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ABSTRACT

A fractional weighted number system, based on Hensel’s p-adic
number system, is proposed for constructing a unique code (called
Hensel’'s code) for rational numbers in a certain range. In this system,
every rational number has an exact representation. The four basic
.arithmetic algorithms that use the code for the rational operands, proceed
in one direction, giving rise to an exact result having the same code-word-
length as the two operands. In particular, the division algorithm is deter-
ministic (free from trial and error). As a result, arithmetic can be
cairied out exactly and much faster, using the same hardware meant
for p-ary systems.

This new number system combines the best features and advantages
of both the p-ary and residue number systems. In view of its exactness in
representation and arithmetic, this number system will be a very valuable
tool for solving numerical problems involving rational numbers, exactly.

* * * *

“ There still remain three studies suitable for free man.
Arithmetic is one of them.”—Plato

1. INTRODUCTION

This paper is concerned with the problem of exact or error-free computa-
tion in digital computers. It is well known that digital computers work
with finite length numbers in a p-ary scale, where p is any positive integer
called ‘radix * or ‘base’; usually either a binary or decimal scale is chosen
for this purpose. Such a system, known as the decimal or p-ary system
enables us to measure any numerical quantity in steps of p~" where r is the
length or the number of digits available for calculations. It is obvious that
the p-ary system has the disadvantage, viz., many of the rational numbers
do not have exact representations, since they may not terminate within r-digits.
or may be recurring or periodic. Hence it is not possible to represent every
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rational number of the form /b (2 and b are both integers, b # 0) exactly,
if b has factors which are relatively prime to the base of choice p. This
results in an error in representing every rational quantity. Also we face
the difficulty of accumulated round-off or truncation errors. These are
unavoidable since even with such simple repetitive operations such as addi-
tion, multiplication or division the number of digits of the result can increase
so much that the results cannot be held fully in the registers available in the
computer; accordingly, we are compelled to discard a certain number of
digits. Such errors accumulate one after another from operation to opera-
tion, originating fresh errors. Thus error analysis and propagation of
errors became important aspects of study in computational mathematics
The developments in this area have been very significant and error analysis
is available for most of the widely used algorithms; in fact, we are cautioned
that no algorithm should be considered valid unless an estimate of the
errors involved is available.

It is also well-known that the numerical problems are classified as well-
conditioned or ill-conditioned. In well-conditioned problems one can
obtain reliable results in spite of small round-off errors committed in the
computational algorithm. But most of the practical problems do not turn
out to be well-conditioned. These are called ill-conditioned in the sense,
for very small errors in computation the errors get amplified and propagate
so wildly that the computed solution bears little or no resemblance to the
actual solution. This is particularly so in matrix computations. For such
problems residue-arithmetic procedures have been suggested (Young and
Gregory, 1973) in recent years as a means to perform exact computation.

_thereby totally circumventing the problem of round-off errors. In these

- procedures every rational number is transformed into an integer by proper
scaling which is then represented in a residue number system with one or
more prime moduli. While such a representation is useful for exact computa-
tion, since division is not an easy operation while using several prime moduli
(Szabo ,and Tanaka 1967) the computational problems get involved.
Also when numbers involved are in a wide range many primes have to be
chosen since the residue number system does not provide a range of the
form pT (where r is the number of digits and p is the base of representa-
tion) as in p-ary base.

These difficulties motivated us to look for an alternative number system
which possesses the best features as well as advantages of both the p-ary
and residue number systems. Such a number system is the p-adic number
system which was first proposed by Hensel in 1900 (Knuth 1969). A
detailed introduction to p-adic numbers is found in Bachman (1964). It
is surprising that the potentialities and the application of the p-adic numbers
for computer arithmetic have not been explored. This may be partly due
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to the fact that every rational number other than integers or .mdix fractions
(those fractions whose denominators are POWers of the rad.lx D) ha§ only
an infinite recurring p-adic expansion and a truncation pf this expansion to
o finite leneth is catastrophic in the sense, the value of this truncrated number
bears no r?:semblance to the convergent value, unlike the p-ary represen.ta~
tions, where the truncated number is almost always a close approximation
to its actual value.

In this paper, we will show that a segmented p-adic expansion of a
rational number can be used as a code for the representation of the rationaj
number. We will call this code as the Hensel Code (in honour of Hensel)
denoted by H (p, r), where p is the prime base and r is the number of digits
used. The conditions for construction of this code are:

(i) The numerator and denominator of the rational numbers to be
represented have a prescribed bound.

(ii) The p-adic expansions are terminated at the right such that r is even.
The above two conditions are sufficient for designing a very efficient p-adic
computer arithmetic system. This will be shown in a later section.

2. PRrOPERTIES OF H (p, r) CODES

The Hensel Codes mentioned above have the following important pro-
perties :

(1) Every rational number a/b (where a and b are integers with their
greatest common divisor} (@, b) =1, b 5 0) in the range 0 < a < N and
0< b <N where N is a positive integer chosen such that N < p'/2/4/2,
can be uniquely coded as an r-digit ordered sequence where cach digit
assumes values from 0, 1, ..., (p — 1), where p is the prime chosen.

(@) H(p,rj code satisfies certain weight properties which enable us
to convert them into rationals. The individual digit positions have the
following positive negative fractional weights:

, N T2 . aTi241 —
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Thus positive and negative rational numbers are representable without an
explicit sign. The positive integers occupy the positions 0, I, ..., /2 —1
followed by a sequence of zeros. The negative integers occupy the same
positions followed by a sequence of digits of value (p — 1). The representa-
t%on of radix fractions (both positive and negative) is exactly similar to posi-
tive and negative integers except that the p-adic point can move to the right
up to the (12 — I)-th position.

Othexj rationals, however, can occupy all the r-digits. Among these,
those which ha

ve denominators which are divisors of (p"'% — 1) satisfy

1 denoted as GCD,
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the weight properties, in the sense the weighted digit sum using the above
weights, gives rise to their actual value. Such fractions will be called as
“soft fractions .

For the other fractions (called “ hard fractions ) the weighted sum is
unique for each one of them, but will not coincide with their actual value;
in fact this sum holds only modulo pT.

(iii) The negative rational numbers have a valid radix complement
representation (Richards 1955) as in p-ary arithmetic; however, unlike in
positive p-ary arithmetic the weight structure is retained. In this sense, it
resembles the polarization operation in negative p-ary arithmetic (Sankar
etal 1973 a). In view of this, multiplication and also division can be
carried out directly without corrections that are required (Richards 1955)
In positive p-ary complement number representations.

(iv) All the four basic arithmetic operations using H (p, ») codes proceed
in one direction (left to right); also the length of the resulting code remains
constant, provided the resulting rational number 1s in the range specified
in ().

(v) The arithmetic using H (p, r) codes is very much simpler than
rational arithmetic, where every rational number is represented as an
ordered pair of integers (Knuth 1969). For instance, addition/subtraction
in rational arithmetic requires three multiplications, one addition and a
reduction of the fraction to the minimal form, by dividing both the numerator
and denominator by their greatest common divisor; multiplication and
division involve two multiplications and also the reduction of the result to
the minimal form.

The H(p, r) code, uses a unified representation for all rationals (as in
p-ary system) and arithmetic operations are performed with a constant
length word somewhat similar to the residue number system. Unlike the
residue system, where division cannot be performed easily, the p-adic system
permits us to do an exact division operation as in rational arithmetic.

(vi) The division operation using H (p, r) codes is deterministic in the
sense, it does not involve the comparison of relative magnitudes of the
operands (Sankar et al. 1973 b). This operation is exactly similar to multi-
plication ; this is not surprising since in rational arithmetic using an ordered
pair of integers, the multiplication and division operations are very similar.

(vii) The essential distinction between using a truncated p-ary code and
a truncated p-adic code [H (p, r) code] using r-digits is that in the p-ary
system the numbers are exactly representable only if they are either integers
or radix fractions; hence all other rationals can only be approximately
represented.
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In the H(p, r) code, however, every rational number «/b which is an
element of the Farey sequence (Niven and Zuckerman 1966) with numerators
and denominators less than N (we call such fractions as order N Farey
fractions) are exactly representable. The relation between these two systems
of measurement reminds us of the scale of equal temperament and mean-
tone temperament used in music.

(viii) The conversion from a rational to its H (p,r) code (subject to
choice of p and r) is straightforward involving a recursive solution of con-
gruences; this can also be realized as a division process using H (p, r) code,
if the numerator and denominator are represented in p-adic form.

The conversion from H (p, r) code to rationals is a little more involved,
In fact, without this conversion it seems not possible to know the sign and
magnitude of the numbers. The conversion algorithm for integers, radix
and soft fractions (both positive and negative) is direct involving the forma-
tion of the weighted sum. However, the hard fractions can only be con-
verted tc rationals through a solution of a congruence or a diophantine cqua-
tion or by a direct read out.

(ix) Since all the basic arithmetic operations are performed cxactly
for a given range of the rationals, the H (p, r) codes can be used for exact
numerical computations.

(x) Although one could think of a H (p, r) code where r is odd, such a
code does not possess unique weights for digit positions; hence such a code
cannot be easily converted to rationals by numerical computations.

3. p-ADIC NUMBER REPRESENTATIONS

3.1. Principle

. Any rational number a = a/b-p™ where n, a, b are positive or negative
integers b % 0, and GCD (¢, b) = 1, can be written in the p-adic form
a= 3 ap
& ap (M

wher‘e, the coefficients a; are integers such that 0 < aj <(p —1). The
infinite series (1) converges to a, with respect to the p-adic norm. |

For example 1/3 has the p-adic expansion
1/3 =+2313131... (for p = 5)
= 243U+ 4P )Pt L) ()

'{';16654 )inf_mhite series 1 +p2 4 p*<4 ... converges to 1/1 —p? (Bachman
with respect to the p-adic norm. Thus for p = 5. t i
vorges o 82 o 15 D » the series (2) con-
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Note: In the conventional sense the series (2) under usual norm is
divergent. However, in the sense of p-adic norm it is convergent.

For convenience the expansion (1) will be denoted by the sequence
anlny ° Aoy . .. for n negative
*ay ...forn=20
*00 ... 0anup4y ... for n positive.

It is easy to see that integers as well as radix fractions have representa-
tions which are identical to the p-ary representations except for the fact that
the sequence is written here from left to right in the ascending powers of
p, instead of right to left (as a mirror reflection); however, other rationals
have a totally different representation, with the actual rational being realized
only as a sum of the infinite series.

It is interesting to observe that negative rationals occur as true-com-
plement (left-to-right) of the positive number.

e.g., —+="'313131... for p=35.

3.2. Algorithm for conversion of rational number to p-adic form

Given a rational number o = g/b with GCD (g, b) =1 and b # 0, its
p-adic expansion can be obtained by the following algorithm.

Step 0. Set f=«. Find » such that
a=§.pn. If n >0 set

ao, al, .o, an_.l = O.
Go to Step 2.

Step 1. Find » such that =§ . p"

(e.g., ‘—2 = 211~1 - 52, for p= 5).

Step 2. Solve the congruence dx = 1 (mod p)
If x,, is a solution, then
an=—c . Xy (mod p).
Step 3. Sety =B — a,p"
If y=0, set a;=0, for i >n and stop.
Otherwise, set 8=y and go to step 1.
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Note: This algorithm is nonterminating since the convergence to the given

rational can be achieved only for infinite number of digits, if the rational
is neither an integer nor a radix fraction.

4. SEGMENTED WEIGHTED p-ADIC CODES
4.1. Word format

In the Jast section we mentioned that a general rational number (other
than integers and radix fractions) doss not terminate in a p-adic expansion
and the convergence to the actual value is cbtained only for infinite terms,
This 1s in contrast to the conventional p-ary representation where one can
terminate with a finite number of digits and yet closcly approximate every
non-terminating rational. In the case of p-adic expansion truncation of a
number is mathematically meaningless, since the truncated series represents
a “large” integer. Therefore, if p-adic number system is to be of any
practical use one necds a finite expansion. In such a case one can only
construct a finite length code which is a segmesnt derived from the p-adic
expansion of the rational. In crder that this code be unique and weighted,
the following conditions are to be satisfied:

(i) Given the range of numerators and denominators of rational num-
bers, every rational number in the Farey sequence has a unique code.

(i) All the rationals contained in the given range can be represented
using r-digits in a base p.

(iii) The digit positions in the code have socme definite weights so that
conversion from the code to the rational is possible.

The above three conditions set up a constraint on the construction of
H(p, r) for a given p and r.

It will be shown below that for a given prime p, the following logical
organization satisfies all the above three conditions:

(@) The number of digits » is even.

(b) The numerator and denominator of rational numbers are less than
or equal to N. This means there are exactly r/2 (0,1, ...r2 —1)
digits allocated for the representation of positive and negative integers,
assuming that the p-adic point is to the left of the zeroth digit. By allowing
the p-adic point to move to the right of 0, I, 2, ... r/2 — 1 positions the
above integers become radix fractions and hence all radix fractions whose
denominators do not exceed N become representable. All other rationals
will in general occupy all the r-digits. In particular, the word format for
integers and radix fractions will be as follows.

Positive integers: These are of the form

.aoal . ar,g_lg(l_...o
r/2
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consisiing of a sequence of zero digits from (r/2)-th to (r — 1)-th position.
eg., p=235, r=238.
-44430000 is the positive integer 499,

Negative integers: These are in the complement form, occupying
0,1, ..., (r/2) — 1 digits followed by a sequence of digits of value (p — 1)
from r/2, (/) + 1, ..., r — 1 digits.

oy . ar;z—z({? —1), (-1, e—...(p =1
r/2

eg, p=5r=238
02144444 is the negative integer — 90.

. Radix fractions: These are obtained by shifting the p-adic point of
integers (positive or negative) by less than or equal to (/2 — 1) digits.

e.g., 421-00000 is the radix fraction of value 39/125

421-40000 is the radix fraction of value 539/125
421-44444 is the negative radix fraction -— 86/125.

Soft and hard fractions: These are of the form

Al pyg -+ 0.0 ... aqm Where n+m+1=r and n<
r/2 — 1 and the digits have general values from 0 to (p — 1).

Note: As before we mean, by an order N Farey fraction, a fraction of
the form + afb, where 0 < a, b <N, bs0.

It is easy to prove that every order N Farey fraction has a unique repre-
sentation within r-digits, if N< p™/2/4/2. The proof is based on arguments
involving congruence relations.

We will also show that this choice of N would permit us to code all the
order N Farey fractions.

It is known that the number of order N Farey fractions in the interval [0, 1]
is asymptotically equal to 3N?%x? ~ NZ2/3 (Beiler 1964, Abramowitz and
Stegun 1965).  Since there are an equal number of their reciprocals, we have
a total of 2N?/3 positive rationals in this range. Since the negative ratio-
nals in the same range have also to be represented, we have approximately
a total of 4N?/3 rationals in this range.

The logical structure of the format we have chosen (including the p-adic
point) can represent more than p" different sequences. Therefore, the
inequality 4N%3 < p" will always be satisfied for N < p™/2/y/2. 3)
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4.2. Weight assignment

We will now discuss the assignment of weights for the digit positions in
the H(p, r) code assuming r is even. Since by construction the positive
integers occupy the first r/2 positions and followed by a sequence of zeros,
the weights of this positions have to be necessarily the p-ary weights: "

b

0 1 T/2-1
e pY ..., P

Also the negative integers which occur in complement form occupy the
first /2 digits followed by a sequence of digits of value (p —1). Using this
as well as the fact that all other negative rationals which occur in comple-
ment form should have a weight opposite in sign to that of the corresponding
positive rationals, we can show that the weights for the remaining r/2 posi-
tions have to be negative and fractional. These are respectively

/2 /241 T—1
p p V4

pr/z:_"l: '—pr,fz_la e pr/z_l-
Thus we arrive at a new class of positional number systems with fractional
weights, as a consequence of truncating the p-adic expansion. Since each
order N Farey fraction has a unique Hensel Code the assignment of the above
weights will result in a unique weighted sum for each one of them.

e.g., A table of weights of a few rational numbers is provided below
(Table 1).

Table 1
No. Rational H(5, 4) Weight
number
118 2414 3/24
2 1/16 1234 —311/24 2
3 —1/16 <4210 311/24
4 1/9 -4201 211/24
517 -3302 182/24

The proof that each one of the order N Farey fractions will get a unique
weight follows from an argument involving the solution of a diophantine
equation; it is omitted here. It is clear from the assignment of weights
that every weighted sum will have the denominator p™2 — 1; for negative
integers the numerator of the weighted sum will be the ° that’ integral multiple
of p™2 —1. For rationals a/b where b is a divisor of p’/2 — 1 the weighted
sum W will be equal to their actual value thus satisfying the equation L

/4

afb =
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or
a(p’t—1) — bW =0. “)

Such fractions are called soft fractions since their conversion from p-adic
to rational involves finding only the weighted sum.

Other fractions, however, will not have code weights equal to their
actual value (see Table 1); so we call them as pseudo weights. These rationals
are called hard fractions, and they will only satisfy the congruential relation

a(p’?—1) —bW =0 (mod p") S)

Hence for converting hard fractions we have to solve for (5) in the range
prescribed

e.g.,
p=35 r=4
1/9 = -4201
pseudo weight = 211/24

Thus we have to solve for
2dqg —211 b =0 (mod 625)

which has a solution for right hand side equal to — 1875, for which a =1,
b=09.

Thus a p-adic system with r-digits in which 7 is even and r/2 digits are
reserved for integers exhibits features which are common to both the p-ary
as well as the residue number systems. In particular, operations with purely
integers and soft fractions work analogous to the p-ray system while opera-
tions with hard fractions are analogous to using residuc arithmetic. The
price paid for this is of course in terms of the loss of information of sign and
magnitude of hard fractions. To determine these one has to solve (5).

Since all the four basic arithmetic operations can be carried out and zero
can be detected all numerical algorithms can be implemented to obtain
exact results. We will discuss the application of the H (p, r) code for exact
solution of linear equations in Section 7.

5. ARITHMETIC ALGORITHMS

In this section, we will describe the four basic arithmetic algorithms
using Hensel codes. As we will observe all these algorithms proceed from
the lower index (power) position of the radix and proceed towards the higher
positions, Even the division operation proceeds in this way. This is in
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contras‘; with the arithmetic in p-ary or any general weighted systems known
so far. In the case of a non-weighted system like the residue system the
division process does not exist. In addition, the division operation using
p-adic numbers is deterministic for all possible divisors which permits us
to carry out a very fast division algorithm unlike the p-ary system.

5.1. Addition

Addition in a p-adic system is similar to that in positive p-ary base.
In general, the algorithm for addition of any two numbers « and 8 (positive
or negative) given by

a =ad mld-my «+»+»d3.0001 - .. dy

B=b_mbm .--b3.beb ... by

(For convenience we take that « and B have identical number of digits)
aligns the p-adic point and proceeds finding the sum digit s; and carry digit
ciyy from a knowledge of g;, b; and ¢; (the suffix here indicates the digit posi-
tion to which «a, b, ¢, s belong. The carry ¢y, arising from the addition of
an + bp + cn 18 ignored.

Thus

si=ai+bi+c  (mod p)
for

i=—m —m-+1, ...n
with-

Com = 0
and

=1 if as+dbi+tc=>p

= ( otherwise
Ignore c¢pyq.

e.g.,

p=35 r=4

a=4/9=-1124

B =289 =-2243

e

o
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and
v=ua -+ B=12/9 = 4/3 = -3313.

Table 2

aq
by
Ci

W o o e
WO o -
_ O 4 o
(PO I Y

85

For convenience a table of p-adic representation for rationals whose
numerator (a) and denominator (b) do not exceed N = 17 in 5-adic base
for r =4 is provided (Table 3).

5.2. Complementation algorithm and subtraction

Subtraction using p-adic numbers can be done exactly similar to that in
positive p-ary system taking the borrow from the higher digit position.
However, it is more convenient to realize it as a complemented addition,
since the negative numbers naturally occur in this form.

The complementation algorithm is exactly similar to taking true or radix
complement of positive p-ary numbers except that it is taken from the lower
index position.

Let

a":a__m.a_m.l_l---a_l.aoal...

and a == d_ma—_m_l_l el g Aoty v

This algorithm consists of the following rules

Rule 1
If
a %0, for i=—m, —m+1,...n
then
dgi=p—a for i=—m
and
gGi=p-—1)—q for —m+1<i<n
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Table 3. Table of Hensel codes

H(S, 4)
\\a 1 2 3 4 5 6 7 8
LERN
1 -1000 +2000 -3000 +4000 -0100 -1100 -2100 -3100
2 +3222 -1000 -4222 :2000  -0322 +3000 1322 -4000
3 -2313 -4131 -1000 *3313 -0231 -2000 14313 11231
4 -4333 -3222 -2111 1000 -0433 +4222 -3111 -2000
5 1-000  2-000  3-000 4000 1000 1-100  2-100  3-100
6 -1404 -2313 -3222 -4131 -0140 -1000 -2404 -3313
7 -3302 1214 -4021 -2423 +0330 3142 -1000 -4302
8 -2414 -4333 +1303 -3222 -0241 2111 -4030 -1000
9 -4201 +3012 -2313 ‘1124 -0420 -4131 -3432 -2243
10 3-222  1-000  4-222  2-000 3222 3-000  1-322  4-000
11 -1332 -2120 -3403 +4240 <0133 -1411 -2204 -3041
12 -3424 -1404 -4333 -2313 <0342 13222 -1202 -4131
13 -2034 -4014 1143 -3123 -0203 +2232 4212 -1341
14 -4101 +3302 -2013 -1214 -0410 -4021 -3222 -2423
15 2:313 4131 1-000 3-313 2313 2-000  4-313  1-231
16 1234 2414 3104 -4333 10123 -1303 2042 -3222
17 -3043 1132 4121 -2210 -0304 -3342 +1431 -4420
AN
N2 9 10 11 12 13 14 15 16 17
b N\ S
1 -4100  -0200  -1200 <2200 +3200 - 4200 -0300 -1300  -2300
2 2322 0100 -3322 -1100 -4322 -2100 -0422  -3100 -1422
3 -3000 -0413 -2231 -4000 +1413 +3231 -0100 2413  -4231
4 -1433 10322 -4111 -3000 -2433 -1322 -0211  -4000  -3433
5 4-100 2000  1-200  2-200  3-200  4-200 -3000 1-300 2-300
6 -4222 -0231 -1140 -2000 :3404 -4313 -0322  -1231  -2140
7 2214 -0121 -3423 -1330 4142 -2000 0402 -3214 . -1121
8 -3414 -0433  -2303 -4222 1241 -3111 -0130  -2000  -4414
9 -1000 <0301 <4012 -3312 2124 -1420 -0231 4432 -3243
10 2-322 ‘1000 3-322  1-100  4-322  2-100 4222 3-100 1-422
11 -4324 -0212  -1000 -2332 -3120 -4403 -0340  -1133  -2411
12 -2111 -0140  -3020 -1000 -4424 -2404 ‘0433 3313 -1342
13 -3321 -0401 -2430 -4410 -1000 -3034 ‘0114 2143 -4123
14 -1134  -0330 -4431 +3142 -2343 -1000 -0201  -4302  -3013
15 3-000 -4131  2-231 4-000  1-413  3.231 1000 2-413  4-231
16 4402  -0241 -1421 -2111 -3340  -4030 -0310  -1000 -2234
17 -2024 -0113 -3102 -1240 -4234  -2323 ‘0412 -3401  -1000

pe
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Rule 2

If a4=0 for —m<i<],
then g3=0 for —m<i<j
and djy =P — Qjn

Gi=(p—1)—a for i=j+2<i<n.

e.g., p=35 r=4
Let a = 5/4 = 0433
then 6= —5/4 = -0llL.

5.3.  Multiplication

Let o and B be respectively the multiplicand and multiplier (positive or
negative).

a = a_ma_m+1 .« a_.l s Qoly v dn

B = b—mbwmﬂ o s b——l : bobl P b/n.

The multiplication algorithm is similar to the multiplication in p-ary system
except that the product is developed only to the same length as the multi-
plier and multiplicand. The multiplication algorithm consists in forming
Pjj=baj for i= —m, —m+1, ..., nand for the values of j = —m,
—m-+1, ...n —1iand then forming the partial products P; and the final
product P by shifts and additions as specified by the following recursions.

For each i form
Pi=b; a; for j=—m —m+1,...n—i

Since this is a multiplication of two single digits, the product in general will
consist of two digits.

Then obtain

Pi= 5 Pijl(m—+))

Jm—m

where A (x) indicates right shift of the number by x digits and

o B=P= 3 P;A(m+i).

jm—m

T TR S T TR SR T TR ST
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To place the p-adic point for P, we use the following rule:

Replace the index k& (which runs through —wm, —m + 1, ...,n) of
each digit of P by (k — #1); here m is the number of digits in multiplier and

multiplicand to the left of the p-adic point. P
Note that the p-adic point is assumed to be between indices k = — 1 "
and O.

e.g., Take
a=1/4 = -4333
B=1/3=-2313 for p=35, r=4
« . B=1/12 = -3424

Table 4

a; 4 3 3 3
b, 2 3 1 3 Y,
Poo 3 1

Poa 11

Py 11
Pos 1
P, 3 02 2 2
P, 2 1 1
P, 3
Py 2
P 3 4 2 4

5.4. Division

Let a = -qyma, ... a, be the dividend and B = -b¢b, ... by be the
divisor and y = -gug; ... g- be the quotient. The division operation is
similar to multiplication in p-adic arithmetic, but for choosing the multi-
plicative inverse of b, the leading digit of B. Thus in spite of the fact that
the rational numbers have been mapped into the p-adic form, they continue
to retain the similarity of operations involved in multiplication and division
in rational arithmetic. '

As already mentioned, the division process is deterministic and does
not require the trial and error process encountered in a p-ray system. Also
as In multiplication the operation proceeds from the left to right. This
again is in contrast to the p-ray division schemes. The division algorithm

S —
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consists of the following steps.

remark below).

We assume here b, = 0 (for by =0 see

Set Ry, = o = Zeroth partial remainder.

Let R; denote the partial remainder at the i-th stage and Ry denote its

i-th digit. Then
g3 = Ry - byt

(mod p) for i=0,1,...n

where byt is the multiplicative inverse of b,, the leading digit of 8.

The next partial remainder R;,; is then formed using

Riy=Ri+qi-B- A

where B = complement of 8, and A (i) denotes right shift by i digits.
The algorithm terminates when ¢, is obtained.

Remark. TIf b, = 0, shift the divisor left keeping count until the first
digit is non-zero and suitably adjust the quotient. Tt is assumed that by
shifting the divisor, it does not go outside the range of the order N Farey
fraction for the given H (p, r); in such a case the division operation is invalid.

e.g., p=2S5 r=4
a = 8/9 = -2243

Table 5

R,

goB A (0) ..

R,

Ry

a1BA (1)

2 2 4 3
3 4 4 4
o 2 4 3
0 3 4 4
0 0 4 3 |
o o 1 2 "
0 0 0 1
0 0o o0 4
0 0 0 O
4 4 3 2
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Remark. All the above algorithms can be conveniently implemented

by expressing the segmented p-adic numbers having p-adic points, in the
exponent-mantissa form assuming the point to be at the left end ; the mantissa
used here is of fixed length and the exponents are only used as a means for

locating the p-adic point.

6. CONVERSION ALGORITHMS

We will describe three different procedures for conversion of p-adic
order N Farey fractions into rational form.

Before proceeding for conversion, the positive and negative integers
and radix fractions which have well defined word format (see Section 4. 1)
are filtered-out and converted using the weights described earlier.

For other rationals, if the weighted sum of the code (reduced to the
minimal rational form) is an order N Farey fraction, then it is a soft fraction
with value equal to the weighted sum.

For hard fractions one of the following three procedures can be used.

6.1. Successive addition or multiplication method

Since integers and soft fractions are easily tested out, we can use the
following procedure for conversion of the hard fractions. The given hard
fraction can be added to itself 1, 2, ..., b times until it becomes an integer.
This can also be realized by successive multiplication. To speed up, one
could also carry out the same process simultaneously with the reciprocal
of the given code; in such a case we will be able to convert the code in
s-steps where s = min (q, b). Also instead of just testing for integers one
could check after each addition whether the result is a soft fraction. If so
it can be converted directly.

6.2. Method of congruences
Here we solve the congruence (5)
a(pf?—1)— bW =0 (modp") %)
by reformulating the problem as a solution of the diophantine equation
a(p?—1)—bW =k p" for k=41, 2, etc. (6)

It is well known that a diophantine e i '
S We quation of the form (Gelfond 1961,
Khinchin 1964, Mordell 1969, Hardy and Wright 1960) (

1na—-nb =1 (7)
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has a solution ¢ = a, and b = b, which are obtained by expanding mj/n as
a continued fraction and taking the last but one convergent which equals
bo/a,. Since there are many solutions to the problem one-has to also try
the other solutions.

ag+ 1, by+tm for t=0,1,2, ...

and take those which are acceptable according to a certain criterion.

Thus (6) can be solved for various values of &£ and that solution which
gives an order N Farey fraction is taken.

Since the above procedure involves searching through two variables
k and ¢ it is somewhat slow. So we suggest here an alternate procedure in
which one can obtain the value of k. For this purpose we use the weight
W'[p"? — 1 of the reciprocal of the given p-adic number whose weight
Wp'? — 1 is known.

.Then the value of k to be taken is

WW’ —(n"72 _ 2
e =8 ®

Using this value of k a search is made for that value of ¢ which will yield the
desired order N Farey fraction.

e.g., Consider the conversion of *3423-in H (5, 4). Let its rational form
be equal to b/a. Pseudo weight of 3423 is 127/24. The pseudo weight
of the reciprocal (+2204) of -3423 is —212/24.

Hence

— 212X 121 =576 _ _,, ©)

k= 655

The following diophantine equation has to be solved.

127q —24b = — 44 X 625. (10)

The solution of
127a —24b =1 (11

is given by the last but one convergent of the continued fraction expansion
of 127/24.

12724 =5 + 31— - (12)

[
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The convergents are
s, 16/3, 37/7, 127/24.

Thus bc/ag == 37/7-
(10) can now bz written as

127a —24 (b — 44 X 26) = — 44 (13)
Hence the solution of (10) is
b —44 x 26 = — 44 X 37 or bh = — 484 a4)

or
a =7, b =11 or the fraction is 11/7.
6.3. Direct table-look-up

The third procedure for converting or decoding the H (p, r) codes is by
a direct high-speed table look-up. Here one stores the rational numbers

as an ordered pair corresponding to each one of the possible combinations
of the H (p.r) codes, which are ordered lexicographically.

7. APPLICATIONS TO ExacT MATRIX COMPUTATIONS

We will now illustrate the application of H (p, r) codes for exact com-
putation. For the sake of illustration we consider the Gaussian elimination

procedure (Young and Gregory 1973) to obtain the solution of the follow-
ing linear system.

3 1 3 JC1 16 . . ’ -
1 3 1 x{ =1 81 as
1 1 3 X3 12

The entries of the augmented matrix are converted into p-adic form.
Then the elimination and back substitution procedures are done exactly as

in real arithmetic and finally the p-adic entries of the solution vector .are
converted into rational number system.

let p =11 and r =4.

Then the system is

- 3000 - 1000 - 3000 Xy 5100
- 1000 - 3000 - 1000 x| = | -8000 (16)
- 1000 - 1000 3000

X3 1100
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The eliminated augmented -matrix is
- 1000 4737 - 1000 ‘97371

+0000 1000  -0000 = -1000
0000  -0000  -1000 3000

Then back substitution yields
X3 = +3000
Xy = 1000
and
X, = 9737 —x; — 4737 x,
= *2000.
Hence the solution vector is

2
1]
3

7

17

(18)

We now present the solution of a larger system of highly ill-conditioned
linear equations using Gaussian Flimination in a digital computer, in which

the p-adic arithmetic has been implemented.

e.g., Solve Ax =b, where

1098 7654321
9987654321
8887654321
7777654321
.l 666,665 4.3.21
A=| 55555547321
4 4 4 4 4 4 43 2 1
3333333321
2222222221
SRR T T U O A O B O
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pr=I[1, 2, —5 9 15 L 6, 14, 3, 1]
Solution vector in 8209-adic system for r == 8:

x, = 8208 8208 8208 8208 8208 8208 8208 8208
Xy = 8 0 0 0 0 0 ) 0
_r; _ 3188 8208 8208 8208 8208 8208 8208 8208
xy = 8 0 0 0 0 0 0 0
x, = 20 0 0 0 0 0 0 0
ve = 8190 8208 8208 8208 8208 8208 8208 8208
x, = 8206 8208 8208 8208 8203 8208 8208 8208
xg = 19 0 0 0 0 - 0 ) )
x, = 8200 8208 8208 8208 8208 8208 8208 8208

x;0= 8208 8208 8208 8208 8208 8208 8208 8208

which corresponds to
xT =[—1,8 —21,8,20, —19, —3, 19, —9, —1].
It is evident, p-adic system can be used for implementing other algorithms

for obtaining exact inverses of nonsingular matrices and Generalized Inverses
of singular matrices with rational entries (Mahadeva Rao ef al. 1975).

A complete FORTRAN program (for IBM 360 series) for p-adic arithmetic
(for general p and r) and for solution of linear equations is available with
the authors.

8. CONCLUDING REMARKS

The following problems remain to be solved before usmg p-adic arith-
metic for all computations.

(i) Simplification of conversion of hard fractions to rationals

(i) Detection of sign and magnitude of H (p, #) codes dlrectly without
explicit conversion ;

{ui) Detection of overflow when the r .
ationals excee
consideration. eed the range under

We believe that these problems will be solved in the hear future.

_———
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