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CAPILLARY NETWORK MODELS
FOR TRANSPORT IN PACKED BEDS:

CONSIDERAnONS OF PORE ASPECT RATIO

SURESH K. BHATIA

Department of Chemical Engineering, Indian Institute of Technology,
Powai, Bombay 400 076, India

(Received August 1,1995; in final form March 27. 1996)

The conventional analysis for the estimation of the tortuosity factor for transport in porous media is
modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are
also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model
predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds
shows good agreement with a network model of randomly oriented intersecting pores for porosities upto
about 50 percent, which is the region of practical interest. The predictions based on this network model
are also found to be in better agreement with the data of Currie than earlier expressions developed for
unconsolidated and grainy media.

KEYWORDS Pore network Diffusion Packed bed Aspect ratio Porous media

INTRODUCTION

The mathematical modelling of transport processes in porous materials is of concern
in a large variety of applications, and has attracted considerable interest in the
chemical engineering literature. The most common approach in the modelling utili­
zes an effective transport coefficient in conjuction with the flux law

(I)

where Vq is a driving force. Various theories have been developed for the estimation
of the effective transport coefficient K, in terms of molecular and bulk properties of
the fluid and structural properties of the porous medium (Jackson, 1977; Mason
et al., 1983; Bhatia, 1985; 1986; Burganos and Sotirchos, 1987; Sahimi et al., 1990;
Deepak and Bhatia, 1994),and the majority of these rely on the idealized representa­
tion of the pore space in terms of a network of cylindrical capillaries. This forms one
of the simplest models of the porous medium and in general leads to a relation for
the effective transport coefficient of the form

K =sK
e y (2)
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184 S. K. BHATIA

where y is a tortuosity factor and K a suitably averaged mean pore conductivity.
Under conditions when K is independent of pore size, such as in liquid phase
diffusion or the molecular regime for gas phase diffusion, the sole unknown in the
tortuosity factor which must now depend only on the porous medium structure. The
most widely accepted value for the tortuosity is y = 3 based on a random pore
orientation (Johnson and Stewart, 1965), although corrections to this allowing for
correlation among successive pores traversed have also appeared (Bhatia, 1985,
1986).

The above approach for estimating transport coefficients, while commonly used
for consolidated media such as porous catalyst particles and adsorbents, has hither­
to had limited success with unconsolidated media such as packed beds. For such
cases it is more common to use earlier well-known results which do not consider a
pore network idealization, but instead emphasize the grainy nature of the medium
(Rayleigh, 1892; Maxwell, 1892; Bruggemann, 1935; Meredith and Tobias, 1961;
Prager, 1963; Weissberg, 1963). However, as will be seen, even these are generally
unsatisfactory, and the extension of the network models to unconsolidated solids is
therefore a potentially attractive problem. The most important cause of deviations
in the latter case is the assumption of purely axial transport in the pores inherent to
the studies referred to above. In pores of finite radius and aspect ratio (defined here
as the pore radius to length ratio) greater than zero this need not be the case, so that
a more detailed analysis is necessary for estimating the tortuosity. This is particular­
ly important for grainy unconsolidated media where the aspect ratio can be of the
order of unity. The need for such an analysis is also evident from the requirement
that for molecular transport y -+ 1 as e -+ 1, which is not satisfied by the conventional
theory based on axial transport in the pores. While simulative approaches consistent
with this requirement have been published (Akanni et aI., 1987; Tomadakis and
Sotirchos, 1993) the development of an analytical result which is computationally
much less demanding is also desirable.

A rigorous treatment of the problem would incorporate radial and axial transport
within the pores, considering these as a small scale phenomenon, embedded within
the larger scale random walk between pore intersections (Bhatia, 1985, 1986). This
kind of complexity will lead to a computationally demanding theory, as is the case
even for the result with the radial gradients neglected (Bhatia, 1986). However, a
more tractable approach is suggested by the work of Pismen (1974) who assumed
that in pores of finite radius the resulting transport direction is that closest to the
macroscopic one. In his analysis, however, Pismen made the ad-hoc assumption that
r/t = e'/2 for any pore, which at best is only an order of magnitude estimate. A more
justifiable approach would be to construct structural models of the porous medium
and develop the precise aspect ratio-porosity relationships based on these, which
may then be used in the transport modelling. This is the approach adopted in the
present article in which we investigate the variation of effective transport coefficient
with porosity for three different structural models. These include a network of pores
in a cubic lattice, another with randomly oriented pore segments, and one with
randomly overlapping capillaries, each having a uniform pore size. While the deve­
lopment is done for the case of molecular diffusion the results are valid for any
transport process taking place in the pores, in which the local transport coefficient is
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TRANSPORT IN PACKED BEDS 185

independent of pore size. As will be subsequently seen additional complications arise
when the local transport coefficient varies with pore size, as for Knudsen diffusion,
and this case is therefore not considered here. The results obtained here are com­
pared with a large amount of data for diffusion in packed beds (Currie, 1960), and
yield better agreement than those of the earlier theories for transport in uncon­
solidated porous media.

THEORY

Transport Model

·Small aspect ratio

We develop the transport model under the assumption of uniformly sized pores. In
the conventional transport models the tortuosity factor y in Eq. (2) is estimated from
(Johnson and Stewart, 1965)

(3)

in which <.) represents an orientational averaging of the angle (), which represents
the angle between the net diffusion direction in a pore and the macroscopic flux
vector. If it is assumed that diffusion in a pore proceeds axially then the probability
distribution for () is the same as that for the pore axis. For a random pore orienta­
tion

p((}) = ~Sin( (}), 0.;; ().;; it (4)

and it readily follows from Eqs. (3) and (4) that y = 3. As a modification of the above
analysis it has been recognized (Bhatia, 1985; 1986) that all pores traversed by
diffusing molecules are not necessarily random, as the meandering motion can result
in retracing of the path. Consequently successive pores traversed are correlated.
Such an effect is well known in solid-state diffusion wherein a molecule diffusing by
a site to site hopping mechanism has a finite probability of returning to the site just
vacated (Le Claire, 1976). This effect is most conveniently captured by the correla­
tion factor (Le Claire, 1976)

F = 1 + <cos((}J)
1- <cos((})

(5)

in which (), is the angle between successive steps in the random walk between pore
intersections in a network. In terms of this correlation factor the tortuosity express­
ion in Eq. (3) is now modified to (Bhatia, 1985)

y-l=F<cos 2 ( (} ) (6)

For purely axial transport in a pore (),= it and cos((})= -1 when a molecule
re-traverses the pore after having just diffused through it. In a cubic network of
uniformly sized pores there is always a pore also in the forward direction for which
cos((},) = 1, and it is easily seen that <cos((},) =O. This is also the case for randomly
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186 s. K. BHATIA

overlapping capillaries. However, for a network of randomly oriented segments
cos(0,)= 0 for all but the pore just traversed, for which cos(0,) = -1. When all pores
are of uniform size the probability is liN that the molecule retraces its path, so that
<cosO,> = -liN, and

N-l
F=-­

N+l
(7)

Finite aspect ratio

To incorporate the effect of finite pore size in the above analysis we assume
following Pismen (1974) that the net diffusion direction in a pore is that closest to
the macroscopic flux vector. Thus, following the situation depicted in Figure 1, we
have

0=0 for 02:S:; 01 (8)

0=02-°1 for °1:s:;02<nI2 (9)

for
n

(10)0=01+02 Z<02:s:;n-0 1

O=n for n-01:S:;°2:S:;n (11)

in which 01 is defined such that tan(Ol) = 2rlt, and O2 is the angle between the
macroscopic diffusion direction and the pore axis. The average value of cos 2( 0) over

macroscopic
diffusion
direction

diffusion direction
in pore

pore
..., axis

FIGURE I Diffusion direction in a pore.
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TRANSPORT IN PACKED BEDS 187

all pore orientations. with the probability distribution for O2 following Eq. (4). is
easily seen to be given by

4X
= 1 + 3(1 +4X2)

2
(12)

which has the property that <cos2( 0) >..... 1 as X( = rlt) ..... 00. This is also the limit to
be expected as 8 ..... 1. as in this case the effective pore length must reduce to zero as a
result of intersection and overlap. Figure 2 depicts the variation of tortuosity with
pore aspect ratio X. following Eqs. (6) and (12). with the correlation factor F taken
to be unity. Starting from X = O. at which point y = 3. there is a rapid decrease in
the tortuosity with the value dropping to about 1.03 at X = 1. This underscores the
importance of accounting for a non-zero pore aspect ratio in the transport model­
ling.

As mentioned above the correlation factor F in Eqs. (5) and (6) is unity for
symmetric networks such as cubic or randomly overlapping capillary systems. For
other networks. such as those comprising of randomly oriented pore segments, it is
necessary to estimate this factor by means of Eq. (5). To this end we first estimate
the average value of cos(0el for a pore of non-zero radius. For this purpose we
assume that a molecule can enter the pore at any random location on the cross­
section with a uniform probability. and leave the pore from any point randomly
located on the opposite cross-section. Similarly on return the molecule can re-enter
and exit from any random location on the corresponding planes. Referring to

3.0

.a> 2.5

.~

o
;:l

~20....
'"~o
R.l.5

1.0 20 3.0 4.0
aspect ratio, x

5.0

FIGURE 2 Variation of pore tortuosity with aspect ratio X, predicted by Eq. (12).
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188 S. K. BHATIA

FIGURE 3 Forward and reverse displacement vectors in a pore.

Figure 3 we denote F and R as the forward and reverse displacement vectors, given
in cylindrical coordinates as

F = [r2cos(a2)- r 1 costa 1)]i + [r2sin(a2) - r 1 sint« 1)]j + tk (13)

R = [r4cost( 4 ) - r3cost a 3)]i + [r4sin( ( 4 ) - r3sin(a 3)]j - tk (14)

in which (ri , ai' Zi) refer to the coordinates of the ith point. The value of cost Oel is now
readily obtained from

(15)
F.R

cost 0cl = fuV IDD
v' F.F v' R.R

whose average over the locations of points 1,2,3 and 4 is given by

- [nf,2nf,2nf,2nf,'f,' f'f,' [0:'= r.dr.] [04= da.]cos(O,) = cos(Oel .1' • 24' 1 ,
o 0 0 0 0 0.0 0 (11r )

Equations (9)-(12) may be combined to yield

(16)

where ai =rJr,s, =aJ211 and

gila"~ a2, a3 , a4 , 51'52'53'54) =[± i (-lr ja,ajcos(211(5i - 5))] - X- 2 (18)
i_1 i-3

gz{a" a2, a3, a4 , 5,,5 2,53,54)= [(ai + a~ - 2a, a2 cos(211(52 - 51)) - X - 2).

(a; + a~ - 2a3a4 cos(211(54 -53)) + X- 2)]1/2 (19)
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TRANSPORT IN PACKED BEDS 189

0.00

'""'~-0.50
t..l

1000.1 1 10
aspect ratio, x

- 1.00 +-,..,T1TIllF"r-rr"TTTTTr-T--n-rTm!----.-TTTTTTTI

0.01

FIGURE 4 Computed and fitted results for C(X). Solid line represents Eq. (17) while symbols the fitted
values based on Eq. (48).

Figure 4 depicts the behaviour of C(X), shown as the solid line, obtained from Eqs.
(17)-(19) with the integral in each dimension evaluated using finite element quadrature.
For small values of X the average value of cos(OJ is-l as expected, while for large X the
value of C(X) approaches O. The bulk of the change on increasing the aspect ratio has,
however, occurred by X = 5, at which point there is negligible correlation among the
forward and reverse trajectories. Further it is also evident that there is negligible effect of
pore width for x <;; 0.2, with C(X) ~ - 1 in this range.

Based on the value of costOJ evaluated above (i.e. C(X)) it is now possible to estimate
the value of (cos(O,), and hence the correlation factor F, for any network. As men­
tioned above for the cubic and randomly overlappling capillary networks F = I, due to
effect of opposing pore segments. For networks of randomly oriented capillaries with
coordination number N, however, (cos(0,) = C(Xl/N, since the probability of returning
from an intersection into the pore just traversed is liN, and for the remaining randomly
oriented pores (cos(O,) = O. Consequently, following Eq. (5)

F =-,-:N_+---:C"",(X,.,..)
N - C(X)

(20)

for N-coordinated networks with randomly oriented pores. Equations (2), (6), (12) and
(20) may now be combined to provide the effective diffusivity in such networks in terms
of X and e. Clearly the result is also valid for symmetric networks but with C(X) taken as
O. Before the result is usable, however, it is necessary to relate X and e. For this it is
necessary to construct a suitable mathematical model of the structure, as described in the
next section.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
2
 
2
0
 
J
a
n
u
a
r
y
 
2
0
1
1



190 s. K. BHATIA

Structural Modelling

In the structural models developed here one of the considerations has been the
criterion X ->(:1:) as s ->I so that, as expected, <cos2( 0) >-->1 in this limit. This
necessitates the inclusion of pore intersections in the modelling.

Cubic Network

A convenient framework for modelling porous medium structure has been provided
by Petersen (1957) who assumed that for a network of intersecting cylindrical pores

(21)

where k is a structural constant such that the second term in the right hand side
quantifies the loss in volume due to intersections, and L the total length of pore axes
per unit volume. The second term in Eq. (21) accounts for loss at intersections.
Differentiation of Eq. (21) with respect to r yields the surface area per unit volume
given by

S=2nrL-kr2

To evaluate k Petersen used the condition that S = 0 at s = 1, which provides

k= [4n; L]/2
following which Eqs. (21) and (22) simplify to

where

3nL
G=­

kr

and satisfies the cubic equation

4
-eG3-G + 1 =0
27

(22)

(23)

(24)

(25)

(26)

(27)

Equations (23)-(27) are quite general and, while originally developed (Petersen,
1957) for application to a random network, may be used for other systems if the
appropriate value of L is specified.
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TRANSPORT IN PACKED BEDS

For a cubic network one has

3
L= t 2

•

191

(28)

where t. is the length of one edge of a cubic unit cell, so that Eqs. (23) and (26) yield

6n3/2

k=tr (29)
a

3
G=--

2yfi

where y = rlto: Substitution of Eq. (30) into Eq. (27) now provides

2n3/2y3 - 3n y 2 + e = 0

(30)

(31)

which relates y to B. Of the three solutions of Eq. (31) one is negative for s > 0, while

another lies on a branch for which y = 3/2Jic at e = 0 which is also unacceptable.
Consequently, only solutions on the middle branch are meaningful, and these will be
discussed in a later section.

It may be noted that the aspect ratio y, based on length of the unit cell, differs
from the aspect ratio X required in Eqs. (12) and (20). The latter is based on the
effective diffusion length in the pores which is smaller than the length of the unit cell,
t., because of intersection and overlap effects. It may be expected that the diffusion
length in a pore becomes negligibly small as the porosity approaches unity, so that
the surface area expression in Eq. (25), which has similar behaviour, may be used to
estimate this as

i.: 1-~
t. 2G

which combines with Eq. (30) to yield

(32)

(33)X= Y
(1- yfi)

Equation (2) may now be used to estimate the dimensionless effective transport
coefficient for the cubic network as

(34)

where y-l is obtained from Eqs. (3), (12), (31) and (33).

Randomly Oriented Capillaries

In this network the structural elements comprise of randomly oriented capillaries. It
is assumed that each node, or intersection, has a coordination number N, and each
capillary has a uniform axial length t. and radius r. In actuality the pores must have
a distribution of lengths if they lie between randomly located intersections in the
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192 s. K. BHATIA

solid. However the dominant effect is that of the random pore orientations, and for
simplicity we therefore assume a constant pore length equal to the expected value of
the median at an intersection. It is possible to relate this expected value to the
density of pore intersections n by considering the intersections as being randomly
located according to a Poisson process. Consequently the probability distribution
for the length of the (N12 + I)th pore at an intersection is given by

(
4nR3n)(41tR3n)N/2 . 2exp --- -- 41tR n

3 3
P(R) = (NI2)!

which yields the expected value

t a = [RP(R)dR

= (_3_)1/3q~ + 1)
4nn q~+ I)

where qX) is the gamma function

qX) = f~ t(x-I)e-ldt

Equation (36) now provides the total length of pore axes per unit volume as

N
L=-t n2 a

s

nt2

•
where

(35)

(36)

(37)

(38)

(39)=3N[q~ +1)J3
S 8 q~+I)

As for the case of the cubic lattice we substitute the above value of L into Eqs.
(23), (26), (27) and (32) to obtain

X= y
(1- y.fii3)

(40)

(41)

providing the needed relation between the diffusional aspect ratio X and porosity B.

The dimensionless effective transport parameter may now be estimated by means of
Eq. (34) with y-l being obtained from Eqs. (6), (12), (17), (20), (40) and (41).
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TRANSPORT IN PACKED BEDS 193

Randomly Overlapping Capillaries

This kind of structure differs from the previous two in that the capillaries are
randomly overlapping and piercing each other in cross-linked fashion. Such a model
for the porous solid was first proposed by Bhatia and Perlmutter (1980) and
Gavalas (1980), and considers the pore volume as randomly locaied in the solid,
leading to

B = 1- exp( -1tr2L )

S = 21trL(I-B)

Gavalas also showed that the mean length between intersections is given by

1
t=-a nl

(42)

(43)

(44)

where n1 is the number of intersections per unit length, and is related to the total
length of pore axes per unit volume, L, by

Equations (42) and (44), (45) now combine to yield

y=-ln(l-e)

which in conjunction with Eq. (43), provides

X=-ln(I-B)
(I - e)

(45)

(46)

(47)

As for the cubic network F = 1 in the present case as well, and the effective
transport coefficient is estimated by means or Eqs. (34), with ]I - 1 following Eqs. (3),
(12) and (47).

RESULTS AND DISCUSSION

Structural Modelling

The structural models discussed above relate the diffusional aspect ratio X to the
porosity e. Figure 5 depicts the calculated X - e relationship for each or the three
cases. For the case of randomly oriented capillaries a coordination number or N = 6
was chosen and, as seen in the figure, gave an aspect ratio very close to that or the
cubic network. In all cases X -+ OCJ as e -+ 1 which is the desired effect, as
(cos2(O» _ 1 in this limit following Eq. (12). In general, except for very low porosi­
ties, the network of randomly overlapping capillaries gave significantly higher aspect
ratio compared to the other two structures. This is predominantly due to the lower
coordination number or 4 for randomly overlapping capillaries, leading to a smaller
number density or pore segments. In confirmation of this, reduction in coordination
number N for the network of randomly oriented pore segments also yielded an
increase in aspect ratio X, as seen in Figure 6.
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randomly overlapping
capillaries

0.00 0.25 0.50 0.75 1.00
porosity

FIGURE 5 Variation of aspect ratio X with porosity for various structural models.

10

....
".,
~

0.1

0.00 0.50 0.75 1.00
porosity

FIGURE 6 Effect of coordination number on variation of aspect ratio X with porosity, for network of
randomly orientedintersecting pore segments.

Transport Coefficient

Proposed models

Using the aspect ratio-porosity relationships developed in the earlier section and
depicted above, predictions were made for the effective diffusivity for each of the
three structures considered here. The results were also compared with the extensive
data of Currie (1960) for the effective diffusion coefficient of hydrogen in packed
beds of various granular materials. The solid line in Figure 7 depicts the results for a
cubic network obtained using Eqs. (3), (12), (31), (33) and (34), while the symbols
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i
8

.;J
#~

,se;+•
jJ'" ,'.

0.1
porosity

195

FIGURE 7 Comparison of model predictions, using a cubic network model, for the variation of effec­
tive diffusivity with porosity, with experimental data of Currie (1960).

represent the data of Currie. The agreement between the model and data is marginal
for the majority of the data, with about 10-30 percent overprediction for much of
the data below a porosity of about 0.4. Above a porosity of about 0.5 the deviation
is significantly larger with overpredictions as much as 50 percent. Some of Currie's
data was taken for packed beds comprised of flaky material such as mica, perspex
and vermiculite, or pumice stones of wide size distribution. Such flaky material
would have anisotropic diffusivities, due to preferential packing in layers, with the
diffusivity in the axial direction being lower than that in the lateral one. Such data
was therefore not considered for the model comparisons. The deviation for the other
data above about 0.52 porosity (filled triangles, open circles and asterisks) may also
be due to shape effects leading to differences in pore geometry, as a small drop in
effective diffusivity is evident in the change from one material to another at 8 ~ 0.52.
In the region below this porosity the materials were regular shaped powders such as
sand, sodium chloride, carborundum or glass spheres. Above this porosity the filled
circles represent various soil crumbs, while the open circles represent tales and
asterisks highly porous materials such as steel wool and plaster of paris. A small
drop in diffusivity is also evident in the switch over from soils to tales at about
8 = 0.7, again pointing to a small contribution from particle shape. This effect is not
explicitly represented here, though it may be captured by the choice of a different
structural model.

Calculations of the effective diffusivity were also performed here for the network
comprising of intersecting randomly oriented pore segments, using Eqs. (6),(12),(17),
(20) and (39)-(41). For convenience in the computations the results for C(X) were
first curve fitted by a Pade' approximation of the form

C 1+ 1.08219X + 4.32997x 10- 3 X 2

(X) = - [1.04176X + l.30966X 2 + 0.368099X 3 + 1] (48)
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196 S. K. BHATIA

which was subsequently used in the diffusivity calculations. The symbols in Figure 4
represent values predicted by Eq. (48). Figure 8 compares the results for the effective
diffusivity predicted by the present model, depicted by the solid line, using a coor­
dination number of N = 6, with the experimental data of Currie (1960). This value of
N is generally considered appropriate for a variety of porous media, including
packed beds, and has been chosen by other workers as well (Burganos and Sotir­
chos, 1987). It is also consistent with the value for a cubic network. The model
predictions appear to match the data upto a porosity of about 50 percent remark­
ably well and significantly better than the cubic structure presented in Figure 7.
Thus, at least for the regular shaped materials used in the lower porosity (below
about 50 percent) data the randomly intersecting pore segment model is suitable in
describing the pore structure. This is perhaps a result of the random packing of the
particles. Figure 9 shows the effect of varying the coordination number of the
effective diffusivity predictions. Between N = 3 and N = 6 the diffusivity increases
slightly with increase in N, but for the large value of N = 12 the trend is reversed
and the diffusivity decreases. This reversal may be explained by the lower aspect
ratio for larger N (d. Figure 6) which then dominates since the correlation factor F
approaches unity as N increases (d. Eq. (20)).

Figure 10 shows the results obtained using the randomly overlapping capillary
model following Eqs. (3), (12), (34) and (47). This model appears to also predict
significantly higher diffusivities over the whole range of conversions in comparison
to the experimental data. Clearly this is not an appropriate structure model for
packed beds.
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FIGURE 8 Comparison of model predictions, using a model of randomly oriented intersecting pore
segments (solid line) and effective medium theory (dashed line), for the variation of effective diffusivity
with porosity, with experimental data of Currie (1960),
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~--N=12

0.1
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FIGURE 9 Effect of coordination number on variation of effective diffusivity with porosity, for a
network of randomly oriented pore segments.
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FIGURE 10 Comparison of model predictions, using a model of randomly overlapping capillaries, for
the variation of effectivediffusivity with porosity, with experimental data of Currie (1960).

Comparison with Prior Models

For purposes of comparison calculations were also done for the vanation of the
effective diffusion coefficient using several prior models of transport in uncon­
solidated media. The dashed line in Figure 8 represents the results from effective
medium theory (Bruggeman, 1935; Landauer, 1952) for a mixture of several phases,

(49)
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which for our case yields

x, 3/;-1
-=--
K 2

(50)

Clearly the effective medium theory performs very poorly, and appears to be in
agreement with the data only above about e = 0.7. In the same range the six­
coordinated network of randomly intersecting capillaries does not perform equally
well, while being much closer to the data below e= 0.7.

Figure 11 compares the data of Currie and predictions from the well-known result
of Rayleigh (1892)

K; [2/; - 0.3938 (1 _ /;)10/3]

K [(3 - e - 0.3938 (1 _ e)1 0/3] (51)

given as the dashed curve, as well as of its modification by Meredith and Tobias
(1961)

x; [2e + 1.227 (1 - e)7/3-1.6 (1 _e)10/3]
-=
K [(3 - e + 1.227 (1 - ef/3 -1.6 (1 _e) IO/3] (52)

given as the solid curve. In both cases the predictions are relatively poor compared
to those of the randomly intersecting pore network model developed here. Some­
what better agreement is seen for Weissberg's model (1963)

~e=e/[1-0.51n(e)] (53)
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FIGURE 11 Comparison of predictions from Meredith and Tobias' (1961) model (solid line) and
Rayleigh's (1892) model (dashed line), for the variation of effective diffusivity with porosity, with experi­
mental data of Currie (1960).
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depicted by the solid line in Figure 12. However, in the same range (0 < 0.4) where
this model performs the best the randomly intersecting pore network model does
considerably better, while also having somewhat better agreement above a porosity
of 0.4 (d. Fig. 8). Also shown in Figure 12 as the dashed curve is the result from
Prager's (1963) expression

K e = 6(1 + 0)
K 2

which is somewhat poorer than Weissberg's result.
Figure 13 depicts the results from Bruggeman's (1935) recommendation

as the solid line, and from Maxwell's (1892) early expression

x, 20
-=--
K (3 - 0)

(54)

(55)

(56)

given as the dashed line. The latter has in more recent times been theoretically
supported by Neal and Nader (1973) but performs poorly against the data of Currie.
In comparison the Bruggeman result is superior, almost matching the performance
of our randomly intersecting pore network. The latter, however, does yield better
agreement over the entire porosity range.

It is clear from the above results that the intersecting pore network model devel­
oped here is superior to the earlier expressions. Further development of this model
to include the Knudsen effect and pore size dependent diffusivities, along with

0.1
porosity

FIGURE 12 Comparison of predictions from Weissenberg's (1963) model (solid line) and Prager's
(1963) model (dashed line), for the variation of effective diffusivity with porosity, with experimental data
of Currie (1960).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
2
 
2
0
 
J
a
n
u
a
r
y
 
2
0
1
1



200 S.K. BHATIA

0.1
porosity

FIGURE 13 Comparison of predictions from Bruggemann's (1935) model (solid line) and Maxwell's
(1892) model dashed line), for the variation of effective diffusivity with porosity, with experimental data of
Currie (1960).

consideration of the aspect ratio, is therefore an attractive prospect for future work.
This will then permit improved predictions also for consolidated porous media such
as catalyst pellets, coal chars and adsorbents which are strongly microporous.

SUMMARY AND CONCLUSIONS

The conventional model for the estimation of the tortuosity factor for transport in
porous media is modified here to account for a non-zero aspect ratio of the pores.
Three different structural models have been used to estimate the aspect ratio as a
function of porosity. It is seen that the aspect ratio has a strong influence on the
tortuosity factor which reduces with increase in porosity, as expected. Comparison
of predicted effective diffusivities with experimental data for diffusion in packed beds
showed that a suitable structural model in terms of capillary networks, such as that
of a network of randomly oriented intersecting pore segments, may be used to
interpret the data. The predictions of this model match the data of Currie (1960) for
diffusion in packed beds better than previously existing ones for unconsolidated
media. Extension of the network approach to incorporate pore size dependent
diffusivities with the aspect ratio is therefore desirable.
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NOTATION

(Symbols that do not appear here are defined in the text)

F correlation factor
G constant, Eq. (26)
i.], k unit cartesian vectors
J flux
k structural constant
K mean transport coefficient in pores
K. effective transport coefficient
t diffusion length in pore
t. actual length of the axis
L total length of pore axes per unit volume
n number of pore intersections per unit volume
nI number of intersections per unit pore length
N coordination number
p(0) probability distribution for 0
q field variable
r pore radius
S surface area per unit volume
X effective or diffusional aspect ratio, rlt
y rlt.
z axial coordinate

201

Greek Letters

~ azimuthal angle
E porosity
y tortuosity factor
cPi volume fraction of the ith phase
o angle between net diffusion direction in the pore and macroscopic flux

vector
01 tan- I (2rlt}
0, angle between pore axis and macroscopic diffusion direction
0, angle between successive steps
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