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Complexity reduction in a telephone switching system
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Abstract. This paper reviews _Some of the recent developments in complexity theory
as applied to telephone-switching. Some of these techniques are suitable for practical
implementation in India.
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1. Introduction
1.1 Complexity theory and telephone switching

Switching networks in telephone systems essentially consist of a large number of
basically simple components. These networks provide paths for originating calls
between the subscribers. Complexity theory helps us to minimise the number of
switches in such a network. ‘The following are the three types of telephone switching
systems which find extensive applications in modern communication: (i) Strowger
system, (ii) cross-bar system and (iii) electronic system.

Although we would in this paper confine ourselves to the application of complexity

theory as applicable to cross-bar switching, extension to other types of switching is
not, in principle, difficult.

1.2 Background

Complexity theory as applied to telephone switching has its roots in a number of fields,
basically in computer science and related probability theory, set theory and graph
theory. During the period 1900-1950, the most complex digital system was the

telephone network. For the System engineers in the field, Erlang (Syski 1960) derived
a formula under the following assumptions:

(i) The traffic incident onto the network is a pure chance traffic.

(i) The number of contacts in a particular switching stage is equal to the number
of contacts in the preceding stage. ’

(iii) The total traffic offered to the exchange is calculated from the average of the
number of busy hour traffic,

(iv) When all switches are busy, the traffic incident on the exchange is lost.
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The formula is
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Where B is the proportion of the calls lost, 4 the traffic offered and N, the number

of trunks. When N is large,

B= AYN1 (exp A). )

When the traffic offered to a telephone network is known, the number of trunks
required for a given proportion of lost calls can be obtained using this formula. The
theories developed by Lee (1955)are discussed in detail in § 3. Another major step was

‘the development of probablistic model suggested by Benes (1967).

In 1975 Pippenger of the University of Massachusetts has given a new shape to the

complexity theory in telephone switching (Pippenger 1975).

1.3 Purpose and method

In this paper we provide a tutorial introduction to complexity theory as applicable
to telephone switching. This paper first introduces the basic pre-requisites of
complexity theory developed by Clos & Contor (Wolman 1965) and Bassalygo &
Pinsker (1973). It then analyses simple probablistic models developed by Lee and
Benes. The main body of the paper is the analysis and application of complexity
theory to the cross-bar switching system. . :

2. Review
2.1 Cross-bar switch
An nXm cross-bar switch is a device with z inlets and m outlets. It consists of

horizontal and m vertical bars and the contacts are situated at the junction points of
these bars as shown in figure 1.
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Figure 1. Details of the cross-bar telephone switch
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When a call is made (in a telephone exchange) through a route, a called subscriber
should be connected to a calling subscriber. A route is a set of contacts, one in
each stage of switching; when closed simultaneously establish a continuous path
from an input to an output. Two routes are compatible if they have no contacts in
common. Compatible roots avoid fear of cross-talk. If there is an admissible route
from the input to the output, then we say that they are linked, otherwise blocked.
State is a set of routes, each two of which are compatible. The set of links inter-
connecting consecutive stages will be called rank. The inputs, outputs and the
links will be referred to collectively as nodes in the case of a network. The set of

inputs, the set of outputs, or a rank will be called a column. The definitions are
illustrated in figure 2.

2.2 Role of complexity theory

To estimate the efficiency of cross-bar network design, consider a network capable of
bandling N calls, that is one with & trunks and N subscribers. In this case N x N, or
N2 different calls can be made through the network and so there are N2 switches in a
cross-bar. To double the number of calls, the increase in the number of switches is
four times. This kind of disproportionate increase in switches (called the diseconomy

of scale of switching) can be overcome by studying the complexity theory of telephone
switching.
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Figure 2. Illustration of definitions for telephone networks.
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2.3 Early studies

In 1950 Claude E Shannon of Bell Laboratories proved that diseconomy of scale is an
intrinsic feature of switching networks (see e.g. Pippenger 1978). He showed that
the minimum number of switches per callislog, N when N calls are being originated,
Hence the dependency of switches on the number of calls cannot be avoided.

Clos (see Pippenger 1978) constructed networks out of smaller sub-networks and
proved that for N calls, the total number of switches required is 6 N5 switches.
In 1970 David G Contor (see Pippenger 1978) of the University of California found
that O [N(log N)*] switches are sufficient to construct a network to handle N calls (0
denotes the order of the number of switches, leaving the importance of the multiplying
constant). Subsequently Bassalygo & Pinsker (1973) of the Institute for Problems
of Information Transmission in Moscow, proved that a network capable of handling
N calls can indeed be built with O (N log N) switches. Fi gure 3 illustrates the relation
between the number of calls and number of switches required for the different
arrangements suggested.

2.4 Telephone network connections

Before dealing with the complexity theory of telephone switching some important
definitions about the network connections are presented. o
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Figure 3. Switch requirements for different connections. .
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A switch with equal number of inlets and outlets is called a square switch. Any
network which has square switches is called uniform network. If every switch is
square, the total number of inlets on all of the switches in a given stage is equal to
the total number of outlets on all these switches. To define series parallel networks,
two ways of combining smaller networks to form a larger one are to be considered.
Suppose there are two arbitrary networks U, and U, and suppose that U; has » inputs
and n, outputs while U has m inputs and m, outputs. We construct a new network
from these components called the series connection of U; and U denoted [U,, U]
according to figure 4. - We make m copies of Uy, one for each input of U, and these
are called primary networks (or simply primaries). We make ny copies of U, one for
each output of U; and these are called secondary networks (or simply secondaries).
We interconnect these as shown, so that there is one link between a given primary
and a given secondary. :

Now we are given nx n, switches, arbitrary networks U with m inputs and m, out-
puts and n; X n, switches. From these components we construct a new network called
a parallel connection of U and denoted [nXny, U, nyXny]. This scheme is shown
in figure 5. We take mnx n, switches and call them primaries. We take 1, copies
of Uand call them as secondaries. We take my ny X ny switches and call them tertiaries.
We interconnect these as shown, so that there is one link between a given primary and
a given secondary, and one link between a given secondary and a given tertiary
A series parallel network is one that can be constructed by starting with switches
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Figure 4. Series connection.
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Figure 6. a. The path structure of series-parallel network. b. The path structure of
non-series parallel network. ‘

and applying the rules for series and parallel connections recursively any number of
times in any order. For example, the network shown in figure 2 is a series parallel
network. The term ‘series parallel’ refers to the structure obtained by considering all
of the paths connecting a given input to a given output as shown in figure 6a. In this
the points represent nodes and the lines represent connection through contacts.
An example of a non-series parallel path structure is the so-called spider-web (see
figure 6b). A uniform series parallel network is one that is both uniform and series
parallel.  Figure 2 shows such a network.
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3. Lee’s probabilistic model
Lee has constructed a very simple model of telephone network. It has been used to
generate random states for simulation, to derive expressions for blocking probability
and to study the asymptotic behaviour of network cost. Lee’s model is based on the
following assumptions. '

3.1 Assumption 1

For every node » there is a probability p (v) that o is busy and a complementary
probability ¢ (z) = 1 — p (v), that v is idle.

3.2 Assumption 2
The condition of different nodes are independent.
The drawback of Lee’s probabilistic models is that since all the nodes on a route are

made busy or idle simultaneously when the route is added or dropped from the state,
the conditions of nodes in different columns cannot, in general, be different.

4. Pippenger’s probability model
Pippenger’s (1975, 1978) probabilistic model is based on the following assumptions.
4.1 Assumption P 1

There are complementary probabilities p and g=1—p such that every input is busy
with probability p and idle with probability g.

4.2 Assumption P 2
The conditions of different inputs are independent.
4.3 Assumption P 3

If a given nx n switch has K busy inlets, all the n (n—1) ... (n—K - 1) ways in which
they might be connected to K busy outlets are equally likely.

4.4 Assumption P 4

The conditions of (connection established by) different switches in a given stage are
independent. The condition of a switch in one stage influences the condition of a
switch in the later stage by affecting the busy inlets of the later switch, but not by
affecting the way in which they are connected to the busy outlets.

These assumptions can be used to generate random states. Assumptions P 1 and
P 2 canbe used to determine which inputs are busy. Then assumptions P 3 and P 4 can
be applied to each stage in turn, from the first to last. This results in the determination
of closed contacts in the first stage and the busy links in the first rank. This process
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can be continued until the last stage. For various values of # and K, this parti-
cular process requires randomising device that will make independent choices from
n{n—1)... (n —k + 1) equally likely possibilities.

With particular values of random variables, if the process described is executed,
it results in a state; similarly other states can be generated. All the assumptions
and the description of generation of random states are based on the idea of work-

ing from the inputs to the outputs. The considerations discussed is applicable to
uniform networks.

A network has the random routing property, if a busy input is equally likely, to
be connected to any output and a busy output is equally likely to be connected to
any input. We cannot generalise that all the uniform network has the random
routing property because it may not even be possible for any input to be connected
to any output. Using the following important propositions suggested by Pippenger
any random routing problem can be solved.

4.5 Proposition 1
Every uniform series parallel network has the random routing property.
4.6 Proposition 2

In any series or parallel connection the states of different primaries or of different
secondaries, or of different tertiaries are independent.

4.7 Pro_bositz'on 3

In any series or parallel connection, the states of a primary and a secondary or of

a secondary and tertiary, are independent, given the condition of the link connecting
them.

5. Blocking probability

In this section the relations concerning the blocking probabilities of different kinds
of network connection are discussed.

Pippenger has derived a relation according to Lee’s probabilistic model as
P (U, UD) =1—q [1—P U] [1—P (Uy)], 3)
where P ([U;, U]) is the blockingv probability of series
connection of networks U, and U
g : @ (widlefs idle, o’ id_le) = P (widle)

@ denotes the probability of the variable.
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According to his own probabilistic model Pippenger has derived a relation for
blocking probability as

P([U, UD) =1—Q [1—P (U] [t —P (U], C)

Q _ 2 (v idle/w idle) @ (' idlefw idle) @ (w idle)
P (v idle, 7 1dle) '

where

Here v denotes an input node, +* an output node and w the link connecting them.
In practice it has been shown by Pippenger that Q >g4.

An important special case of the relations (3) and (4) is that U, is a single axn
switch. A single square switch is non-blocking

P(nxn)=0. )
Then (3) becomes
P(lnxn, U) =1—q[1—P(U)]. 6

and (4) becomes
P([nxn, U) =1—Q [1 —P(U)). )
In general
P(lnxn U) = F[P(U)]. ®)
Similar expressions have been derived by Pippenger for ;el'ies parallel network as
P (Inxn, U, nx n]) =g[ P(U)), ©
where g [P (U)] ={(n—1) [1 —g (1 — P (U)]* [1 —g* (1 — P (U)j->
+P (V) [l —g* (1 —P ()] 1}/n. 0)

Relations (3), (4), (8) and (9) are useful to calculate the blocking probability of
series and parallel connected networks. '

6. Recursion techniques in the determination of blocking probability

In this section we explain how blocking probability of telephone switching system
with a number of series and parallel connections of networks can be determined.
The recursion technique to be explained here is an effective tool for calculating the
blocking probability of a switching system.

Let us take a telephone switching system consisting entirely of nxn switches.
When it contains s number of series connection and 7 number of parallel connec-
tions, the switching network as a whole can be represented by a symbol C%*. Each
series connection adds one stage and each parallel connection adds two stages with
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‘the existing system. With the help of definitions discussed in § 2 we can see that in
a C};* connection system, we will have

s+ 2t + 1 stages,
n*+*+1 nodes/column,
n*++2 contacts per stage,
(s + 2t 4 1) n*+**2 contacts in all.
The folldwing are particular cases in C5*
Cy®  :Single (n X n) switch (with no series or parallel connection),
Citlo i (nx n, C50),
CytL t(mxn, C>% n X n).

Now using (5), (8) and (9) we can arrive at the relation

P(CY0) =0, (11)
P(C}%) = F, [P (CI-9)], | (12)
P(Cy) =G, [P(CosY], - (13)
PICy] =G, [.. Gy (F (... F,(0)...))...]. (14)

Equations (11), (12), (13) and (14) are convenient forms for simulation in the digi-
tal computer.

7. Asymptotic behaviour of cost

Pippenger (1975) pointed out that the measure of cost is the number of contacts,
and the average number of calls is the measure of traffic carried out. He has shown
that the network C%:t, where

s =log, 4/3. ‘Iogg N+ 0(),
t = [log, (3/2)] log, N4 0 (1), n =3,

and p=14, has 6 N'log, N —O(N) contacts and carries N erlang* with a blocking pro-
bability at most E (for some E < 1, independent of N). This particular relation
helps in determining the number of contacts in the switching system if the amount
of traffic to be.carried out is known.

*A traffic intensity of one erlang is obtained fdr any speciﬁed period when the average number
of calls simultaneously in progress during that period is unity.




Complexity reduction in telephone switching 235

When a series parallel network C$* has to be connected with mxm switches in
parallel, the theories developed by Pippenger (1975) can be applied. In this parti-
cular case the number of contacts required to carry out N erlangs of traffic was found
out to be 6 N log, N + O [N log 1/e] where m = O [log 1/e], s, t, n and p are as
defined previously and « is the blocking probability.

8. Conclusions

An introduction to the complexity theory of telephone switching is presented utili-
sing the theories developed by Erlangs, Clos, Contor, Bassalygo and Pinsker. Then
the probabilistic models of the switching network explained by Lee and Pippenger
are described. Finally the asymptotic behaviour of the cost in telephone switching
network is explained with the help of Pippenger’s theories. Many of the theories

explained in this paper will be useful for a telephone engineer to design an efficient
switching system.
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