

# RAMAN SPECTRUM OF HYDROGEN DEUTERIDE.

BY S. BHAGAVANTAM.

(From the Department of Physics, Andhra University, Waltair.)

Received September 13, 1935.

## 1. Introduction.

IN an earlier paper in this Journal\* the author had described the results of a study of the Raman spectrum of deuterium. Subsequent to this, a particularly intense picture of the scattered spectrum is obtained using the same sample of the gas as in the previous investigation with a view to complete the work in all its aspects. This photograph, besides showing the Raman lines of  $D_2$  very intensely, is found to exhibit another feeble series of lines excited by  $\lambda 4358$ . Measurement revealed that these have their origin in the HD molecules. The extreme feebleness of the lines in comparison with the  $D_2$  lines indicates that the HD molecules are present in a very small proportion in the sample under investigation. A search is made for the well-known Raman lines of the  $H_2$  molecule but none has been found. It may, therefore, be concluded that the sample contains no appreciable proportion of  $H_2$  molecules. In the present paper the results of the measurements relating to the HD series of Raman lines are given.

## 2. Results.

TABLE I.  
*Raman Spectrum of Hydrogen Deuteride.*

| Wave-length | Exciting line | Approx. rel. intensity | Frequency observed | Frequency calculated | Transition $J \rightarrow J'$ |
|-------------|---------------|------------------------|--------------------|----------------------|-------------------------------|
| 4479.0      | 4358          | 0                      | 618                | 614.8                | $2 \rightarrow 4$             |
| 4443.9      | „             | $\frac{1}{2}$          | 442                | 442.1                | $1 \rightarrow 3$             |
| 4409.6      | „             | 0                      | 267                | 266.5                | $0 \rightarrow 2$             |
| 4308.7      | „             | 0                      | -264               | „                    | $2 \rightarrow 0$             |

The lines having frequency shift of 442 is the strongest of the series and the corresponding line excited by  $\lambda 4046$  is also seen and measured on the plate.

\* See page 303 of this number.

## 3. Discussion of Results.

esen<sup>1</sup> (1934) and Beutler and Mie<sup>2</sup> (1934) have analysed the bands of HD molecule in the ultra-violet. Urey and Teal<sup>3</sup> (1935) have given the following constants for the normal state of this molecule to account for the experimental data of the above authors.

$$6549; \alpha = 1.9928; \gamma = 0.03850; \delta = 0.00317; -D_e = 0.02602; \beta = 6.58 \times 10^{-4}; F_e = 2.19 \times 10^{-5}.$$

stants are used in calculating the frequencies of the various man lines  $0 \rightarrow 2$ ,  $1 \rightarrow 3$  and  $2 \rightarrow 4$  as in the foregoing paper and are given in Table I for comparison. The agreement between ed and calculated frequency shifts is very satisfactory in view eme feebleness of the lines.

er outstanding feature of the spectrum is the absence of the n of alternating intensities. The intensity rises to a maximum and rotation line corresponding to  $1 \rightarrow 3$ † and then falls off. This dance with what may be expected as the molecule is composed of ei. The relative intensities of the rotation lines that are to be n the basis of Manneback's expressions (Manneback,<sup>4</sup> 1930) are and given in Table II. Same statistical weight is assigned to

TABLE II.

Calculated Relative Intensities of the Rotation Lines.

| PP Series<br>$J \rightarrow J-2$ |           | RR Series<br>$J \rightarrow J+2$ |           |
|----------------------------------|-----------|----------------------------------|-----------|
| Transition                       | Intensity | Transition                       | Intensity |
| $2 \rightarrow 0$                | 0.188     | $0 \rightarrow 2$                | 0.666     |
| $3 \rightarrow 1$                | 0.095     | $1 \rightarrow 3$                | 0.786     |
|                                  |           | $2 \rightarrow 4$                | 0.483     |
|                                  |           | $3 \rightarrow 5$                | 0.176     |
|                                  |           | $4 \rightarrow 6$                | 0.040     |

<sup>1</sup>esen, *Phys. Rev.*, 1934, **45**, 480.

<sup>2</sup> and K. Mie, *Naturwiss.*, 1934, **22**, 418, and subsequent papers.

<sup>3</sup> and G. K. Teal, *Rev. Mod. Phys.*, 1935, **7**, 34.

<sup>4</sup> noted that in  $D_2$ , this line is weaker than the first rotation line  $0 \rightarrow 2$ .

back, *Z. f. Phys.*, 1930, **62**, 224; and **65**, 574.

both even and odd rotational states. The calculations are for a temperature of 30°C. and the value of  $B_0$  is taken as 44.67.

The fact that the intensity reaches a maximum at the second line and then falls off is nicely confirmed. A more detailed comparison is not at present possible owing to the feebleness of the lines. The stokes lines represented by  $3 \rightarrow 5$  and  $4 \rightarrow 6$  and the antistokes line  $3 \rightarrow 1$  have not been recorded.

In conclusion the author desires to express his grateful thanks to Sir C. V. Raman for his kind interest in the work.

#### 4. Summary.

Using  $\lambda 4358$  as the exciting radiation, frequency shifts of 267, 442 and 618 arising respectively from the rotational transitions  $0 \rightarrow 2$ ,  $1 \rightarrow 3$  and  $2 \rightarrow 4$  have been recorded in the Raman spectrum of hydrogen deuteride gas. The figures compare well with 266.5, 442.1 and 614.8 which are calculated on the basis of the molecular constants given by Urey and Teal for the HD molecule. The antistokes line arising from the transition  $2 \rightarrow 0$  is also recorded. The phenomenon of alternating intensities is not observed and the line corresponding to  $1 \rightarrow 3$  is the most intense one in the series as may be expected.