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Abstract. In this paper, we develop a cipher system based on finite field trans-
forms. In this system, blocks of the input character-string are enciphered using
congruence or modular transformations with respect to either primes or irreducible
polynomials over a finite field. The polynomial system is shown to be clearly
superior to the prime system for conventional cryptographic work.
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1. Imntroduction

A cryptographic system [7], [11] consists of a set of transformations T,,'each of
which can act on an input message M to produce a corresponding enciphered
message E;, i.e.,

E;=T,;(M).

Each transformation T} is spesified by an associated key k;. The enciphered
message is transmitted to the reseiver over an interceptable medium. At the
receiving end, the original message M is recovered by applying the inverse trans-
formation T on the reseived (ensiphered) message E;. It is clear that the exis-~
tence of T is a nezessary condition for T; to be a valid encoding transformation.

Example : ‘
Substitution cipher—In this cipher, each input character is transformed into another
character. The transformed character set may or may not be the same as the
input character set. In the former case, the transformation is a simple permu=
tation of the input character set. Let the (ordered) input characters be a, b, c,d.
If the transformed character setis {0, 1, 2, 3}, any permutation of these 4 characters
represents a key to a particular transformation. If 2,1, 3,0 is the specified key
k;, Tjis givenby a—>2,b—>1,¢—3,d -0, pna I;* is givenby 0 > d, 1 — b,
2 — a, and 3 —» ¢. There are 4! = 24 different transformations possible. '
It is assumed that the enemy (i.e., the persons from whom the message M is
protected) knows the set of transformations T; being used. He also has available,
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76 E V Krishnamurthy and Vijaya Ramachandran

the @ priori provabilities of the input characters. However, the enemy does not
kn>w wiish particular transformation is currently being used. This transforma-
tion Tj is charasterised completely by the corresponding key k;, which should be
comminicated to the receiving end through a protected channel.

If the enemy intercents a saffizient number N of transmitted characters, he will
be able to break the code, since he knows the a priori probabilities of the input
characters. To illustrate this point, let P(a) =08, P(b) = 0:04, P(¢) =0-15,
and P(d)=0-01"be the a priori probabilities in the example given above. Let
the enemy intercept the 20 transmitted characters 32221202222332222
222. Asmentioned earlier, he knows that the cipher is one from the set of simple
s19stitutions. By applying his knowledge of the a priori probabilities, he can
immediately conclude that @ is being coded as 2 and ¢ as 3. At this stage he
cannot assert anything about the encoding of & and d, but for a larger N he will
be in a position to do so.

A good code (i.e., a set of encoding transformations) should satisfy two main
criteria:

(i) N should become very large before the enemy is in a position to decipher
the code using the a priori probabilities.

(ii) The number of elements in the key for the transformation should be rela-

tively small.

Block coding is a very simple method of achieving (i). Here, the encoding
transformation is applied to a block of k characters of the message at a time. If
the number of different input charasters is », then block coding using k characters
effestively increases the number of elements in the input character set to n°. This
is because each different sequence of k characters can be treated as an input
character. In the example given above, if k = 3, the number of input characters
for the block coding-increases from 4 to 4% = 64. The corresponding characters
are 000, 001, 002,- - -, 333. The probabilities for the occurrence of these charac-
ters can be calculated (with some difficulty); however, the value of N at which
desoding by the enemy becomes possible is much larger than in the case of simple
substitution. - (It should be noted that the number of different keys in this case
has increased to 641). The price paid for this is the increase in the size of the key;
while the key formerly contained 4 elements, it now contains 64 elements.

One attractive feature of the scheme presented in this paper is that it achieves
block coding with-a relatively small number of elements in the key. For instance,
block coding with k = 4 and n = 29 can be achieved using just 5 elements in the
key (as opposed to 29¢ elements for a block substitution code). Obviously, the
number of different keys is much less than 29*!. However, the trade-off between
key size and the number of transformations appears very attractive.

2]

2. Finite structures from the number system

In this setion, we shall outline some basic results from number theory dnd algebra.
These results can be found from [9].

If p is'a prime number, then the set of integers 0, 1,2, - -, p — 1 together with
addition and multiplication modulo p forms a field containing p elements. This
is known as the finite (Galois) field GF (p). (It is easily verified that if p is not a
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prime, then the resulting algebraic structure is not a field; it is a commutative

ring).
Let

k
M = II pj.

Gl

Then, given any positive integer a less than M, we can find its residues with respect

to each pii.
Let a; = a mod pii*, 0<< ¢; < pli, ISiKk.

To reconstruct @ from the a,’s is not very straightforward. The formula for this
reconstruction is given in the following theorem.

Theorem 1

Chinese remairider theorem. Let py,p,, -+ -, P, be a set of k distinct primes and
let ry, g, -« -, 1, be positive integers. Let a;, @y, - - -, @; be an arbitrary set of inte-
gers. Then the simultaneous congruences

a;,=a mOd p’ﬁ: i=1723 "’9k

have a unique solution for a mod M, where
3
M= II pj.
=1

The solution is given by
a=(3 d; (a,d;i*) mod pi)) mod M,
il

where d, = M/ps,; and d;i* = (d; mod pji)~! mod pli. SR "

(The inverse notation is defined in Definition 3 below).- =~ = - =~ T

Let a be a non-zero element of GF (p). Then a” is also a non-zero element of
GF (p) by the closure property. Since GF (p) contains only p elements, there éxist
positive integers m and n such that

a" = a* mod p,
i.e., @’ =1 mod p for some integer k > 0.

Theorem 2. Fermat’s Theorem. For é.very ‘non-zero element @ belonging to

a1 =1 mod p.
Corollary 2.1. For every element @ belonging to GF (p), and any positive integer s,

-+ = g mod p.

* For convenience, we use the equality sign for denoting congruence; this will not lead to any
confusion as the statement modulo w.r.t. some integer will always follow the equahty sign in
such a case. :
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The extension of the result in Corollary 2.1 to the case when the modulus is the
product of distinct primes is given in theorem 3. Before presenting theorem 3,
however, we require the following two definitions.

Definition 1. Euler’s totient function ® (m). Let m be the positive integer. The
number @ (m) is defined to be the number of positive integers less than or equal to
m that are relatively prime to m.

Let the prime decomposition of m be

Dit * par -t Prk. - , ,
Then, @ (m) =p{2 . p{=2 ... piw 2 (p, — 1) (py — 1) -+ (g — 1)

In the case when m is the product of distinct primes (i.e., m = pip; --- )

®(m)=(P1_i) Pa—1) -+ (pe— D).

Definition 2. Given two integers & and b, the notation («, b) deﬁnes the greatest
common divisor (ged) of a and b. We define (0, b) = b.

Theorem 3. Let m be the product of distinct primes p,, ps, -+ -, Px. Then, for
every integer g, and any positive integer s,

a*® "+ = g mod m.
Proof. Let a;=a mod p;, i=1,2,..-,k.
Case 1. (am)=1
Then (a, p)=1,i=12,---,k.
Hence afi!= 1 mod p;, by Theorem 2
ie., a®V=1modp

Hence a%'=1 mod p,. - )
Thus @® ™ = 1 mod m, since @ (m) = fIl (. — 1
or ¢® "™+ = g mod m. | |
Case 2. (a,m)>1

WLthout loss of generahty, we can assume

a=c p, - py py and (a,pw)—l j<i<k.

Then ;=0 for 1 <i<jand gfi'=1modp, j<i<k | (D
Thus . @' D+ = g mod P> Jj<i< k ‘ _ ‘ (2)
Also a = 0 mod p; for any 1ntegel r, 1 <i<]. | R (3.)

Now consider @'® (mi+1,
By (1): (2)9 aJld (3) we have ‘

@M = g modpi, 1<Kk,
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or @' ™+ — g mod m.
We now present a few standard theorems from the theory of congruences.

Theorem 4. If (a,m) =1, then the congruence ax = b mod m has a unique
solution x = x; with 0 < x, < m.

Definition 3. Let (a,m) = 1. Then, b is the inverse of a mod m (denoted a™%)
if ab=1 mod m. '

Theorem 5. Let p be a prime and let (n,p — 1) = 1. Then the congruence
x"® = a mod p

has exactly one solution given by
x = a™ mod. p,

where my=n"t mod p — I.

Theorem 6. Let mbe the product of distinct primes py, Pa, """, Pe and let (n, ®(m))
=1, Then the congruence

X =a mod m
has exactly one solution
X = a™ mod m
where m, = n~t mod @ (m).
Proof
a" = x™oe mod m.
But nm, = 1 mod @ (m)
or mmy=s- ®(m) -+ 1 for some positive integer s.
Thus, a™ = x*® ™+l mod m

= x mod m by theorem 3.

3. Polynomial systems

In this section, we consider finite fields and rings generafed by polynomials over
GF(p) 3], [4]. B

Definition 4. A polynomial is said to be defined over GF(p) if its coefficients lie
in GF(p). o

Definition 5. A polynomial ¢ (x) is an irreducible polynomal if it has no divisors
other than scalars and scalar multiples of itself.

Let ¢ (x) be an irreducible polynomial of degree d over GF(p). Then the set
of all polynomials over GF (p) with degree less than d, together with addition and
multiplication modulo ¢ (x), forms a field. This field is known as the finite (Galois)
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tains p? elements. The additive identity is 0 and the multi-
If ¢ (x) is not irreducible, then the above structure becomes
g with the same identity elements.
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field GF(p?) and it con
plicative identity i§ 1. .
a finite commutative Tin

g ) b irreducible poly-
iom 6. Let a(x) belong to GF(p?) and let (ﬁ.(?\,) b.e an irre .
fjﬁglwc:i'er GF (p) of degree d. Then, the least positive integer & for which the
equation

@ (x) = 1 mod ¢ (%)
is satisfied, is called the order of a(x).

Definition 7. If k=p* —1, then a (%) is called a primitive element of the above

field. " : _ .
The powers of a primitive element generate all the non-zero elements of the finite

field.
Given two irreducible polynomials ¢ (x) and v (x) of degree d over GF (), we

can generate two different fields contaning p’ elements by taking the field opera-
tions modulo ¢ (x) and w (x) respectively.

Theorem 7. The number of irreducible polynomials of degree d over GF(p)
is given by

1
Id,’ = dz Y4 (k) ' pi/k»
&,
kla
lifk=1 ~
where u (k) = {(—— 1) if k is the product of r distinct primes
0 if k£ contains any repeated prime factors.

Thus, we can have f;,, different representations of GF (p?) by choosing different
irreducible polynomials.

We now generalise some of the results of the previous section to the polynomial
case.

Theorem 8. Chinese remainder theorem for polynomials. Let ¢y (%), ¢y (X),
-++,¢, (x), be irreducible polynomials over GF (p) and let r, Fay =, 1% be

positive integers. Let a; (), a, (%), -+, a, (x) be arbitrary polynomials over GF(p).
Then, the simultaneous congruences

a4 (x) =a(x) mod @ii(x), i=1,2,--,k

have a ﬁnique solution for a (x) modulo ¢ (x) where

®
¢ (9 = II ¢i ().
EL Y
The solution is given by

N a(x)=( é; d; (x) [(a (x) ;1 (x)) mod ¢% (x)]) mod ¢ (x)‘,
whete  d, (x) = b (/4 (o) |
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and =1 (x) = (d; (x) mod ¢%i (%)) mod ¢ (x).

Theorem 9. Let¢ (x) be an irreducible polynomial over GF (p) of degree d. Then,
for every non-zero a(x) in GF (p%),

#°1(x) = 1 mod ¢ (x).

-

Corollary 9.1. For every a(x) in GF(p%),
o+ "D+ (x) = g(x) mod ¢ (%),

where s is any positive integer.
Before we extend the above result to the case of composite modulus, we intro-
duce the concept of ‘ generalised totient function .

Definition 8. Generalised totient function

Let ¢ (x) be a polynomial over GF (p) which is the product of distinct irreducible
polynomials ¢y (x), ¢ (X)," -+, ¢y (). Let 8y, 85,7~ -, 8; be distinct positive integers
representing the degrees of the ¢;’s. Clearly j <k. We define the generalised
totient function of ¢ (x) as :

0 ($) = n (p% — 1).

Note. Q(¢) is not the  natural’ extension of the number-theoretic totient func-
tion, in the sense that it does not give the number of polynomials over GF (p) of
degree less than ¢ (x) and relatively prime to it. However, this is the generali-
sation which is useful for the extension of Corollary 9.1.

Theorem 10. Let ¢ (x) be a polynomial of degree d over GF(p), which is the pro-

duct of distinct irreducible. Polynomials ¢y (x), ¢ (x), - -, by (x). Let 51,05, -,
8, be distinct positive integers, representing the degrees of the ¢,'s. Then, for every

polynomial a(x) over GF(p) of degree less than d,
4@ @41 (%) = a(x) mod ¢ (x),
where s is any positive integer.

Proof. Similar to the proof of theorem 3.

Theorem 11. Let ¢ (x) be an irreducible polynomial of degree d over GF(p)
and let (», p® — 1) = 1. Then the congruence '

w* (x) = a(x) mod ¢ (x)
has exactly one solution, giver by
W) =d"(®) mod ¢ (),
whéfe my = n~t mod (p* — 1).

Proof. Let a(x) be a primitive element of the finite field defined by ¢ (x) and let
o (X) = a(x) mod ¢ (x) for some j,0 <j<p®—1.
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Now, let w(x) = o' (x) mod ¢ (¥) satisfy the equation
w" (x) = a(x) mod ¢ (x),

ie., d®* (x) = of (x) mod ¢ (x).

Hence, nk =j mod (p? — 1) by Definition 10.

By theorem 5, this equation has exactly one solution for k if (, p? — 1) = 1, which
is true by assumption.
Thus k = ju~t mod (p? — 1),

or w(x) = o (¥) mod ¢ (x) = ¢ (x) mod ¢ (x)
= g™ (x) mod ¢ (x).»
Theorem 12. Let ¢ (x) be theproduct of distinct irreducible polynomials and lct
(n, @ (¢)) = 1. Then the congruence
w"(x) = a(x) mod ¢ (x) has exactly one solution, given by
w(x) = a™(x) mod ¢ (x), where m, = n~* mod Q(¢).
Proof. Similar to the proof of theorem 6.

The proofs for theorems stated in this section without proof can be found in [3]
and [4].

4. Prime congruence codes

In this section we describe the congruence system for primes, using the results of
§2. The input character set consisting of K symbols, is first converted into a
set of k-bit codes (substitution codes), where k is the smallest number satisfying
the inequality 2 > K. The input string is processed m characters at 3 time. The
string ¢, ¢, . . ., €, is interpreted as the number

M=c; +c- 2"+ ... +¢, - 2blm1)

Hardware-wise, this represents the simple concatenation of the binary represen-
tation of the m characters.

A set of r distinct primes pi, p,, .. ., p, is chosen such that P = DPiDs P, >
2" Also, a positive integer » is chosen such that
(mp—1=1i=12,..,r, l‘<n<P',

where P'= II (z; — D).

i=1

The set of r primes p, together with n constitute the key to the cipher. The encod-

ingis done by taking the residue x; of M with respect to each prime Dy, determining
the ¢s where :

e‘::'x"l‘i? i=1,2,...,l‘

2

and  m=nmod (p; — 1),

SR

Vi e
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and combining the e;s by the Chinese Remainder Theorem to obtain E. By
Corollary 2.1, x? = xJi. Hence,

E = M"mod P,

and this is the enciphered message which is transmitted.
At the receiving end, the code is deciphered in an analogous manner as follows.
The residue ¢; of the message E with respect to each prime p, is determined, viz.,

e,=Emodp, i=1,2,...,r.

By theorem 6, the unique solution x; to the congruence

xpf=emod p, i=12,...,r

can be determined. The individual x,’s are then recombined using an efficient
implementation of theorem 1 (Chinese Remainder Theorem) to obtain M.

S. Polynomial congruence codes

We now consider the polynomial congruence coding scheme. A prime p is chosen
to satisfy the inequality p > K, where K is the number of symbols in the input
character set. The number p would normally be the smallest prime larger than K,
A substitution code is prepared, which maps the input character set into a set of
distinct elements in GF(p).

The input string is processed m characters at a time. A set of r irreducible
polynomials over GF(p), ¢, (%), ¢, (%), . . ., ¢, (x) is chosen, with degrees d,, dy, . .
d,, such that

°

di=m.
1

i Ma

Let ¢ (x) = I ¢;(x). An integer n is chosen,
ful

satisfying the property
(mphi—1D=1,i=12,...,r 1<n<Q(@)

Let M (x) be the polynomial obtained by treating the m characters of the input
string as coefficients of successive powers of x.%The encoding is achieved by taking
the residue w,; (x) of M (x) with respect to each ¢, (x), determining e; (x), where

g(x)=wk(x),n,=nmod(ph —1),i=12,...,r,

and combining the e, (x) by the Chinese Remainder Theorem to obtain E (x).
It is clear that

E (x) = M*(x) mod ¢ (x).

The key to thiscipher consists of # and the set of polynomials, ¢, (x), i = 1,2,...,
r.

The receiver decodes the cipher in an analogous manner as follows. The
residues e; (x) of the transmitted message E (x) with respect to each ¢, (x) are
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obtained. By theorems 11 and 12, the unique solution w, (x) to the congruence

wi(x) =¢;(x) mod ¢;(x), i=1,2,...,r

can be determined. The individual w, (x) thus obtained are combined using an

efficient implementation of theorem 8 to obtein M (x).
Encoding and decoding algorithms

Algorithm 1: Encoding

I %put

(a) The block length m and the value of the exponent #.

(b) The r distinst irreducible polynomials over GF (p), ¢y (x), ¢ 5 (x), . .
of degrees dy, d,, ..., d, respectively. The block length

m =Zr d;.

g

(c) A substitution code table () for the input character set. Each coded value

lies in GF (p).
(d) The input character string.

Output. The coded message siring.

Algorithm
begin,
for i« 1 until r do
begin;
2. n <~ nmod (p% — 1)
end,
end,
begin,
3. while input string is present do
beging

read in the next m characters, si, S, ..., 5,

S5 . form the corresponding substitution code
Cis Cay - - «» Cy, DY table look-up
(using table 7) ' o

6. M(X)« ¢+ egx ... +cpxm?t
for i« 1 until ¥ do
beging

R (%) « M (x) mod 9; (x)
e; (%) < wii (x) mod ¢, (x)

end,




g

10.

11.
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combine ¢ (x), e, (%), . ..,e, (x) by
Theorem 8 to obtain E (x)

write the coefficients of E(x), starting with the constant term
endy

end,

Input

.Algoriihm 2. Decoding

(a) The blocL length m and the value of the exponent n.

(b) The coefficients of the r distinct irreducible polynomials 01 (%), 0, (x),. :
¢, (x) over GF(p) of degrees di, d, . . ., d, respectively.

e

(¢) A table (+) for back conversion from the GF(p) codes to the message
character set.

(d) The coded input.

Output. The decoded message string.

Algorithm
begin,
1. fori« 1 until v de
begin,
2. my < nimod (p% — 1) o
end,
end,
begin,
3. while input string is present do
beging
4. read in the next m characters
(i.e., the coefficients of E(x))
5. Jor i<« 1 until r do
begin,
. €; (X) « E (%) mod ¢; (%)
7. w; (%) < e (x) mod ¢; (x)
end, ,
8. combine wy (%), wy (%), ..., w, (x) using
Theorem 8 to obtain M (%) .
9. decode the coefficients of A (x) by table look-up (using table ')
10. write the decoded version of the coefficients of M (x), starting with
the constant term
end,

end,
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Example

We use the block size of m = 4 and proceed to illustrate Algorithms 1 and 2 rsing
the message '

TAT TVAM ASI

We use GF(29) since this will conveniently accommodate the English Vaylphab‘et, #
along with full-stop and blank. The substitution code used for this example is
given in table 1.

We obtain the block-length of 4 by usingtwo irreducible polynomials of degree 2
over GF(29).

¢ (%) = 8 + 10x + x2,
P () = 2 4 Tx 4 x°.
Hence ¢ (%) = ¢y (%) * 92 (%) = 16 + 4x + 17x% 4 x°.

The exponent n can take any value between 1 and Q (¢) that is relatively prime
to 0 (¢). Weshallusez = 517. The number of different values for znis @ (Q (¢)) Y
—~1=®(292 —1) —1=191. Thus, the number of different keys in this system ¢

18
I, 2 .
( 2 ) B,

Ls,e =% 2 u(k)- 294/

ko Ltd
=4 (u(l) - 29% +pQ)- 29)
=1+ (1-841 — 29) = 406,

Table 1. Substitution code for example.

Character Code Character Code
A 14 o 15 3
B 28 P 2 r
C 27 Q 4
D 25 R’ 8
E 21 S 0
F 13 T 16
G 26 U -3
T H 23 v’ 6
1 17 W 12
J 5 -X 24
K 10 Y 19
L 20 Z 9
M 11 . 18
N 22 & 7

i
i
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i.e., the number of different keys

406 x 405
2

The encoding procedure is shown in table 2.
The transmitted message string is

4912413221024231313- R

— 191 — 15703065.

At the receiving end, this string is again p1‘oce$séd 4 Symbols at a time. ”Th"e
decoding steps are shown in table 3. At the end of the procedure, the decoded
message is obtained as o

TAT TVAM ASI

which is the message originally transmitted.
The key for this scheme consists of the following S elements: = 517, con-

stant term of ¢, (x) = 8, coefficient of x in ¢, (x) = 10, constant term of ¢, (¥) = 2,
and coefficient of x in ¢, (x) = 7. . - -

6. System performance

In this section, we compare the performance of the procedures presented in §4
and §5. The following points should be noted:

(a) Number of keys : In the prime coding scheme, the number of keys corres-
ponding to a given set of r primes is given by @ (P') — 1, where

P'= 2 (p; — D). A |
If k such sets of primes are chosen for the system, the total number of
different keys is given by

5 (@ (P) — 1),

Je1

"Table 2. An example of encoding using algorithm 1. Block length m = 4; Prime
field: GF(29); Number of irreducible polynomials r = 2; ¢’ (x) = 8 + 10x + x2;
¢.(x) =2 + Tx 4+ x%; Exponent n =>517; Input message: TAT TVAM ASI.

Block Tnput MG)  w ()= e (¥) = E(%)
Number Block M(x)mod ¢; (x)  wi(x)modd; (x) -

1 TATH 6 4+14x+ w () =1345x e (x)=25+25x 44 9x + 12x2 4 4x5
. 162 - Tx* wo(x) =24 +28x e, (X) =7 - 26x

=]

TVAM 16 -+ 6x + wi(x) =1+ 8x “,-el ) =6+19x ]3+22x .};.
1422 +11x%  wo(x)=26-+19x e (x) =21 +17x 10x 4 2x%

3 BASI T4+ l4x+ wi(x)=4+12x ¢ ) =124 16x 4 +23x+
17x3 wo(x) =13 4+ x e(x) =15+ 21x 13x2 - 13x3
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Table 3. An example of decoding using aléorifhiﬁ 2.

Block length m =4; Prime field: GF(29); Number of irreducible polynomials
F=25 ¢ (x) =8 4 10x + x2; $,(x) =2 + Tx + x2; Exponent n = 517; m, =
nt mod 840 = 13; Input string. 4 9 12 4 13 22 10 2 4 23 13 13,

Block e; (x) = wy(x) = . . weo .. . .. Messagc
Number  E (x) E@xmodd; (x) e (x) mod 4; (x) M (%) string

1 440t e () =254+25% w () =13 15 16+ lhx 4 TATR
12 + 4% (%) =7 +26x  wy(xX) =24 +28x  16x2 - 73

o=

13+22x+ () =6+19x w, (x) =1 +8x 16x 4+ 6x - TVAM
10x% 4 2x3 e (%) =21 +-17% "wy(x) =26 + 19x  14x2 + 113 ' :

3 4 +23x + e; (x) =12 +16x wy (x) =4 +12x 7 + 14x - - BASL
1332 +132% e (x) =15 4 21x we (%) =13 4+ x 173

where the extension of the earlier notation to cover different sets of primes is obvious,

In'the polynomial case, let us assume, as bef ore, that we have r irreducible poly-
nomials over GF(p) of degrees dy, d,, . . ., d, respectively, whose product is ¢ (x).
Let 8;, 0, ... ., 0, be distinct positive integers representing the degrees of the ¢is.
Further, let there be r, irreducible polynomials of degree &,, Iy irreducible poly-
nomials of degree &,, ..., r, irreducible polynomials of degrees §,. Clearly,

2 ry=r. Then, the number of different keys in the “system' is immediately
i=1 :

determined -as- - . 0 L
@)1 1 (7).

We arrive at this number as follows: The number of irreducible polynomials of
degree &; over GF(p) is Iy, , (by theorem 7). The number of different ways in

which we cai thoose 7; polynomials from this Set’is ~

o)

By theorem 12, the number of permitted values of 2 is ® (Q (p)) — 1. Hence the
above formula gives the number of different keys when irreducible polynomials
are used. ‘

' (b) Expvbnentiation : . A fast algorithm for the computation of M" mod P is
available in Knuth (1969, p. 399)[8]. The algorithm is given below.

Algorithm 3. Exponentiation
Input. A modulus P,-a positive integer M <-P, and a positive exponent .

Qutput. M mod P. -

B



A cryptographic system based on finite field iransforms ' 89
Algorithm
begin,
1. initialise N—n; Y« 1, Z« M
2. while N+# 1 do

begin,
3. if Nis odd then
begin,
4. . Y« Z-YmodP
Z—Z' ZmodP
' ends
0. else Z « Z + Z mod P
7. N « [N/2]
end,
8. Y«~Y+ -ZmodP
9. write Y
end,

This algorithm requires [log, n] -+ v (n) multiplications, where v (n) is the number
of ones in the binary representation of 7. A similar al 0outhm can be written for
the polynomial exponentiation of Algorithms 1 and 2.

(¢) Back conversion : Let each prime in the prime coding scheme require at
most b bits for representation, and let M, (k) be the time required to multiply
two k-bit numbers. - An O (M, (br) log r) preconditioned algorithm for back con-
version is available in [1]. “A similar algorithm for--polynomial moduli is -given
below.

Algorithm 4. Back conversion

Input

(2) Relatively prime polynomial modvll over GF(p) (ﬁl (’x), j (x), o @, (%),
where r = 2 for some ¢. ' o

(b) A set of inverses d, (x), dy (), . . ., d,(x) such that d;(x) =[¢ (%)/d: (DT
- mod ¢; (%), where : ' ' ' " ST

ém=£¢@. - » : I
(¢) A sequence of residues w, (s Wy (%), ..., w,(%).

Output. The unique polynomial M (x) over GF(p) with degree Iess than <ﬁ(x),
satlsfylng the congruences w; (x) M (x) mod ¢, (%), i = 1 2,

Algorithm

begin, . :
1. for i« 1 until r do Sw (x) — d;(x) - w (x)
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2. forje 1 until t do
begin,
3. for i« 1 step 2 until r do
begin,
4. i (%) < Sy (%) * i1, (%)
+ Sita=, -1 (%) * €351 (%)
Comment q;; (%) =
~.+°f—1
I hu (%)
endg
end,
5. write Sy (x) mod gy; (x)

end,

If each ¢; (x) is of degree d, then the complexity of this algorithm is O (dr
log r log dr).

(d) GCD and congruence mverse : The standard method of computing the ged
of two integers a and b is Euclid’s algorithm. Euclid’s algorithm can be
extended to find integer multipliers x and y such that

xa & yb = (a, b).

This algorithm is available in [8] and [1]. This algorithm can be used to generate
the inverse of @ mod » when (@, b) = 1. In this case we have

xa-+yb=1
ie., xa = 1 mod b.

Thus the premultiplier x is the required inverse of « mod b.

The ged algorithm is required at the key generation stage to ensure that the
chosen #n satisfies the criterion (n,p;, — 1) =1, i=1,2, ..., r for primes (or (n,
pii—1)=1 for irreducible polynomials). Similarly, the inverse algorithm is
required to generate the m,’s for the exponent at the decoding end. These two
algorithms are required only when the key is changed, and hence their complexnty
does not affect the complexity of the encoding-decoding process.

() Choice ofmoduli. Thechoice of primesis determined la.rgely by thecriterion

P = l'I D > 2me,
=1
As r becomes larger, the decoding operation hecomes more efficient, since the b,’s
and m;'s become smaller. The effect of increasing r on the number of keys is not
very clear, and will probably depend on the structure of the (p, — 1),i=1,2, .
The number P should be chosen close to the bound to keep the size of the u ans—
mitted code as small as possible.




g

A cryptographic system based on finite field transforms 91

In the polynomial case, the overall set of irreducible polynomials is determined
once p, r’s and d;’s are fixed. A method for generating such polynomials is given

in [3], but the procedure is very complicated. Tables of such polynomials have
been constructed, and it is advisable to refer to them where feasible. Alanen and
Knuth [2] for instance, tabulate all indexing polynomials for fields containing 1024
elements or less. (An indexing polynomial is an irreducible polynomial, all of
whose roots lie in the field generated by it).

As r increases, the decoding operation becomes more efficient in the polynomial
case also. The effect on the number of keys is again not clear, since (p® — 1)
decreases with increasing r while the behaviour of

(Id.vn
r
is not easy to predict (I,,, is expected to decrease with increasing r). However,

it is clear that having irreducible polynomials of different degrees increases the
number of keys (for a fixed m), since this choice increases Q (¢) and hence ® (Q (4)).

(f) Comparison of prime and polynomial systems : In comparing the prime and
polynomial systems, the following point becomes clear. In the prime system, the
cryptanalyst can form a fairly good idea of the value of P as he intercepts more
of the transmitted message. For example, let P = 4199. As mentioned earlier,
the cryptanalyst knows the system being used, i.e., he knows the block size. The
message intercepted by him will contain no block whose value is greater than
P = 4199, while the values occurring in the message will give him a lower bound
for P which will come closer to P as more of the message is intercepted. Once
the cryptanalyst determines P from this method, the values of the p; can be deter-
mined by factoring P.

In the polynomial case, However, each irreducible polynom1al generates the same
finite field. Hence, different sets of moduli will generate elements from the same
set, and hence, the cryptanalyst can obtain no further information about the key
by studying the transmitted blocks. Decoding by studying the pattern of occur-
rence of the blocks can be made impractical by making the block-length large.
The cryptanalyst’s best method of attack will be to run through the possible combi-
nations of 7 and. the ¢; (x) to determine which combination gives a meaningful
decoded message. The key should be changed sufficiently often to prevent deci-
phenng by such a method (that is, the probability of such a deciphering taking place
should be made vanishingly small). Since the number of elements in the key is
small, the key can he changed without much inconvenience. :

In view of this, a cipher system using irreducible polynomials appears more
attractive than a similar system using primes, especially when the degrees of the
1rredu01b1e polynomials are different.

, (g) Complexity : Let M, (b) be the complexity of multiplying two b-bit numbers
and let M, (k) be the complexity of multiplying two kth degree polynomials. Since
the encoding and decoding operations are similar, we will consider only the com-
plexity of the decoding operation. We assume that all irreducible polynomials
have the same degree d. The decoding operation for polynomials requires

O (rlogm, - M,(d) +logr - M (dr)) time,

P.(A)—2
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where m; =my = ... =m,=m,. The first term represents the time required
to execute step 7 of Algorithm 2. The second term gives the time required for
combining r terms by Chinese Remaindering. (The calculation of the residues
in step 6 of Algorithm 2 requires an equivalent time [1]). The decoding operation
for primes requires

i=1

0[2' logmi . Mn(bi) "!—Iog rM‘Il (b)]a

time, where b, is the number of bits required to represent p, and b = Z’r b;.
il

Cryptographic systems involving finite field transforms have been suggested in
connection with public-key cryptography [10]. Rivest’s system is similar to our
prime coding system and its secrecy depends on the complexity [of factoring the
product of two very large primes. Our system, on the other hand, has been deve-
loped for conventional cryptographic uise, in which the entire key is assumed to
be inaccessible to the cryptanalyst and the key is changed periodically for security.
In our system, the primes can be much smaller than those used by Rivest and this
obviously reduces the complexity of encoding and decoding processes. In fact,
under these circumstances, we have already shown (in the previous point (f)) that
the use of irreducible polynomials is superior to the use of primes. Rivest’s system
cannot be readily extended to the polynomial case since there are polynomial-time
algorithms for factoring a polynomial over a finite field [4], [5].

We should also like to mention here that our method of coding and decoding
is more efficient than Rivest’s method, which directly determines M* mod P for
encoding (and E™ mod P for decoding). To compare the complexities of the
two methods, let us assume that b bits are required to represent P and b’ bits
are required to represent each p,, i=1,2, ..., r. If the individual p,'s are of the

B r
same order of magnitude, then b ~ rb’. We fLrther assume that n = II n; (in

pracuce % can be greater than, equal to or less than 1'I n;). Since the value of n;
i=1

can range irom 1 to @ (p,), » requires, on the average, b’/2 bits for representation,

» O(b') bits.” Rivest’s method for encoding requires O (M, (b) . logn) =1,
tlme while our method for pmmes requires O (M, (b)) . log n, + M, (b) . log r)
= 1y time, i.c.,

t=0(0"M, (b)), ‘
=00 - M, (%) +log (r) - M, (D).

Depending on which term dominates in #,, we obtain the ratio #/t, as either
b- M,(b)/M, (') b or bllogr. Assuming M, (b) to be a linear function of b,
we obtain b - M, (b)/M,(b") - b’ = r2. More reasonable assumptions for M, (b)
such as b-log b - log logh or b*, 1 < k<2, give a higher value for this ratio.
Thus our method is clearly more efficient than Rivest’s method. A similar conside~
ration applies for the decoding procedure. The reason for this clear improvement
in efficiency is not merely the use of modular arithmetic, but the fact that the expo-
nent for each residue is much smaller than n. Hence, the number of multiplications
for each residue is decreased, in addition to the decrease in size.
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7. Conclusion

The congruence cipher presented in this paper allows the use of block-coding with
an extremely small size for the associated key. This cipher will be very useful in
a number of cases where pre-processing to remove the statistics of the message
source is inconvenient or undesirable. An 8-character block-coding scheme using
the English alphabet set can be constructed using 4 different irreducible polyno-
mials of degree 2 over GF(29). This system will have around 10 different keys
and an inexpensive microprocessor-based system can be easily developed to imple-
ment this scheme. Each key in this system contains only 9 elements (the value of
n, and the coefficients of x and the constant term for the 4 irreducible polynomials).
Hence the key can be changed often without inconvenience. The number of diffe-
rent keys can be increased by using polynomials of different degrees. Itis expected
that similar systems will find wide application in military communications and

computer data-protection.

References

[1] Aho AV, Hopcropt J E and Ullman J D 1974 The Design and analysis of computer algorithms.
(Reading, MA : Addison Wesley)

[2] Alanen J D and Knuth D E 1964 Sankhya (Calcutta) A26 305

[31 Albert A A 1956 Fundamental concepts of higher algebra (Chicago : University Press)

[4] Berlekamp E R 1967 Bell Syst. Tech. J. 46 1853

[5] Berlekamp E R 1968 Algebraic coding theory (New York : McGraw-Hill)

[6] Berlekamp E R 1970 Math. Computation 24 713

[71 Diffie W and Hellman M E 1976 IEEE Trans. Inform. Theory 22 644

[81 Knuth D E 1969 The art of computer programming, Vol. 2, Semi-numerical algorithms
(Reading, MA : Addison Wesely)

[9]1 Niven I and Zuckerman H S 1960 An introduction to the theory of numbers (New York :
John Wiley)

[10] Rivest R L, Shamir A and Adleman L 1978 Communications of the Association for
Computing Machinery 21 120

[11] Shannon C E 1949 Bell Syst. Tech. J. 28 656




