga(0.47)As for the different kinds of device structures using bulk, submicron or 2 DEG systems. The noise performance is similar to that of GaAs but poorer than that of InP.

References

Albrecht H and Lauterbach 1987 Electron Dev. Lett. EDL-8 353
Bose D and Nag B R 1988 Phys. Status Solidi (a) 106 569
Hot electron transport in In (0·53) Ga (0·47) As

Nag B R 1984 Pramana--J. Phys. 23 411
Tsang W-T, Campbell J C and Qua G J 1987 Electron Dev. Lett. EDL-8 294