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Changes in the cell surface ofEntamoeba histolytica, a human intestinal parasite and the causative agent of
amebic dysentery, were examined with a monoclonal antibody, 2D7.10, which selectively recognizes carbohy-
drate epitopes in some axenic amebic strains. While high-level expression of this epitope was observed in axenic
amebae, it was either absent or present only in small amounts in xenic amebae. Furthermore, reassociation of
the axenic amebae with intestinal flora resulted in loss of the 2D7.10 epitope. Our data suggest that surface
antigens of E. histolytica can be modulated in response to bacteria and may provide an explanation for the
observed influence of bacteria on amebic virulence.

Infection with Entamoeba histolytica results either in a
noninvasive, commensal state in the colon or in a diseased
state with characteristic intestinal and/or extraintestinal le-
sions. However, the vast majority of the infections (more
than 90%) are asymptomatic (25).
A number of studies have suggested a synergistic effect

between E. histolytica and bacteria in amebic virulence.
Treatment with antibacterial drugs resulted in marked im-
provement in the clinical profile of amebiasis in infected
patients (10). Axenic amebae inoculated into germ-free
guinea pigs did not produce lesions. However, lesions were
produced when the animal or the amebae were reassociated
with bacteria (19, 20, 26). The virulence of most strains, in
animal models, decreases significantly on continuous axenic
cultivation. In some strains virulence could be restored by
reassociation with bacterial flora (18). The interaction of
bacteria with amebae was shown to be mediated by specific
sugar-binding molecules present on bacteria (16). These
studies suggest that an association between bacteria and E.
histolytica may have a profound effect on the physiology of
the latter cells, leading to changes in virulence.

Sargeaunt and colleagues have studied isoenzyme profiles
of thousands of cultured E. histolytica isolates; strains from
symptomatic cases had distinct profiles compared with those
from asymptomatic cases (23). The former were termed
pathogenic and the latter nonpathogenic strains. Both patho-
genic and nonpathogenic strains can be isolated in xenic
culture. However, axenic cultures have been obtained only
from those amebae which display pathogenic isoenzyme
forms.
We have begun studies aimed at understanding the sym-

biotic relationship between bacteria and amebae. In this
report we present evidence which suggests that cell-surface
glycoconjugates differ between strains growing with and
without bacteria.

All axenic strains, HM-1:IMSS clone (cl) 6 (14), SAW
1734 R cl AR (17), and HI 1295:AIIMS (isolated from a

patient from India with invasive disease), were maintained in
TYI-S-33 medium at 36°C (8). All xenic strains, 401:NIH
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(isolated from a patient at the National Institutes of Health;
nonpathogenic isoenzyme profile isolate), SAW 891 R cl B
(obtained from P. Sargeaunt), SAW 1734 R cl AR, and HI
1295:AIIMS, were grown in TYSGM-9 at 36°C (6). Bacterial
flora were grown under the same conditions as the xenic
cultures. Antigens were prepared according to published
procedures (2, 3). Total-cell lysate was used as an antigen
without further fractionation. The amount of amebic antigen
in each cell lysate was determined by measuring proteins
with BCA reagent (Pierce Chemical Company). There may
be an error in determining amebic antigen concentration in
xenic amebic lysates because of the presence of bacteria.
The antibodies used in this study were as follows. Mono-

clonal antibody (MAb) 2D7.10 has been described recently.
It recognizes a carbohydrate determinant present on the cell
surface of a number of axenic E. histolytica strains (3). MAb
2F3.4 recognizes a polypeptide determinant on the surface of
all E. histolytica strains (lla). Polyclonal antibody aEhM
was raised in rabbits against the Triton X-114 detergent
phase-separated fraction of the HM-1:IMSS strain and rec-
ognizes mainly carbohydrate epitopes on E. histolytica. It
competed with 2D7.10 in binding to amebic antigens, sug-
gesting that these antibodies recognize a common epitope
(lla). Polyclonal antibody aEhT.KCG was raised against a
total-cell lysate of 200:NIH and was a kind gift of Shiv Pillai
(21). We have used aEhM and aEhT.KCG as control anti-
bodies to estimate the contribution of difference in amebic
antigen concentration, antigen masking, and nonspecific
degradation in different antigen preparations derived from
different strains. Enzyme-linked immunosorbent assay
(ELISA) and Western immunoblotting were carried out by
published procedures (3, 11, 24). Polyacrylamide gels (10%)
were used for all separations (12).
The amounts of 2D7.10 antigen in different strains of E.

histolytica were determined by ELISA. Since a comparison
was being made between xenic and axenic strains, poly-
clonal antibodies aEhM and aEhT.KCG were used in the
assays as controls to rule out the possibility that the differ-
ence in immunoreactivity is due to either bacterial masking
of antigens or differences in the concentration of amebic
antigens as a result of bacterial components. Binding of
antibodies to antigens prepared from different strains of E.
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TABLE 1. Antigen expression in different strains
of E. histolyticaa

Strain and amt of antigen OD
(,ug/well) 2D7.10 aEhM aEhT.KCG

Expt 1
HM1-IMSS, cl 6 (axenic)

10.0 >2.00 0.56 0.49
2.5 >2.00 0.75 0.55

401:NIH (xenic)
10.0 0.00 0.60 0.65
2.5 0.00 0.70 0.72

HI 1295:AIIMS (xenic)
10.0 0.00 0.40 0.14
2.5 0.00 0.38 0.20

SAW891 R cl B (xenic)
10.0 0.02 0.40 0.63
2.5 0.03 0.54 0.82

Bacterial flora
10.0 0.00 0.15 0.01
2.5 0.00 0.10 0.00

Expt 2
HI 1295:AIIMS (axenic)

10.0 0.59 1.44 ND
5.0 0.66 1.35 ND

HI 1295:AIIMS (xenic)
10.0 0.01 1.14 ND
5.0 0.00 1.16 ND

a All axenized strains were grown in Diamond's TYI-S-33 medium, and
xenic strains were grown in TYSGM-9. Cells were harvested after 72 h at
36°C. Cultures were chilled at 4°C for 10 min and centrifuged at 275 x g for 7
min. The pellet was washed with phosphate-buffered saline 8 (K2HPO4, 3.7 g;
KH2PO4, 1.1 g; NaCl, 9.5 g; distilled water, as much as needed to make 1 liter,
pH 7.2, 360 mosmol/liter). Cells were incubated in lysis buffer (10 mM Tris-Cl,
pH 7.5; 150 mM NaCl; 2 mM phenylmethylsulfonyl fluoride, 5 mM p-chlo-
romercuribenzoate; 10 ,ug of leupeptin per ml) for 30 min on ice and lysed by
sonication for 30 s. ELISA was carried out as described earlier (3). Briefly,
antigen was coated overnight at 4°C onto wells of microtiter plates. After
blocking nonspecific sites with gelatin, primary antibody was added. Detec-
tion of bound antibody was by anti-mouse immunoglobulin antibody (for
2D7.10) or anti-rabbit immunoglobulin antibody (for aEhM and aEhT.KCG)
conjugated to horseradish peroxidase. Color reagent used as o-phenylene
diamine or 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). Controls had
either preimmune serum, control ascites, or control culture supernatants as a
first antibody. OD values are presented here after subtraction of values
obtained with control antibodies.

histolytica is shown in Table 1. 2D7.10 antigen was present
in significant amounts in axenic strains HM-1:IMSS and HI
1295:AIIMS, as revealed by high ELISA values. However,
the antigen could not be detected in xenic strains. This
difference between xenic and axenized strains is not due to
interstrain variation, since the axenized strain derived from
xenic line HI 1295:AIIMS showed high-level expression
(Table 1, experiment 2).
The corresponding ELISA values obtained with aEhM

and aEhT.KCG are also shown in Table 1. In contrast to
2D7.10, these antibodies recognized all strains tested. No
major variation among xenic and axenized strains was
observed. 2D7.10 and aEhT.KCG did not bind to bacterial
flora at the same concentration as amebic lysates. A low
level of binding was observed with aEhM under the same
conditions (Table 1). Thus, binding to antigens from xenic
strains by polyclonal antibodies is not due to binding to
bacterial components. This datum suggests that there is no
significant masking of epitopes. The small variation ob-
served in the ELISA values with polyclonal antibodies may
be due to our inability to accurately determine the concen-

TABLE 2. Changes in antigenicity on reassociation of
E. histolytica axenized strain HM-1:IMSS with bacterial flora

Antigen concn OD45
(Ag/ml) HM-1, axenic HM-1, florae

1 1.23 0.01
2 1.23 0.01
5 1.14 0.01
10 1.17 0.01
20 1.04 0.02

a ELISA was performed with horseradish peroxidase as an enzyme label
and o-phenylenediamine as the substrate. OD405, OD at 405 nm.

b HM-1 cl 6 cells were adapted to grow with NRS flora for about 5 weeks.

tration of antigens derived from amebae. These observations
were also confirmed by Western blot analysis. While aEhM
immunostained equally, 2D7.10 stained sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS-PAGE)-sepa-
rated antigens prepared from axenized cells but not xenic
cells, as observed before (data not shown) (3).
Axenized strains, with high levels of 2D7.10 antigen, were

found to lose reactivity when reassociated with bacteria. E.
histolytica HM-1:IMSS was reassociated with the NRS
bacterial flora (7). No antigen could be detected in reassoci-
ated cultures in contrast with high levels of antigen in the
axenized strain (Table 2). This change is not due to masking
or degradation of antigens by bacterial products, since
short-term xenic cultures (2 to 3 days) or mixing of bacteria
before harvesting do not cause any change in antigen levels
(data not shown).
During the process of axenization E. histolytica undergoes

gross morphological changes visible under a light micro-
scope (13). It is likely that these changes may affect many
cell surface molecules. In order to determine whether other
antigens may be affected by bacterial association, immu-
noassays with another MAb 2F3.4 which recognizes a poly-
peptide antigen were carried out (Table 3). The binding
reactions of 2F3.4 and 2D7.10 were compared. The ELISA
values were presented as ratios of experimental over control
(e/c) antibodies, in addition to optical density (OD) values
after subtraction of control. There was no binding of 2D7.10
to xenic strains, as reflected in OD (>0.02) and e/c (1 to 1.6).
On the other hand there was significant binding of 2F3.4 to
the same strains, with OD values of around 0.21 and e/c
values of >13. The corresponding values for axenic strains
were as follows: OD > 0.6 and e/c > 35. These results
suggest that while 2D7.10 antigen was totally absent, 2F3.4

TABLE 3. Binding of MAbs 2D7.10 and 2F3.4 to E. histolyticaa

OD (e/c)
Strain

2D7.10 2F3.4

HM-1:IMSS, cl 6 (axenic) 2.00 (40) 0.62 (31)
SAW 1734 R cl AR (axenic) 0.77 (19) 0.90 (45)
SAW 1734 R cl AR (xenic) 0.03 (1.0) 0.21 (13)
401:NIH (xenic) 0.07 (1.4) 0.23 (23)

a ELISA was carried out by using antigens prepared as described in
footnote a to Table 1. The plates were coated with 50 IL of antigen preparation
(100 ,ug/ml) overnight at 4'C. 2D7.10 ascites were used at 1:5,000, 2F3.4
supernatant was used at 1:5, and aEhM was used at 1:800. Values for controls
have been obtained by using appropriate dilutions of control antibodies
(ascites, supernatant, or preimmune serum). Horseradish peroxidase-labeled
anti-mouse immunoglobulins along with 2,2'-azino-bis(3-ethylbenzthiazoline-
6-sulfonic acid) was used for immunodetection.
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antigen was present in xenic strains, although in somewhat
reduced amounts compared with those in axenic strains.
Our results show a phenotypic modulation of a surface

epitope recognized by a specific MAb. The level of antigen
was modulated in response to associated organisms. Bacte-
ria may influence surface antigens in a number of ways.

First, because of continuous phagocytosis, the cell surface
of the ameba may turn over very rapidly, resulting in loss of
surface molecules. This, however, may not contribute to
bacterium-induced modulation, since the cell surface of
axenic strains also turns over rapidly (1). Second, bacteria
bind amebic cell surface molecules through either specific or

nonspecific interactions and thereby do not allow antibodies
to approach the antigen (masking effect). This is unlikely,
since immunostaining after SDS-PAGE separation and
Western blotting gave results similar to those from the
ELISA. Since adaptation of cells to bacterial flora is neces-

sary before loss of the epitope takes place, it appears to be a

response of the amebae towards bacterial association. Pres-
ence of a 30-kDa antigen only in xenic strains suggests that
there may be both loss and gain of epitopes when cells go

from xenic to axenized forms (4).
A number of studies have shown that bacteria influence

physiological behavior of the amebae. This may, in turn,
affect virulence of these organisms (18, 19, 20, 26). Cell
surface molecules, including carbohydrate groups, are

known to be involved in amebic recognition of target cells
and bacteria (16). Modulation of surface antigens could be
one of the mechanisms by which amebae control interaction
with bacteria. Alteration in surface carbohydrates has been
associated with changes in pathogenic properties in the
protozoan parasite Leishmania major and in schistosomes
(9, 22).
Modulation and variation of surface antigens have been

observed in a number of different parasites (5, 15). In many
instances, these changes help the parasite to survive inside
the host. Our study shows a unique modulation of antigen
dependent on associated microbial flora. This may provide a

mechanism by which the ameba modulates host-parasite
interaction.
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