Stereospecific Synthesis of Endo-6-Aryl-2-Oxobicyclo [3.3.1]Nonanes

Ratna Chakraborti; Brindaban C. Ranu; Usha Ranjan Ghatak

* Department of Organic Chemistry, Indian Association for the Cultivation of Science, Calcutta, INDIA

To cite this Article Chakraborti, Ratna, Ranu, Brindaban C. and Ghatak, Usha Ranjan(1987) 'Stereospecific Synthesis of Endo-6-Aryl-2-Oxobicyclo [3.3.1]Nonanes', Synthetic Communications, 17: 13, 1539 — 1543

To link to this Article: DOI: 10.1080/00397918708057783

URL: http://dx.doi.org/10.1080/00397918708057783
STEREOSPECIFIC SYNTHESIS OF
ENDO-6-ARYL-2-OXOBICYCLO[3.3.1]NONANES

Ratna Chakraborti (née Dasgupta)
Brindaban C. Ranu, Usha Ranjan Ghatak*

Department of Organic Chemistry, Indian Association for the
Cultivation of Science, Jadavpur, Calcutta - 700 032, INDIA

ABSTRACT: Two alternate synthetic routes to endo-6-aryl-2-oxobicyclo
[3.3.1]nonanes (3a-d) by stereospecific catalytic hydrogenation of the easily accessible 6-aryl-bicyclo[3.3.1]nona-3,6-dien-
2-ones (2a-d), and regioselective homologation of endo-2-aryl-6-
oxobicyclo[3.2.1]octanes (4a-d) are described.

The bicyclo[3.3.1]nonane ring system has attracted considerable interest recently. A simple general synthesis of 6-aryl substituted bicyclo[3.3.1]nonadi-
none (2a-d) from the corresponding γ,δ-unsaturated methylketones (1a-d) through an efficient diethoxymethylation and cyclization route. In this communication, we report two alternate routes to the endo-6-aryl substituted bicyclo[3.3.1]nonanes (3a-d) by stereospecific catalytic hydrogenation of the dienones (2a-d), and regioselective homologation of the easily accessible 2-endo-aryl substituted bicyclo[3.2.1]octanones (4a-d)10.

*To whom correspondence should be made.
Catalytic hydrogenation (Method A) of the dienones (2a-d) over palladium charcoal (10%) in ethanol produced the endo-6-aryl ketones (3a-d) in high yields as the only isolable products. The stereochemistry of these ketones was assigned by their direct synthesis from the known bicyclo[3.2.1]octanes (4a-d). Thus, reactions of (4a-d) with ethyl diazoacetate in the presence of triethylonium fluoborate\(^\text{11,12}\) followed by hydrolytic decarboxylations of the resulting crude \(\beta\)-keto esters with aqueous acetic acid-hydrochloric acid (Method B) produced the regioisomeric mixtures of the ketones (3a-d) and (5a-d) in 75-80 : 25-20 as indicated by G.L.C. and \(^1\)H N.M.R. The pure major regioisomers (3a-d) were separated by column chromatography or by crystallization and were found to be identical with the samples prepared from the dienones (2a-d).
Experimental

Melting points were recorded on a Mettler FP-15 instrument. Melting points are not corrected. IR spectra of solids (KBr) and liquids (neat) were recorded on a Perkin-Elmer model PE298. \(^1\)H N.M.R spectra were recorded at 60 MHz on Varian Associates T-60A for solutions in CCl\(_4\) or CDCl\(_3\), with SiMe\(_4\) as internal standard. Analytical GLC was performed on a Hewlett-Packard Model 5730A chromatograph using UCW-982 (20ft x \(\frac{1}{8}\)in) column. Solid compounds were recrystallized from light petroleum (b.p. 40-60°C). Column chromatography was performed on neutral alumina using aluminium oxide 'standarized for chromatographic analysis acc. to Brockmann' (B.D.H., India). Elemental analysis was performed in this laboratory by Mr. P.P. Bhattacharya, and the differences with the calculated values are within C \(\pm 0.25\), H \(\pm 0.19\).

endo-6-Phenyl-2-oxobicyclo[3.3.1]nonane 3a; Method A:

General Procedure:

A solution of the dienone (2a) (100 mg, 0.47 mmol) in ethanol (5 ml) was hydrogenated at room temperature and pressure in presence of 10% Pd-C (30 mg). After 2 h the hydrogenation was complete and the solution was filtered off and evaporated in vacuo to furnish (3a) (90 mg, 88%).

Method B: General Procedure:

To a cooled (5-10°C) solution of the bicyclooctanone (4a) (650 mg, 3.25 mmol) in dry methylene chloride (20 ml) was added a solution of triethylxonium fluoborate (2 g, 9.17 mmol) prepared from freshly distilled boron trifluoride ether (10 ml) and epichlorohydrin (5 ml) in ether (20 ml) in methylene chloride (10 ml) with continuous stirring under nitrogen. Immediately after, rapid dropwise addition of ethyl diazoacetate (1.0 g, 8.77 mmol) was commenced. Addition was regulated such that the solution temperature was maintained in the range of 15-25°C. After stirring for an additional 3 h, the reaction mixture was added
Table: Physical and spectral data of \textit{endo}-6-Aryl-2-oxobicyclo-
\textit{(3.3.1)}nonanes (3a-d).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield (%)</th>
<th>m.p. ((^\circ\text{C}))</th>
<th>I.R. ((\text{cm}^{-1}))</th>
<th>(^{1}\text{H} \text{N.M.R.} , (\delta))</th>
<th>Elemental analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>88(^a)</td>
<td>oil</td>
<td>1720</td>
<td>1.06-3.00(m, 13H); 7.00-7.33(m, 5H);</td>
<td>C, 83.82</td>
</tr>
<tr>
<td></td>
<td>40(^b)</td>
<td></td>
<td></td>
<td>7.00-7.33(m, 5H);</td>
<td>H, 8.54%</td>
</tr>
<tr>
<td>3b</td>
<td>93(^a)</td>
<td>52-53</td>
<td>1690</td>
<td>1.0(s, 3H); 1.23-3.03(m, 11H); 7.0-7.26(m, 5H)</td>
<td>C, 84.34</td>
</tr>
<tr>
<td></td>
<td>50(^b)</td>
<td></td>
<td></td>
<td></td>
<td>H, 8.9%</td>
</tr>
<tr>
<td>3c</td>
<td>90(^a)</td>
<td>106</td>
<td>1710</td>
<td>1.1-3.03(m, 12H); 3.75(s, 3H); 6.57-7.20(m, 4H)</td>
<td>C, 78.53</td>
</tr>
<tr>
<td></td>
<td>45(^b)</td>
<td></td>
<td></td>
<td></td>
<td>H, 8.44%</td>
</tr>
<tr>
<td>3d</td>
<td>92(^a)</td>
<td>65</td>
<td>1705</td>
<td>1.03(s, 3H); 1.2-3.03(m, 11H); 3.73(s, 3H); 6.6-7.13(m, 4H)</td>
<td>C, 79.03</td>
</tr>
<tr>
<td></td>
<td>56(^b)</td>
<td></td>
<td></td>
<td></td>
<td>H, 8.66%</td>
</tr>
</tbody>
</table>

\(^a\): Method A, \\
\(^b\): Method B.

cautiously to a solution of sodium bicarbonate (10\%, 40ml) and stirred until the evolution of \(\text{CO}_2\) ceases. The organic layer was separated and the aqueous layer was washed with methylene chloride (2 x 20 ml). The combined methylene chloride solution was washed with water, dried (Na\(_2\)SO\(_4\)) and evaporated to leave a yellow residue which was distilled to yield a pale yellow oil, b.p. 120-130\(^\circ\text{C}\) at 0.5 mm of Hg. This oil was then refluxed with a mixture of acetic acid (5 ml), hydrochloric acid (3 ml) and water (3 ml) at 140\(^\circ\text{C}\) (oil bath) for 2 h under nitrogen. The reaction mixture was cooled, and poured into ice-water and extracted with ether (3 x 25 ml). The ether extract was washed with Water, 5% sodiumbicarbonate solution, water, dried (Na\(_2\)SO\(_4\)), and evaporated to leave a yellow residue which was purified by column chromatography (neutral alumina, light petroleum) to afford (3a).
Acknowledgement:

Financial support from the SERC/DSI (New Delhi) under grant No.23(3p-8)/81-STP/II is gratefully acknowledged.

References: