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A Theory of the Optical and Electrical Properties of Laquads.
By Prof. C. V. Raman, F.R.8,, and K. 8. Krigunan.

(Received September 19, 1927.)

1. Introduction.

Theories of the optical behaviour of liquids generally base themselves on the
postulate that the well-known Lorentz formula (#? — 1)/(n? 4 2)p = constant
correctly expresses the relation between the refractive index and density of a
liquid. It has long been known, however, that this formula is at best only an
approximation. The quantity (n? — 1)/(n? + 2) ¢ is found experimentally
to be not invariable, its deviation from constancy becoming more and more
marked as the density isincreased. The change in the value of (n? — 1)/(n® 4 2)p
in passing from the state of vapour to that of aliquid under ordinary conditions,
is usually quite appreciable, as might be instanced by the case of benzene, for
which Wasastjerna* found for the D-line a molecular refraction of 27-20 in
the vapour state, while the corresponding value for the liquid is 2618, that is,
3-8 per cent. lower. The deviations from the Lorentz formula appear most
striking when we use it to compute the change in the refractive index of a
liquid produced by alterations of temperature or pressure. Here, again, we
might instance the case of benzene, for which the observed value of

dnjdt = —6-4 X 107* per degree Centigrade for the D-line at 20° C., and
that of dn/dp = 5-06 x 1075 per atmosphere, while the calculated values are
dnfdt = —7+15 X 107* and dn/dp == 5-66 x 107° The observed values are

thus numerically about 10 per cent. smaller in either case, indicating that
(w? — 1)/(n? 4 2) p diminishes more and more quickly as the density}is
increased. An expression of the form (n? — 1)/(n® + 2) p = a — bg?, where a
and b are positive constants, has been found to represent the refraction of
carbon dioxide over a wide range of density more closely than the original
Lorentz formula.f It has been deduced theoretically on certain suppositions
regarding the magnitude of the polarisation ficld in liquids, which are, however,
‘somewhat arbitrary in nature.

Considering next the electrical behaviour of liquids, we find that the formula
proposed by Debye (¢ — 1)/(c + 2) p = A + B/T is not adequate to explain

* “Soe. Sci. Fenn., Phys.-Math.,” vol. 2, No. 13 (1924).
T Phillips, ‘ Roy. Soec. Proc.,” A, vol. 97, p. 225 (1920).
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the dielectric properties of many known liquids. To illustrate this, we may
again consider the case of benzene, whose dielectric constant has been determined
over a wide range of temperatures* and pressures.t Since A and B in the
formula are essentially positive constants, it follows that (= — 1)/(z + 2) ¢
should remain invariable when the liquid is compressed isothermally, and that
it should diminish with rising temperature. Actually it is found with benzene
that the quantity in question falls steadily with increasing pressure and
tnereases with rising temperature. A similar apparently anomalous behaviour
is shown by many other liquids whose molecules have a negligible electrical
polarity. Liquids of marked electrical polarity show a diminution of
(e — 1)/(e -+ 2) p with rising temperature as demanded by the formula, but
they deviate from it by showing a diminution of the same quantity when
isothermally compressed, the latter effect being usually even more marked
than for non-polar compounds.j ‘

It will be clear from the foregoing review that the existing theories of the
optical and electrical behaviour of liquids are far from being satisfactory. It is
proposed in this paper to put forward a new theory which appears to us com-
petent to offer at least an insight into the whole range of facts referred to. We
believe that it is capable of doing more, that is, of actually giving a quantitative
explanation of the behaviour of actual liquids for which the necessary data for
evaluating the constants appearing in our formule are available. In order,
however, not to lengthen the paper unduly, we shall confine ourselves to a
general discussion, leaving the details for fuller treatment in separate papers.

2. The Refractivity of Liquids.

We shall first consider the optical problem, which is relatively simple. In
any satisfactory treatment of it we have necessarily to take into account the
fact which has been clearly established by recent investigations, namely, that
a liquid can be regarded as an optically isotropic medium only when we do not
push the analysis of its structure into regions of molecular dimensions. In
the first place, it is established by investigations on light-scattering that all
known molecules are optically anisotropic, in other words, that they are polaris-
able to different extents in different directions. From this circumstance it
follows that the refractivity of a liquid is really an average effect determined
by the contributions of molecules variously orientated relatively to one another

* Tgnardi, ¢ Z. f. Physik,” vol. 9, p. 153 (1922).
+ Francke, ¢ Ann. d. Physik,” vol. 77, p. 159 (1925).
t Grenacher, ¢ Ann. d. Physik,” vol. 77, p. 138 (1925).
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and to the field of the incident radiation. Further, it is known from X-ray
studies that many actual molecules are highly asymmetric in their geometric
form. In view of this fact we would not be justified in treating the distribution
of polarisable matter surrounding any given molecule in a dense fluid as com-
pletely symmetrical. It follows, therefore, that the local field acting on any
molecule due to the polarisation of its immediate neighbours, cannot be regarded
as independent of the orientation of the molecule in the field. The study of
light-scattering in liquids furnishes striking evidence in support of this idea and
indeed enables us in simple cases to actually determine how the polarisation
field acting on a molecule varies with its orientation with respect to the incident
beam of light. We shall in what follows proceed to develop the theory of
refraction in liquids on the assumption that the molecules are optically aniso-
tropic and that the polarisation field acting on the molecule is a function of its
orientation.

Let us choose the optic axes of any given molecule as the axes of a co-ordinate
system &, =, { fixed to it, whose orientations wit'h‘ respect to another system
of axes 2, y, 2 fixed in space are given by the Eulerian angles 6, ¢, ¢. Let b,,
by, b3 be the moments induced in the molecule per unit field (due to a light-
wave) actually acting on it respectively along its three axes &, v, {. - When the
external field is incident along any one of these axes, say along the £-axis, the
polarisation field acting on the molecule will, in general, have components also
along the v- and Z-axes. Let py;, pyg, P13 be the numerical factors which deter-
mine the polarisation fields acting along the &-, »-, {-axes when the external
field is incident along the £-axis ; and let pyy, Poss Pog a0d Pyy, Pss, P35 be similar
factors when the external field lies along the - and l-axes; py = pg.

Suppose now the field of the incident light-wave, equal to E, say, lies along
the z-axis. Then the moments induced in the molecule under consideration
along its three axes are obviously

by [y + % Py + Pas + Puxs)] B

by [y + % (Pro2y + Pasts + Pagtts)] K (1)
and

by Loty + % (P13 + Pagts + Pass)] B

respectively, where y is the mean moment induced in unit volume of the fluid
by unit field of the incident light-wave ; o, oy, a3 are the cosines of the angles
which the &-, 0, {-axes make with the direction of the field E, and are given
by
o, = —sinBcosY; oay,=sinOsin¢; az=cosf. (2)
282
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These moments when resolved along the direction of the incident field are
together equal to

[61 (1 =+ puax) o + g (1 + pag) o + by (1 + pysy) otg?

F 3 P12 (b1 + ) sty + Pag (by -+ bs) cgtg + pay (bs +by)agor}] X B (3)
Now the average values of a2, «,? and «,? taken over all orientations of the
molecules with respect to the incident field are equal to 4, while the average

values of ayoty, 255 and agx; vanish. Hence it readily follows that the average
moment induced in a molecule in the medium by unit incident field is given by

m =% (b, + by + by), (4)

where b)’, b,’, b;" denote the coefficients of «,2 «,? «s® respectively in (3) above.
Further
y = vin = (#? — 1)/4m, (5)

v being the number of molecules per unit volume and » the refractive index.
Putting
P =47+ 0y Ppp =7+ Gy, Pg3 = 7 + 0y,

and using relation (5), we obtain from (4)

n?—1_4x b +b,+by w2 —1 bo, + by, + beoy
wr2 3" 3 TS 3 ’ ©)

which may be written in the form

n?—1 n?— |
— D
s T ® @
where '
O = %‘ (b161 + bz"z + b353) (8)

and C is a constant characteristic of the molecule. We shall now consider three
special cages.
Case (a):

0] = 0y = 03 = 0,
and therefore

P11 = P2z = P33 = 5T ‘ (9)

We find in this case that equation (7) reduces absolutely to the Torentz
formula.

The assumption (9) is equivalent to the supposition that the local field acting

on the molecule is equal to that at the centre of a spherical cavity excavated
around it.
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Case (b) :

01 + G2 + Gy = 0:
and therefore

P11 T Pae 1 Pa3 = 4. (10)

If, in additlon, b; == b, == b, t.e., if the molecule is optically isotropic, equation
{7) again reduces to the Lorentz formula. Equation (10) amounts to assuming
that the local field acting on the molecule is equal to that at the centre of an
ellipsoidal cavity with three unequal axes,* scooped around the molecule.
It may also be interpreted in the sense that the mean polarisation field acting
on the molecule averaged over all orientations is the same as at the centre of a
spherical cavity. '

Case (c) :

6y + 65 + 05 # 0.

This is equivalent to the assumption that the mean polarisation field differs
from that obtainable at the centre of a spherical cavity around the molecule.
In Case (a) we obtain no deviation from the Lorentz formula at all. In Case
(b} we obtain a deviation provided the molecule is optically anisotropic, and in

Case (c) we may obtain a deviation from the Lorentz formula even for optically
isotropic molecules.

3. The Drelectric Constant of Liquids.

For the corresponding electrical problem we choose the principal axes of
electrostatic polarisability of the molecule as its £-, -, {-axes. When an electro-
static field E is incident in the medium along the z-axis, the actual fields acting
on the molecule along its axes are given by

By = [oy 4 %0 (q11%1 + gor%e 4 @a1%3)] B

1 By = [otg + %o (q1001 + %2“2 + qaga)] B >, (11)
an

By = [0 1 %o (qua%1 T Zas%e + Gasets)] E

where ¥, is the mean electrostatic moment produced in unit volume of the
medium per unit incident field ; and the ¢’s denote the constants of the static
polarisation fields acting on the molecule, analogous to the p’s in the optical
probler. If py, @, (g be the components of the permanent electric moment
i of the molecule resolved along the £-, -, {-axes and a,, @,, @5 the moments
induced in it by unit field acting along these axes, the contribution from the

* See Routh, ¢ Analytical Statics,” vol. 2, p. 100.
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molecule under consideration to the moment along the direction of the incident
field is given by
L=Tla; (1 + quxe) @@ + @2 (1 + gasxe) @® + a5 (1 + gaaxe) «5°
+{q12 (01 + @0) ooty + Gog (02 + a5) oot + 051 (@5 + @4) agyye] X E
%t pate - pa%s (12)

The potential energy of the molecule in the field due to the existence of the
permanent moment in it, is given by

w=— (wE + p.ly + psly)

= — (Myo; + Moz, 4 M) E, (13)
where

M, = py + 3 (s + Gartte 4 Ialts)

M, = s + e (121 + Zoabbs + Ga2lts) ‘> : (14)

My = pg + % (¢t + fastba + Faaita) J
By Boltzmann’s theorem the number of molecules per unit volume whose orienta-
tions in the field correspond to the range sin 6 d6 d¢ d{ is equal to

ce T gin 6 46 d¢ di, (15)
where ¢ is a constant which can be evaluated from the obvious relation
8=7 pd=2m mMf=2r .
cj j [[" e sinagagay = v, (16)
8=0J¢=0 Jb=0

the total number of molecules per unit volume.
The average contribution from a molecule in the medium to the moment along
the field

. me~u/ﬂ‘ Lsia g9 dgdy . .

me—uﬂc’r sin 6 d0 dg d¢

the limits of integration being the same as in (16), and neglecting teems
involving E2 and higher powers of K. On actual evaluation of the integrals
in (17) we obtain

— X (L 4 quuxe) + @9 (1 4 o) + a3 (1 + ¢aax.)
3

(Mypy -+ Mapy + Maps). (18)

M,

1
T 5T
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Further,

s = vm, = =1 (19)
47

where ¢ is the dielectric constant.
Using this relation and putting

— 4 — 4 — 4"
G11 = 3T + S, oo = 4T+ S, (33 = W, S3,

we obtain from (18)

e—l _4n (aitaxtas o 1 @48, AaSo - 383
2 3 dt 3 +3kT>+s+2"{ 3
+ 3kT (Z“‘% 3 +22(J«1 {J'kq'dc)}

_im (e taytas | p e—1 1

3 ( 3 + 3IcT> +: s+2 <‘F + 3%T ®> (20)
where

W= § (@18 + @98, + ay8,) (21)
and. '

O = py2sy + o8y + pa?sy + 2 (pypefie + Voltsfes + falager).  (22)

The second term in (20) containing V" and ® appears as an addition to the
first term which is identical with-Debye’s expression. We may rewrite (20)
In the form

e—1_ <47ta1—}—a2+a3 > v <4:TC 2 140
— . (23
e+2 3 3 +3 +2 +3kT +a—}-2 ) (23)

The first term on the right-hand side of (23) has a form similar to the expression
for refractivity obtained in the preceding section and does not explicitly involve
the temperature. The second term, on the other hand, is inversely propor-
tional to the absolute temperature.

4. Discussion of the Theory.

Our formule offer a natural explanation why with increase of density the
Lorentz refraction-constant usually diminishes. Kquation (7) runs

n—1 n2—1
D,
AR I

® = } (5,6, -+ byoy + byoy).

The expression for the dielectric constant of non-polar liquids is very similar,

where
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see equation (23) above, and the following remarks may be regarded as applying
equally well in respect of the same.

The constants b, b,, b, represent the polarisabilities of the molecule along its
optic axes and are therefore essentially positive. We shall, for the present at
any rate, be justified in making the simplifying assumption, see equation (10)
above, that p,; -+ psy -+ P33 = 4, in other words, that the polarisation field
acting on the molecule when averaged over all its ortentations is the same as at the
centre of a spherical cavity. We have, then, o; + 6, + o5 == 0, and it follows
that o, o,, 05 cannot all have the same sign. '

If
by > by, > bal

o <oy <oy

a:nd ) (24)

it is easily shown that the value of ®, that is, of % (b;0, + b0, -+ byoy) is
necessarily negative. In other words, provided the condition stated in (24)
is satisfied, the value of (n* — 1)/(n? 4- 2) would necessarily have a smaller value
than that given by the Lorentz formula.

The condition stated in (24) has a physical significance, namely, that the
direction in the molecule corresponding to maximum polarisability is that along
which the field due to its neighbours has a minimum value, and vice versa.
That this condition would be satisfied in most cases seems highly probable.
If we can regard the chemical molecule as roughly equivalent to an ellipsoidal
particle of polarisable matter, its longest axis would be the one of maximum
polarisability and its shortest axis that of minimum polarisability. If we con-
sider a liquid composed of such molecules, it is obvious that the centre of a second
molecule could approach that of the first most closely in the direction of the
shortest axis, and least closely in the direction of its longest axis. The polarisa-
tion field due to its neighbours would be the sum of the fields due to the individual
molecules occupying various positions with respect to it. If we consider a par-
ticular molecule in such position that the line joining the centres of the two
molecules is parallel to the external field, its influence would appear as an
addition to the field ; while if the joining line is perpendicular to the field, its
influence would be equivalent to a diminution of the external field. These
effects would conspire to diminish the aggregate polarisation field acting on the
molecule when the external field is along its longest dimension, and to increase
it when the field is along its shortest dimension, in comparison with the case of
spherical molecules. This is precisely the result which is required to satisfy
the condition stated in (24) above.
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It must, however, be remembered that the preceding argument is based on
the assumption that the optical anisotropy of the molecule is determined by its
geometric shape. The origin of the optical anisotropy of molecules as evidenced
in observations on light-scattering has been the subject of discussion in recent
papers.* It is found that pronounced asymmetry of geometric form does not -
necessarily mean pronounced optical anisotropy, the latter being determined
by the chemical nature and arrangement of the atoms in the molecule. Never-
theless, the order of the geometric dimensions of a molecule in different directions
is usually also the order of its optical polarisabilities along those directions.
It must not be forgotten, however, that there may be exceptions to this rule.}

Returning now to formula (7), we may, since the second term on the right
is much smaller than the first, write it in the form

n?—1

from which it is seen that apart from any possible variation of ® with density
or temperature, the correction to the Lorentz formula increases in importance
with increasing density. There is prima facie reason to believe that @ must
itself increase numerically with increasing density of the fluid. To realise this,
we recall the argument set out above regarding the relation between the geo-
metric form of the molecule and the polarisation field acting on it. In the
gaseous condition, or even in a dense vapour, there would ordinarily be almost
complete freedom of orientation for the molecules. Further, the fraction of the
time during which a molecule is in actual collision with a neighbour is a small
part of the whole, and hence, in determining the polarisation field, we would not
be sensibly in error in ignoring the non-spherical shape of the molecule altogether.
It is only when the density becomes comparable with that of a liquid that a
molecule is almost continually in collision with one or other of its neighbours,
and that in evaluating the polarisation field we cannot ignore the restrictions
imposed by the geometric form of the molecules on their relative positions and
orientations. These considerations indicate a progressive change in the
character of the polarisation field acting on a molecule as the density increases.
At low densities, the field acting on a molecule would be appreciably the same as

* Sec K. R. Ramanathan, ¢ Roy. Soc. Proc.,” A, vol. 107, p. 684 (1824) ; vol. 110, p. 123
(1826). Also T. H. Havelock, ‘ Phil. Mag.,” vol. 3, pp. 158, 433 (1927).

+ From some observations by Mr. I. Ramakrishna Rao in the authors’ laboratory, on
light-scattering in formic and acetic acid vapours, it appears that these form such excep-
tions. The available data on refractivity appear also to indicate an increase of the Lorentz
constant of refractivity with increaging density.
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if it were placed at thecentre of a spherical cavity excavated around it,and would
be independent of its orientation. At higher densities, the non-spherical shape
of the molecule would begin to influence the results. A detailed treatment of
the problem on the basis of the kinetic theory would be complicated by the
circumstance that the molecules are themselves optically anisotropic and that
therefore the mutual influence of two molecules depends both on their relative
position and their relative orientation. Ignoring this difficulty, however, we
may make the simplifying assumption that the surrounding molecules can be
regarded as equivalent to a distribution of polarisable matter which is of uniform
density and symmetrical except in a small region surrounding the given molecule.
With increasing density, this small region and its lack of symmetry become of
greater importance, until finally, when a density as great as that of the amorphous
solid is reached, we shall not be much in error in regarding the molecule as
practically embedded in a cavity having its own shape, the dependence of the
polarisation field on the orientation of the molecule relatively to the external
field then reaching its maximum value. We thus arrive at the general con-
clusion that the value of @ increases numerically with increasing density,
beginning with zero at low densities and reaching a limiting value at densities
as high as those of the amorphous solid.  The correction v® appearing in our
modified form of the Lorentz formula must therefore increase at a greater rate
than in proportion to the density, during a greater part of its course.

A clearer view of the whole subject may be obtained in the following way :

In section 2, we obtained the expression (equation (4))
m = % (b + by + by'),
by = by [l +y (m+o9)],

ete., eto., for the average moment induced in a molecule per unit external field.

where

In a rarefied medium we have
m = % (by - by -+ by).

The ratios b, : b, : b, are a measure of the optical anisotropy of the molecule in
the state of vapour. In the dense fluid the ratios by’ : b, : b, similarly indicate
the optical anisotropy of the molecule as effectively modified by the influence
of its neighbours. The preceding discussion shows that the result of such
influence is to diminish these ratios and make them approach more nearly to
unity, in ofher words, to diminish the effective optical anisotropy of the mole-
cule, and that a diminution in refractivity is a necessary consequence of the

same effect.
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Independent evidence that the effect of increasing density is to cause an
apparent diminution in the optical and electrical anisotropies of the molecule,
is furnished by studies of the electrical birefringence of liquids, and by the study
of the depolarisation of the light scattered by liquids at different temperatures.
The authors have developed a theory of electric birefringence in liquids, and a
theory of light-scattering in liquids, based on ideas very similar to those under-
lying the present paper, and find strong support for these theories in the experi-
mental evidence available. The theory of light-scattering in liquids indicates
that it is possible in simple cases to evaluate the quantities appearing in the
formulze of the present paper and thus offer a quantitative test of the proposed
theory of refraction and dielectric behaviour. Very encouraging results have
already been obtained in this direction, but to enter into these details would be
foreign to the scope of this paper.

5. Summary.

A review of the experimental evidence shows that the existing theories of
the refractivity and dielectric behaviour of liquids are inadequate to explain
all that is known concerning the changes of these properties with density and
temperature. A new theory is accordingly developed in this paper, which is
based on the idea that the molecules of the fluid are optically and electrically
anisotropic, and that, in addition, the polarisation field, acting on a molecule in
a dense fluid, varies with its orientation relatively to the external field. The
theory offers an immediate explanation why in general an increased density
causes a diminished molecular refractivity as calculated from the Lorentz
formula. It is shown that these changes in refractivity and dielectric constant
are closely related to a change in the effective optical or electrical anisotropy
of the molecules produced by the influence of its immediate neighbours. Similar
ideas have been adopted in theories of electric birefringence and of light-
scattering in liquids developed by the authors, which have found strong experi-
mental support, and with the aid of which the anisotropic constants appearing
in the formule of the present paper can be evaluated.






