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True and apparent spectra of buried polarizable targets

D. Guptasarma*

ABSTRACT

If the chargeability of a buried target is not infinitesi-
mal, the popularly used low chargeability approxi-
mation formulated by Seigel (1959) can produce large
errors in the computation of apparent polarizability
spectra. A more accurate alternative approximation,
based on a complex, frequency dependent “dilution
factor” is presented. It turns out that for dispersions of
the minimum phase shift type this approximation can
be somewhat simplified and that for targets with such a
dispersion, buried in a nondispersive host rock, the ap-
parent log-phase spectrum is only slightly different from
a vertically shifted version of the true phase spectrum of
the target.

These results should be useful for the computation of
apparent polarizabilities in numerical modeling for IP,
and in attempts for mineral discrimination through field
measurements of phase spectra.

INTRODUCTION

The apparent polarizability of a slightly polarizable target
buried in a nonpolarizable medium may be approximated as
the product of its true polarizability and a factor which has
been called the “dilution factor.” This simple relationship has
been widely used by geophysicists to calculate apparent
chargeability m (Seigel, 1959), or apparent PFE (Pelton et al,
1978), or the time-domain voltage response of a ground to an
infinitely long charging current switched offat t = 0.

LOW CHARGEABILITIES

In reviewing the basic macroscopic theory of induced polar-
ization, Wait (1981) dealt with this approximation and made
the point that this is a first-order theory valid only for small
chargeabilities.

Following Wait (1981), let the complex, frequency dependent
apparent resistivity p,(w) as a function of the angular frequency
 be written

Pa(@) = p,(O)[1 + 8, ()], ey

where p,(0) is the dc apparent resistivity and §, (o) is its com-

plex departure from the ac value, normalized by the ac value.

Considering a single target buried in a homogeneous sur-
rounding medium for simplicity, let the complex target resistivi-
ty be

p2(@) = p, (O[] + 3, (w)] @
and the surrounding medium resistivity be
p1(@) = p,(O)[1 + 8;(w)], A3)

where p, (0), p,(0), 8, (), and 8,(w) are quantities correspond-
ingto p,(0) and §, ().

Expanding p, in a Maclaurin series around p,(0) and com-
paring with equation (1), one obtains

p1(0) dp,
p.(0) 2p,
1[ ., . PHO) &p,
"3 [5‘(‘”) 0,(0) 203
P1(0)p2(0) 2p,
p.(0)  épdp;
p3(0) 62pa}
P.(0) dp3

p2(0) dp,
P, (0) Op,

8, (@) = 8,(w) 8, (@)

+ 28,(0)3; (0)-

83 (@)

where

ap,
opy

lim

8;=82=0

G

and so on for the other derivatives, all of these being evaluated
around o = 0.

If the 3s are so small that terms containing their products
and higher powers may be neglected, equation (4) becomes

_ [apa{Pl(O)[l + 3,1, p,OL1 + 52(0))]}]
op,(O)[1 + 8,(w)]

3, (0) = 8,(0)B,; + 8,(w)B,, (6)
where
élnp, dlnp,
=_—_ 74 = 7
' dlnp, 2 0lnp, M

are the familiar dilution factors. Using the scaling property of
p, expressed by
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Ap, = pa(Apy, Apy), ®)

it is easily shown that B, + B, = 1. The formulation is easily
extended to the case involving more than two regions.

I shall refer to the standard approximation represented by
equation (6) as Approximation L.

Pelton et al (1978) used this approximation in a somewhat
different form. For a nonpolarizable surrounding medium, they
stated that the slope of the plot of log (modulus) of apparent
resistivity is, at every frequency, B, times the corresponding
plot for the true resistivity of the target. This result may be
obtained, for low vaues of §, (), as follows.

From equation (6), with 8,(w) = 0,

3,(w) = 3, (w)B, ©
so that
In % =1In[1 + B, 5,(®)]
~ B, 5, (o) (10)
and
n 2@ s )]
p2(0)

~ §, (0) (1)

if 8, () is very small.
Thus

P _ g P2

= n——. (12)
Pa(0) 7 p,(0)
Equating real and imaginary parts of equation (12),
Pa () P2 (@)
| = 13)
5.0~ " [6,0 ‘
and
$.(0) = B, $, (), (14)
where the sign | | is used to represent the modulus of the

quantity within, and ¢, and ¢, are the phase angles of the
apparent and true target resistivities, respectively. Equation
(13) leads to the approximation used by Pelton et al (1978)

B;

P.(®) p;(w)
P.(0) p2(0)

I refer to equations (13) and (14) as Approximation II.

Approximations I and II are identical for infinitesimal values
of target polarizabilities. For somewhat larger values of polari-
zability, however, the consequences of these two approxi-
mations are quite different.

Approximation I for a nonpolarizable surrounding medium
demands that the out-of-phase, i.e., quadrature, component of
the normalized apparent resistivity is B, times the quadrature
component of the true resistivity. In other words, the “peaking
frequency” of the out-of-phase component remains invariant
with dilution. Approximation II requires that peaking fre-
quency of the phase angle, rather than the quadrature compo-
nent, remains invariant with dilution.

Approximation I leads to the conclusion that the apparent
step response to an infinitely long charging current switched off
at time ¢ = 0 is, for all values of ¢ > 0, equal to B, times the
corresponding response of the target material alone. Approxi-

(15)

mation II leads to this relationship being valid for ¢ = 0 after
switch off and for no other later value of ¢t.

MODERATE AND HIGH CHARGEABILITIES:
APPARENT SPECTRA AND SPECTRAL SLOPES

To examine what happens with moderate polarizabilities,
one can take higher order terms of equation (4) and, using the
mixed and higher order derivatives obtained from the dc solu-
tion, compute the apparent p, .

The coefficients involving mixed and higher order derivatives
were called “distortion factors” by Wait (1981). These are real
constants which need to be evaluated afresh for every pair of
p1(0) and p, (0) along with the dilution factors.

In the following I present a somewhat different formulation
in which the complex resistivity of the target is normalized by
dividing by the complex resistivity of the host. I use the scaling
law expressed by equation (8), which means that all EM induc-
tive effects are overlooked.

Such a formulation allows one to see some interesting results
applicable to complex resistivities of the minimum phase shift
type. Furthermore, for a given target geometry, the dc solution
needs to be worked out only once over a relevant range of the
ratio of target-to-host resistivitics in order to compute the
complex apparent resistivity quickly for any given combination
of complex host and target resistivities. This also produces
more accurate results for comparable computation efforts using
equation (4).

Using 1/p, for A in equation (8), p, may always be written as

Pa = P1S(r), (16)

where S is some function of the complex ratio r=p,(®)/
pi(w) = |r|e*. S is determined by the geometry and is real for
real values of r. With

Inr=u=ug+ju, =n|r| +jo,, (17
then
In(p,/p)=InS=T. (18)

Expanding T as a Taylor series around ug,

2
T = T(ug) + jé, T '(ug) d;—' T"(ug) + - (19)

Since T is real for real r, T(ug) and its derivatives T '(up),
T "(ug), etc. are real for all real u, and are obtained from the real
function T(ug) at any specified value of up by using the dc
solution for the given geometry. Set p, =1 and compute
T =In (p,) for a suitable set of real values of In p, = u. The
derivatives of T at any real u can then be computed from this
set. Since ¢, = ¢, — ¢, and u, = In |p,/p,| at any frequency,
T(u) can be computed by using equation (19). '

Equating real and imaginary parts of equation (18), and
using the symbois Ref JandIm{[ Jfor the real and imagin-
ary parts, respectively, of the quantity within the brackets,

In|p,|=1In|p,|+ Re [T]

2

=In{p,| + T(ug) — % T (ug) + - (20)

and

¢, =¢, +Im [T]
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3
=&, + ¢, T'(ug) — %— T ug) + . 21
If ¢, =d,— o, is not too large, a good approximation is
obtained by taking
¢2
In|p,|=In|py|+ T(ug) — = T"(ug) (22)
and
$, = ¢1[1 — T'(ug)] + ¢ T'(ug). (23)

The last equation shows that the apparent phase may be
approximated as a weighted sum of the true phase angles, the
weights being functions of u, and, consequently, of frequency ®,
instead of being constants. Furthermore, the weights for ¢, and
¢, add up to unity.

For the spectral slopes, I consider the complex number

_0lnp,
dlnp,

(24)

One can see from equation (16) that it is a function of u, real for
real'u; and-

~dIlnS dT JRe [T] 6 Im [T] 25)
Tdlnr du dug oug
which may also be expanded around uy as
¢2
B = Bug) + jé, Bug) — 7 B'(ug) — -, (26)
and comparing with dT/du,
B(ug) = T'(ug),  B'lug) = T"(ug), @7

and so on. Using B, one can write expressions for the spectral
slopes of | p, | and ¢, . Thus, from equation (16),

dlnpn_dlnp1+dlnS_d1np1 dinr

= = B.
dlne dheo dho dho dho 28)
Equating real and imaginary parts,
din|p,| dln|p,l| dinr
= B———
o ~ dhe | %ime 9)
and
do, dd, dlnr
—fa __"r B
ine dno ™| B mal (30)
where

Re[B dl“']:Re e L BT
dln o

dln o din o

and

dinr _ dd), |"|
Im |:B ] = Re [B] 77" + [B] (32)

dlno® ne’

However,

din|r| din|p,| dln]|p,|

- _ 33

dln w din® dln ® 33
and

d1n|p,, dlnlpl

o = {1~ Re [B)} —

dln|p,] dé

+ Re [B]——— m [B] o o ln'm- (34)
Since ¢, = ¢, —
dd)a _
dIn {1-Re [B]}Hnm
o, dln|r|
dnco+Im[B]d1nm' (35)

Equations (34) and (35) show that if Im |B| is small, the
spectral slopes d In | p, | /d In @ and d¢,/d In o are well approxi-
mated as weighted sums of the corresponding slopes for the two
regions. B may thus be regarded as a complex, frequency-
dependent dilution factor.

SIMPLIFICATION FOR MINIMUM
PHASE TYPE DISPERSIONS

Equations (20), (21), (34), and (35) are exact expressions for
the apparent spectra and the apparent spectral slopes. B or T
need be computed only once, over an adequate range of ug, for
a given geometry, and these expressions allow the computation
of the spectra for any given pair of dispersions for the two
regions.

If, however, the dispersions are of the minimum phase type,
further simplification is possible. The examination of this type
of dispersion becomes important because most polarizable ma-
terials show a minimum phase type dispersion in practice
(Zonge et al, 1972).

For a complex function of frequency which asymptotically
attains constant values of modulus at zero and infinite real
frequencies, a necessary and sufficient condition for its being of
the minimum phase type is that the net phase change from zero
to infinity is zero (Bode, 1957). If p, and p, are of the minimum
phase type, approaching constant moduli at @ = 0 and o = o,
the complex dilution factor B also approaches real constant
values at ® = 0 and ® = 0. As a function of frequency, B(w) is
therefore of the minimum phase type. So are p,(w) and T(w).

In practice, induction and propagation prevent any polariz-
able ground from behaving like a truly minimum-phase system.
The assumption of minimum-phase p,, p,, p,, etc. implies that
all phase angles over the frequency range of our concern are
due to polarization and are undisturbed by induction or propa-
gation effects. I tacitly assume this to be true.

The phase angle and imaginary part of a minimum-phase
function are uniquely related to the frequency dependence of its
modulus and real part, respectively. For slowly varying func-
tions of frequency very good approximations are (Zonge et al,
1972; Bode, 1957)

7 d In (modulus)
hase x - ———
phase 2 dln o (36)
and
d (Real ps
imaginary part z Lpdrt). 37

2 dln ®

Applying equations (36) and (37) to the right-hand member of
equation (35),
do, d¢

dIn o ~(1—Re [B]) nw
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F1G. 1. The apparent phase spectrum is very well approximated
by Approximation-III. This figure compares the theoretical
apparent spectrum with the spectra calculated by
Approximations-I, I, and III. The model is a two-layer ground
under a two-electrode array, with array spacing a equal to half
of the upper layer thickness h. The upper layer is nondispersive.
The lower has chargeability m, = 0.3 and characteristic fre-
quency f, = 0.5 Hz

d d Re [B
#Re (8] it +

i 2= (8)

and hence, integrating both sides,
¢, ~ (1 — Re [B])p, + Re [Bld,. (39)
Applying equation (36) to both members of equation (39),

dln|p,| dln|p,| dlnip,|
—— = (1 — Re [B]) ————— + Re [B] ———.
dlnow ( [8]) dlnco+ ¢ [B] dln o
(40)
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F1G. 3. Same as the case of Figure 2, except that the lower layer
1s more resistive than upper. Approximation-I is seen to be very
poor in this case.
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F1G. 2. With both layers polarizable, Approximation-I can be
superior to Approximation-II as in this case with the lower
layer less resistive than the upper.

Extension of these results to more than one target region is
straightforward. For example, with a host region 1 and target
regions 2 and 3,

pa = p18(ra, r3), (41)
where
r,=pz/p; and 7y =p;3/p;.
Hence
dIn dIn dinr dinr
A Y L S L Y )
dlno dno “din o din o
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FiG. 4. Both Approximations-I and II may produce large errors
as in this case. The layer polarizabilities are the same as in
Figures 2 and 3, but in this figure a/h is 0.5 and both layers are
equally resistive.
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where B,y = 0In §/01Inr; and B3, = din S/olnry.
- Equating imaginary parts of equation (42), applying the
minimum phase condition and integrating,

¢, ~ (1 —Re [B(z)] —Re [B(s)])¢1
+ Re [B(Z)]¢2 + Re [B(a)]d’a- (43)

Hence, using equation (36),

din|p,| din|p,|
o ~ (1 —Re [B(z)]—Re [Basy)) Tho
dlin |p,| dln|ps|
+Re [By) —— - ln(: +Re [By] —1——— (44)

Equations (39) and (40) represent approximations which are
far more accurate than Approximations I and II when the
dispersions are of the minimum phase type even if the phases b,
and ¢, are not small. I shall refer to approximations (39) and
(40) as Approximation IITL

In most modeling situations, Re [ B] changes only by a small
amount over the range ® = 0 to ® = co. Treating Re [B] as a
constant leads to Approximation II, and this explains why in
many situations Approximation II gives a more nearly correct
result when compared with Approximation I It turns out that a
compromise value to use for Re [B], as a constant, is the
geometric mean of its values at dc and at high frequency, rather
than using its dc value as in Pelton et al (1978).

Figures 1 to 4 show the phase spectra obtained by applying
all three approximations to the case of a two-layer ground
under a two-electrode array. Approximation III is seen to be
much better than the other two in all cases. The dispersions are
assumed to be of the Debye minimum-phase type represented
by
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F1G. 5. With a minimum phase type target in a nondispersive
host, the apparent phase spectrum is only slightly different from
a vertically shifted version of the true phase spectrum. The
shape of the apparent imaginary part spectrum, however, is not
as close to the true imaginary part spectrum as one would
expect from Approximation-I.

1 +jell — m)/wg

plw) = 1+ jojo p(0), (45)

where @, = 2nf, is the characteristic angular frequency of the
dispersion. A Debye type dispersion is assumed only for sim-
plicity. Any other minimum-phase type dispersion, e.g. Cole-
Cole, could have been used for such a comparison.

Computation of the theoretical apparent phase angle at each
frequency was done by using the process of summation of all
images of the source (Wait, 1958), with complex values of
resistivity of the layers.

In Figure 1 the upper layer is nondispersive, and the.lower
has a moderate chargeability of m = 0.3. The dc resistivities of
both layers are the same. The electrode separation a is half the
upper layer thickness h. Approximation IT is seen to be superior
to Approximation I, and Approximation III produces practi-
cally the same result as the correct apparent theoretical spec-
trum.

Figures 2, 3, and 4 are similar plots of calculated and theoret-
ical phase spectra with both layers polarizable. The upper layer
has m = 0.1 and a characteristic frequency of 10 Hz; the lower
has a high value of m = 0.8 and a characteristic frequency 0.5
Hz. The a/h ratio and the relative dc resistivities of the two
layers have different values. Approximation-II is seen to be
inferior to Approximation-1 in the case of Figure 2, and
Approximation-I is seen to be quite wrong for the case of
Figure 3. In Figure 4 both Approximation-I and
Approximation-II are seen to produce large errors in the spec-
tral shape.

Figures 5 and 6 are spectral plots of the target phase, appar-
ent phase, and imaginary parts of the target and apparent
resistivities. The upper layer is made nondispersive and the
lower has m = 0.6. The dc resistivity contrast is made different

- P ~
g . ~. /?(0)=|,/2’(0)—5
L // ~N m|=o
1000 [ ,” Imaginary part of g N mg=06, f,=0-5Hz
s =
Foy N o/h=2
Fs ) N
r/ Apparent imaginary part AN
— N
=~
500 |- e N N

Phase, milliradian
T

Apparent phase ’

; ! :
o 1 10
Frequency, Hz

FiG. 6. This demonstrates the same result as in Figure 5 more
clearly. The peaking frequency of the apparent imaginary part
is shifted much more by dilution than the peaking frequency of
the phase angle.
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for the two cases. It is clearly seen that dilution affects the
peaking frequency of the imaginary part spectrum much more
than that of the phase spectrum. This is true, in spite of the
large value of m, because the assumed dispersion is of the
minimum phase type. However, this is just the opposite of what
Approximation-I leads one to believe.

CONCLUSIONS

In numerical modeling of IP for a buried target in an other-
wise homogeneous medium, one usually computes just one
dilution factor using dc values of the resistivities. The above
analysis suggests that it may be very useful to calculate Re [B]
for a suitable set of values of real ratios p,/p,, to enable more
accurate estimates of p, for moderate chargeabilities. Alter-
natively, values of real p, for a set of values of real p,/p, may be
computed. Re [B] or T may then be computed therefrom when
needed. In most situations B and T are very well approximated
by taking only the first two terms in equation (26) and the first
three terms in equation (19), respectively. This involves the
computation of first and second derivatives of log p, with
respect to log r, for a set of real r, and is easily done by using the
dc solution for the given geometry.

If, as usual, the dispersion characteristics of the target are of
the minimum phase type, one can expect that with a nondisper-
sive host ground the observed log-phase spectrum is nearly the
same as a vertically shifted version of the true phase spectrum
even for moderately large polarizabilities. If the host is also
dispersive, a. weighted summation. of the two-phase character-
istics is a fair approximation.

Since dilution is seen to affect the shape of the log-phase
spectra only slightly for minimum phase type target disper-
sions, the apparent phase spectrum should prove to be useful in
attempts at mineral discrimination,
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