CYTOLOGY OF CONIFERS. I

BY P. N. MEHRA AND T. N. KHOSHOO

Botany Department, Panjab University, Amritsar, India

(Received 20 July 1955)

Some important contributions have appeared on the cytology of Gymnosperms in recent years. Sax & Sax (1933) published their investigations on fifty-three species belonging to sixteen genera of the Coniferae. In this paper was also included the sole survivor of the Ginkgoales—Ginkgo biloba. This was followed a year later by an equally comprehensive survey on all the genera of Cycadales by Sax & Beal (1934). In 1938 Flory worked out both the genera of Araucariaceae and a few species of Podocarpus. Stebbins (1948) published the cytological situation in Sequoia sempervirens and Metasequoia—the recently discovered genus of Taxodiaceae. In 1952 Tanaka, Takemasa & Sinoto published a karyotype analysis of Ginkgo biloba. This species has also been simultaneously worked out by Newcomer (1954) and Lee (1954). In Gnetales the first serious contribution came from Geitler (1929) on the genus Ephedra, followed by Florin (1932) on some species of the same genus and also on the monotypic Welwitschia. In 1946 Mehra made a detailed study of karyotypes of seven species of Ephedra with particular emphasis on the formation of the small percentage of diploid sex cells in nature. Hunziker (1953) and Fuchs (1954) have studied some more species of the genus. The only reliable report of the chromosome number of Gnetum is by Fagerlind (1941), who counted 22 bivalents in G. gnemon. Most of the other cytological work on Gymnosperms has been incidental to morphological and embryological studies and has not been referred here.

MATERIAL AND METHODS

It was originally intended to study the cytology of Indian conifers only, but as the work progressed material of some foreign species became available and these have also been included. In all, forty-one species belonging to fourteen genera have been included in this paper. These belong to Abietaceae, Taxodiaceae and Cupressaceae.

Species names have been followed as given in Dallimore & Jackson (1948). For the distribution of the various species the reader is referred to the same book. The source of each species used in the present investigation is given in Table 1, column 5.

Root-tips of germinating seeds were mostly used, but in some cases studies were carried out on female gametophytes, young leaves and shoot apices. Seeds of the various species were sown in sawdust in winter months.

It is well known that conifers possess long chromosomes which present considerable difficulty in exact analysis when dealing with somatic tissues. Previous investigators like Sax & Sax (1933), Sax & Beal (1934) and Flory (1936) depended upon physical pressure on the cells in macerated preparations to scatter the chromosomes for obtaining clear
preparations. At that time the effect of the alkaloid colchicine was not known. In the present investigation the material was pretreated with colchicine, α-Bromo-naphthalene or S-O₉, or simply a cold shock was given before squashing. This enabled the chromosomes to shorten and to scatter, giving precise and clear pictures of their morphology.

The material was either fixed in Craf and stained in Schiff’s reagent or was directly stained in any of the stain fixatives containing macerating agent. Microsporangia were either smeared, fixed in Craf and stained with iodine-crystal violet or squashed in iron acetocarmine.

All diagrams were made to give an approximate magnification of ×3000 which has been reduced to half in publication. Chromosomes of a few species have been separated in drawing for clarity.

No attempt has been made to compare the size of the chromosomes of the various species, since no uniform technique has been followed. Where the two arms of a chromosome are unequal and the shorter arm is half or more than half the length of the longer one, the chromosome has been placed in the median-submedian category. If the shorter arm is distinctly smaller than one-half of the longer arm the chromosome has been designated as subterminal. In critical cases actual measurements were undertaken to decide the morphology of the chromosome.

Observations

Abietaceae

Picea

The following twelve species have been investigated from root-tips: *Picea canariensis* (Text-fig. 1), *P. caribaea* Morlet (Text-fig. 2), *P. gerardiana* Wallich (Text-fig. 3 and Pl. 5, fig. 1), *P. halepensis* Miller (Text-fig. 4), *P. khasya* Royle (Text-fig. 5), *P. lambertiana* Douglas (Text-fig. 6), *P. nigra* Arnold (*P. laricio* Poiret) (Text-fig. 7), *P. pinaster* Aiton (Text-fig. 8), *P. ponderosa* Douglas (Text-fig. 9), *P. radiata* D. Don (*P. insignis* Douglas) (Text-fig. 10), *P. roxburghii* Sarg. (*P. longifolia* Roxb.) (Text-fig. 11) and *P. wahlstedi* Jack (*P. azedea* Wallich) (Text-fig. 12). In *P. merkusii* Jungh. & de Vriese (Text-fig. 13) 12 bivalents were counted in pollen mother cells.

Of the above species previous records of chromosome number are known for four only. Sethi (1938) counted 12 bivalents in pollen mother cells in *P. roxburghii*. Sax & Sax (1933) reported the same number in *P. nigra* and *P. ponderosa*. Bowden (1945) found 24 chromosomes in root-tips of *P. canariensis*.

Twenty-four is the diploid chromosome number in all the twelve species. The chromosomes have either a median or submedian centromere. The various species differ in number and location of secondary constrictions (see Table 1). Eight chromosomes of *P. gerardiana* (Text-fig. 3 and Pl. 5, fig. 1) possess secondary constrictions, six of which are subterminal in position, while the remaining two are nearly median in one of the arms. Six secondarily constricted chromosomes are present in *P. lambertiana* (Text-fig. 6) and *P. roxburghii* (Text-fig. 11). In both these the constrictions are subterminal. *P. wahlstedi* (Text-fig. 12) also possesses the same number, but only four secondary constrictions are subterminal and the remaining two are very near the primary constrictions. Of the four subterminal constrictions two cut a relatively shorter distal segment. In *P. khasya*
P. N. Mehra and T. N. Khoshoo

In the former all are situated near the centromere, while in the latter they cut a knob-like distal segment. Only three chromosomes of *P. canariensis* (Text-fig. 1) were observed with subterminal secondary constrictions. Since it is a diploid complement one would expect four such chromosomes, and it is possible that the fourth may have been overlooked. Only two chromosomes have secondary constrictions in *P. cariboea* (Text-fig. 2). These are situated close to the centromere. In the remaining four species no secondary constrictions were observed in our preparations.

Sax & Sax (1933) worked out fourteen species of the genus. They have not reported any secondary constrictions or satellites in any of the species of the genus, perhaps because they did not work from this angle. The basic karyotype described by them is, however, the same as described above.

Cedrus

In *Cedrus deodara* Loudon the haploid chromosome number as determined from the cells of the female gametophyte is 12 (Text-fig. 14). One of these has a subterminal, while the rest have median or submedian centromeres. In one of the latter chromosomes there is a secondary constriction situated in the middle of one of the arms.

The same number and morphology of the chromosomes has been reported by Sax & Sax in *C. libaniatica*, except for any reference to the secondary constriction.

Picea

The female gametophyte of *Picea smithiana* (Wallich) Boiss (P. morinda Link) revealed 13 chromosomes (Text-fig. 15). Three have a subterminal, and the remaining nine have a median-submedian centromere. One of the former and two of the latter bear a subterminal secondary constriction each.

Similar morphology of chromosomes is recorded by Sax & Sax in *P. abies* and *P. pungens*. These authors did not mention the secondary constrictions.

Abies

Abies pindrow Spach possesses 12 chromosomes in the female gametophyte cells. Five of the chromosomes possess a subterminal and seven have a median-submedian centromere (Text-fig. 16). Two of the latter chromosomes bear a subterminal secondary constriction each.

A. cephalonica and *A. concolor* have the same morphology (Sax & Sax, 1933). No secondary constrictions have been reported in these.

Text-fig. 2. *P. caribaea*, $2n = 24$.

Text-fig. 3. *P. gerardiana*, $2n = 24$.
Text-fig. 4. *P. helopora*, 2n = 24.

Text-fig. 5. *P. rhaya*, 2n = 24.

Text-fig. 7. *P. nigra*, 2n = 24.

Text-fig. 9. *P. ponderosa*, 2n = 24.

Text-fig. 10. *P. radiata*, 2n = 24.
Text-fig. 11. *P. roxburghii*, 2n = 24.

Text-fig. 13. *P. morinana*, n = 12, diakinesis, nucleus unshaded.

Text-fig. 15. *Picea smithiana*, n = 12.

Text-fig. 16. *Abies pindrow*, n = 12.
Taxodiaceae

Cunninghamia

Cunninghamia lanceolata (Lamb) Hook. (*C. sinensis* Richard) possesses 22 chromosomes in root-tips (Text-fig. 17). All these have median-submedian centromeres. Two of the chromosomes bear secondary constrictions and two others possess a tandem satellite each.

Eleven bivalents have been counted by Sugihara (1941) in pollen mother cells of this species.

Cryptomeria

Cryptomeria japonica (Linn.) Don. (Text-fig. 18) has 22 chromosomes in the root-tips which are median or submedian. Two pairs have rather inconspicuous secondary constrictions.

Sax & Sax have made similar observations on this species from endosperm tissue.

Taxodium

Taxodium mucronatum Tenore (*T. distichum* Richards var. *mucronatum* Henry) possesses 22 chromosomes in the root-tips of which twenty are median or submedian (Text-fig. 19). One pair is subterminal and has a centromere which is somewhat exaggerated. Two of the former chromosomes bear subterminal secondary constrictions.

Twenty-two chromosomes have been counted by Sax & Sax (1933) and Stebbins (1948) in *T. distichum*.

Cupressaceae

Actinostrobus

Actinostrobus pyramidalis Miquel possesses 22 chromosomes in the root-tips (Fig. 20) which are median or submedian. Two of the chromosomes possess a secondary constriction in a subterminal position.

Callitris

The following seven species have been worked out from the root-tips: *Callitris calocarpa* R. Brown (Text-fig. 21 and Pl. 5, fig. 2), *C. cupressiformis* Vent. (*C. rhomboidea* R. Brown) (Text-fig. 22), *C. glauca* R. Brown (Text-fig. 23), *C. morrisoni* R. T. Baker (Text-fig. 24), *C. propinqua* R. Brown (Text-fig. 25), *C. robusta* R. Brown (Text-fig. 26 and Pl. 5, fig. 3) and *C. verrucosa* R. Brown (Text-fig. 27).

All have essentially the same type of karyotype. There are 22 chromosomes with a median or submedian centromere. Only two have a secondary constriction each. In some it is exaggerated, perhaps due to the effect of 8-Oq. The length of the distal segment cut by the secondary constriction is somewhat variable in different species. In *C. cupressiformis*, *C. glauca* and *C. propinqua* there is evidence of some inconspicuous secondary constrictions.

Widdringtonia

Widdringtonia cupressoides End. possesses 22 chromosomes in the root-tips (Fig. 28), which are median or submedian. A pair of the chromosomes has a rather exaggerated centromere. There are two chromosomes with a subterminal secondary constriction each.
Text-fig. 17. *Cunninghamia lanceolata*, 2n = 22.

Text-fig. 18. *Cryptomeria japonica*, 2n = 22.

Text-fig. 19. *Taxodium ascendens*, 2n = 22.

Text-fig. 20. *Atrichostrobos pyramidale*, 2n = 22.

Text-fig. 21. *Callitris calcaria*, 2n = 22.

Text-fig. 22. *C. cupressiformis*, 2n = 22.

Text-fig. 23. *C. glauca*, 2n = 22.

Text-fig. 24. *C. morrisonii*, 2n = 22.
Tetraclinis

Tetraclinis articulata Masters (*Callitris quadrivalvis* Vent.) possesses 22 chromosomes as revealed by the squash of a young shoot. All the chromosomes are median or submedian (Text-fig. 29).

Thuja

Thuja orientalis Linn. has 11 chromosomes in endosperm cells (Fig. 30), and the basic karyotype is almost the same as given by Sax & Sax. There is only one chromosome with subterminal centromere, and in the rest it is median or submedian. In the present observations it is noticed that one of the latter chromosomes bears a satellite and another a secondary constriction which is almost median in one of the arms.

T. occidentalis Linn. var. *compacta* Carr. has 22 chromosomes in root-tips. All the chromosomes (Text-fig. 31) have either a median or submedian kinetochore. One pair possesses a secondary constriction almost median in one of the arms. No secondary constrictions have been reported by Sax & Sax in this species.

T. plicata has been investigated by Sax & Sax and has 22 chromosomes.

Cupressus

Cupressus funebris Don. (Text-fig. 33) and *C. torulosa* Endlicher (Text-fig. 32) both show 11 chromosomes in endosperm cells. Only one of the chromosomes is subterminal, the rest are median or submedian. One of the median-submedian chromosomes bears a satellite which is somewhat thicker in *C. funebris*. *C. sempervirens* Linn. (Text-fig. 34) possesses...
P. N. Mehra and T. N. Khoshoo

175

The chromosomes in root-tips. Two of the chromosomes have a subterminal centromere. The latter bear a secondary constriction in their long arms. Thus all the three species of the genus have the same basic karyotype.
The other three species, namely, *C. cashmeriana* Royle (Text-fig. 35), *C. arizonica* Greene and *C. lusitanica* Miller var. *benthami* Corr. show 11 bivalents in pollen mother cells. Meiosis is perfectly normal in all these species.

Text-fig. 30. *Tetrachina ariculata*, $2n = 22$.

Text-fig. 30. *T. orientalis*, $n = 11$.

Text-fig. 31. *T. occidentalis* var. *compacta*, $2n = 22$.

Text-fig. 32. *Carpococcus turkeae*, $n = 11$.

Text-fig. 33. *C. junodii*, $n = 11$.

Text-fig. 34. *C. scopervirens*, $2n = 22$.

Text-fig. 35. *C. cashmeriana*, $n = 11$, metaphase I.
Juniperus

Juniperus procera Hochst. (Text-fig. 36) shows 22 chromosomes in root-tips. Two of these have a subterminal and the rest a median or submedian centromere.

J. rigida and *J. virginiana* have been worked out by Sax & Sax from endosperm. Eleven chromosomes are present, but no morphology is given. Ross & Duncan (1949) worked out *J. virginiana* and *J. horizontalis*; both have $2n = 22$, but only in the latter did they observe a heterobrachial chromosome pair.

Eleven bivalents have been counted in microspore mother cells of *J. phoenicea* Linn. (Text-fig. 37), *J. bermudiana* Linn., and *J. virginiana* Linn. var. scopulorum Jones. Meiosis in all these species is normal.

J. chinensis pygmaea (Sax & Sax, 1933) and *J. squamata mayeri* (Jensen & Levan, 1941) are tetraploid. In the former there are 22 bivalents and in the latter there are 44 chromosomes in somatic tissues.

Conclusions

The total numbers of genera and species of Coniferales are 45 and 447 respectively. These figures have been compiled from Dallimore & Jackson (1948), but with the addition of the monotypic *Metasequoia*, and treating the two species of *Sequoia* as two distinct genera. Hybrids have been excluded. Under the so-called Pinares (Abietaceae, Taxodiaceae, Cupressaceae and Araucariaceae) there fall 35 genera and 335 species. Out of these 27 genera and only 102 species have been cytologically investigated so far. A résumé of all this work, including this study, is given in Table 2. Darlington & Janaki Amin's Atlas (1945), Wang (1948) and Christiansen (1950) have also been consulted in the preparation of this table.

After a careful perusal of Tables 1 and 2 some conclusions emerge.

The chromosome numbers follow taxonomic grouping. In every family a base number can easily be recognized: 12 for the Abietaceae, 11 for the Taxodiaceae and Cupressaceae, and 13 for the Araucariaceae. The families are essentially homoploid. *Pseudotsuga* and *Pseudolarix* in the Abietaceae, and *Sequoiopyxis* in the Taxodiaceae are the only genera which are not in line with the above statements.

The chromosome number of every genus (except the above mentioned ones) is therefore the base number of the family except in *Sequoia*, where it is its multiple. It remains constant within a genus, or in a few cases it may be a multiple (cf. *Larix* and *Juniperus*). The various genera usually differ in having different karyotypes. However, some genera have the same karyotype. Such a situation is met with in *Picea-Tsuga* (Abietaceae), *Cryptomeria-Thuja-yellowhamia*, *Taxodium-Sequoiodendron* (Taxodiaceae), *Actinostrobus*.
Table 1. Summary of observations

<table>
<thead>
<tr>
<th>Name of species</th>
<th>Chromosome no.</th>
<th>No. of median or submedian chromosomes</th>
<th>Locality and collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea concolori</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. leucodermis</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Local growers</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. grandis</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. ponderosa</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. radiata</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Bandipur (Kashmir), R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I. (Delhi), R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Dalhousie, P. N. Mehta</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Tangmarg (Kashmir), R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Tangmarg (Kashmir), R. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Local, T. N. Khoshoo, Bandipur, T. N. Khoshoo</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>Dalhousie, P. N. Mehta</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
<tr>
<td>P. engelmanni</td>
<td>n=24</td>
<td>24 (s.c.)</td>
<td>F.R.I., R. N. Khoshoo, Chandra Nursery, Sikkim</td>
</tr>
</tbody>
</table>
basis of embryological evidence, uphold the view of some older taxonomists that
T. orientalis should be raised to generic rank and be named as Bida orientalis.
Excellent examples of constancy of the basic karyotype within a genus are Pinus, Callistiris and Cupressus. A similar situation exists in Cyads (Sax & Beal, 1934) and in
the genus Ephedra (Mehra, 1946).

Table 2. Resume of cytological work on Abietaceae, Taxodiaceae, Cupressaceae
and Araucariaceae

<table>
<thead>
<tr>
<th>Name of genus</th>
<th>Total no. of species</th>
<th>No. of species worked out</th>
<th>Haploid chromosome number</th>
<th>No. of terminal chromosomes</th>
<th>No. of subterminal chromosomes</th>
<th>No. of median and submedian chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abietaceae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea</td>
<td>73</td>
<td>31</td>
<td>24</td>
<td>12</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Picea</td>
<td>29</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Abies</td>
<td>42</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Pseudolarixia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Taxus</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Cedrus</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Larix</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Pseudolarixia</td>
<td>1</td>
<td>1</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Taxodiaceae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciadopitys</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptomeria</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupressinaea</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatsania</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxodium</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequoia</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metasequoia</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unworked genus: Abies and Podocarpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupressaceae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus</td>
<td>49</td>
<td>9</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Callitris</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetradontia</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widdringtenta</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinostrobos</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupressos</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Chamaecyparis</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuja</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unworked genera: Callitris, Dioscur, Filatera, Fokienia, Libocedrus, and Tanjopote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araucariaceae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agathis</td>
<td>15</td>
<td>1</td>
<td>13</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Araucaria</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

* Species in which either the meioetic number is known or detailed morphology of the chromosomes is not reported.
† Sax & Sax (1938) have not clearly mentioned to which category the chromosomes belong.
The specific differences are to be correlated with differences in detail, such as number of trichome of secondary constrictions and satellites. This is true of *Pinus* and *Cupressus*. On the other hand, the present evidence shows constancy even in these characteristics within the genus *Calitris*.

If it is correct that 12 is the base number of the Coniferales, which, indeed, is also represented in such an ancient group as the Ginkgoales, then the basis of cytological variation has been loss or gain of a chromosome at the family level. This has been coupled with structural rearrangements and mutations, which factors seem to be responsible for variation at generic level.

The loss of a chromosome has been responsible for the evolution of the Taxodiaceae and Cupressaceae. This involves a loss of a centromere which follows translocation of all the essential genes to the rest of the chromosomes of the complement. This was suggested by Sax & Sax (1933), and this mechanism has been experimentally demonstrated, though an Angiosperm—*Crepis*—by Togby (1943).

Cases of gain of a chromosome are not many: *Pseudotsuga* (Abietaceae) and the family Taxodiaceae. This always involves duplication of a centromere, and could be achieved by a system of translocations as proposed by Darlington (1937).

That structural rearrangement has played an important role in differentiation of genera is clear from the karyotypes of the genera of Abietaceae.

At the species level evolution seems to be chiefly at a submicroscopic level involving gene mutations. This is why there are increasingly numerous reports of both natural and artificial hybrids in conifers. Perhaps the main checks to hybridization are physical abortion and time of flowering of the various species of a genus.

Polyplody has played an insignificant role in the evolution of conifer families, genera and species. The increase in the chromosome number in *Pseudolarix* does not represent doubling either in quality or in quantity. It is of interest to note that the present data indicate that polyplody is lacking in oycads, but in the genus *Ephedra* there are many polyplod species reported (Florin, 1932; Resende, 1937; Mehra, 1946; Hunziker, 1953; Nitsch, 1954).

Summary

The paper deals with a cytological study of forty-one conifer species belonging to fourteen genera and distributed within the Abietaceae, Taxodiaceae and Cupressaceae. Observations have been made from the squashes of female gametophytes, stem apices, root-tips, young leaves and pollen mother cells. The cytological details of all these species are summarized in Table 1.

Families and genera are essentially homoploid. A basic karyotype is characteristic of almost every genus. Species within a genus either differ in the number and nature of secondary constrictions and satellites (*Pinus* and *Cupressus*) or resemble one another even in these details (*Calitris*). Various genera differ in chromosome morphology, but in every family some of the genera have essentially the same karyotype. The mechanisms of evolution have been gain or loss of a chromosome, structural rearrangements, and gene mutations. Polyplody has played but little role.

The writers owe a special debt of gratitude to Mr R. N. Khoshoo, Deputy Conservator of Forests (Kashmir) for having sent us seeds and fixed material of most of the Indian
and foreign species used in this investigation. They are also thankful to Mr. M. B. Raizada (F.R.I.) and the authorities of the Forestry Commission of New South Wales for having sent us seeds of some species. To Mr. R. S. Pathania thanks are due for taking the microphotographs illustrating this paper.

REFERENCES

EXPLANATION OF PLATE

Fig. 1. *Pinus pumila*, 2n = 24. *× 1700.* Same as Text-fig. 3.

Fig. 2. *Callicarpa callosa*, 2n = 22. *× 1700.* Same as Text-fig. 31.

Fig. 3. *Callicarpa roxburghii*, 2n = 22. *× 1700.* Same as Text-fig. 32.