An "EPR" study of $YBa_2Cu_3O_7$ and related high-temperature superconductors**

S V BHAT[†], P GANGULY and C N R RAO*

Solid State and Structural Chemistry Unit and †Department of Physics, Indian Institute of Science, Bangalore 560 012, India

MS received 31 March 1987

Abstract. Besides a $g \approx 2$ signal which disappears on cooling to the superconducting T_c , YBa₂Cu₃O₇ and related oxides show a near-zero-field signal in the superconducting state with certain unusual features attributable to a "superconducting glassy state".

Keywords. High-temperature superconductivity; YBa₂Cu₃O₇.

PACS No. 74:70

High-temperature superconductors of the Y-Ba-Cu-O system with T_c in the 100 K range, discovered in the last few weeks (Ganguly et al 1987; Mohan Ram et al 1987; Rao et al 1987; Wu et al 1987) have created much expectation. These materials with characteristics of type II superconductors and high upper critical fields (> 50 T), are good candidates for "EPR" investigations, especially since EPR studies of bulk superconductors have not been reported extensively in the literature. In this communication, we make a preliminary report on some novel EPR results on the monophasic perovskites YBa₂Cu₃O₇ and Y_{0.75}Lu_{0.25}Ba₂Cu₃O₇ showing the onset of superconductivity above 100 K and zero-resistance well above 77 K.

The superconducting oxides were prepared by the solid state reaction of the component oxides in air at ~ 1200 K. The resulting oxides were tested for phasic purity by x-ray diffraction. The oxides were then annealed in flowing oxygen around ~ 1100 K. EPR experiments were carried out with a Varian E-109 spectrometer (X-band) on powdered samples.

 $YBa_2Cu_3O_7$ shows an asymmetric signal at $g\approx 2$ at 300 K which becomes extremely broad in the superconducting state and cannot be detected (figure 1). More interesting is the observation of a signal near zero-field in the superconducting state (figure 2). This signal is very strong and narrow (compared to the $g\approx 2$ signal at 300 K). The lineshape of the signal is nearly Lorentzian, but asymmetric. The signal disappears on warming the sample to the superconducting transition temperature, accompanied by a phase reversal (see figure 2). The temperature variation of the intensity provides an order parameter of the transition.

^{*}To whom all correspondence should be addressed.

^{**}Contribution No. 443 from Solid State and Structural Chemistry Unit.

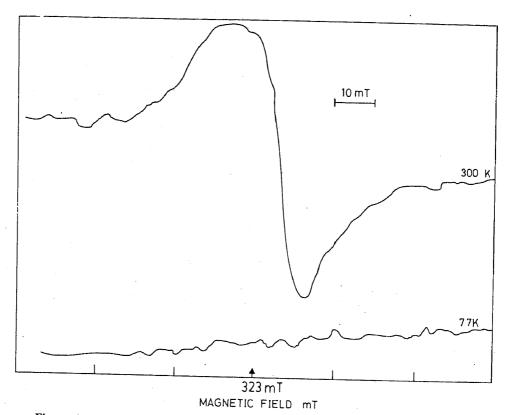


Figure 1. "EPR" of YBa₂Cu₃O₇ showing a $g \approx 2$ signal at room temperature; the signal is not detectable at 77 K.

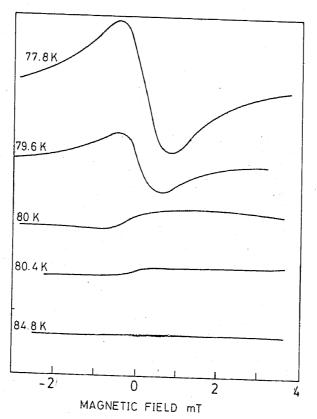


Figure 2. Near-zero-field signal of YBa₂Cu₃O₇ as a function of temperature.

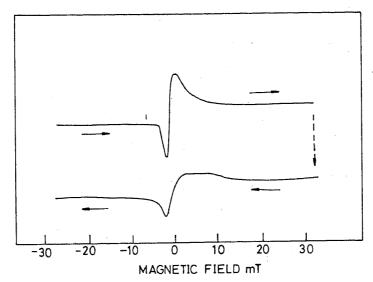


Figure 3. Lineshapes of the near-zero-field signal of YBa₂Cu₃O₇ in the forward and reverse field sweeps.

The lineshape of the near-zero-field signal shows pronounced differences in the forward and reverse sweep directions (figure 3). We have found a similar behaviour in the case of Y_{0.75}Lu_{0.25}Ba₂Cu₃O₇ which shows the signal in opposite phases in the forward and reverse sweep directions.

The observation of the near-zero-field signal as well as its unusual features can be broadly interpreted in terms of the presence of a triplet state or as due to collective excitations associated with antiferromagnetically coupled states. A more likely explanation however appears to be that based on the superconductive glass model (Ebner and Stroud 1985). This model predicts a maximum in static susceptibility close to zero field. The hysteresis effects in figure 3 are what would qualitatively be expected for a sample made up of a large number of superconducting grains of various sizes. The superconducting glassy state has been invoked by Müller $et\ al\ (1987)$ to explain the magnetic properties of $La_{2-x}Ba_xCuO_4$.

Detailed "EPR" studies on these high-temperature oxide superconductors are in progress, especially to find out whether the zero-field signal is truly intrinsic to these materials.

The authors thank the University Grants Commission and the Department of Science and Technology for support of this research.

References

Ebner C and Stroud A 1985 Phys. Rev. B31 165

Ganguly P, Mohan Ram R A, Sreedhar K and Rao C N R 1987 *Pramana—J. Phys.* 28 321 Mohan Ram R A, Sreedhar K, Raychaudhuri A K, Ganguly P and Rao C N R 1987 *Philos. Mag. Lett.* (in print)

Müller K A, Takashige M and Bednorz J G 1987 Phys. Rev. Lett. 58 1143

Rao C N R, Ganguly P, Raychaudhuri A K, Mohan Ram R A and Sreedhar K 1987 Nature (London) (in print)

Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. 58 908