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1. INTRODUCTION

THE subject of the relation between the symmetry of crystals and their physical
properties has been dealt with by a number of authors from time to time.
In all such studies, the physical properties of a material system are regarded
as tensors which express the relation between two physical quantities—the
action and the effect—which are also represented by tensors of appropriate
rank and kind. This view enables a broad classification of all physical pro-
perties. Since a given symmetry has the same effect on all physical proper-
ties represented by the same tensor irrespective of the physical nature of
-each one of them, such a classification provides a powerful tool for studying
the effect of symmetry on physical properties.

Several years ago, one of us (Bhagavantam, 1942) indicated the possi-
bility of such a general study and outlined a group theoretical method to
obtain in particular, the number of independent non-vanishing constants
of a physical property tensor subject to a point group symmetry. Tables
showing the numbers of independent components of various tensors in each
of the 32 classes were subsequently given, citing several examples of actual
physical properties corresponding to each tensor (Bhagavantam and
Suryanarayana, 1949).

Experience has shown that a knowledge of the number of independent
non-vanishing components derived by such a direct and simple method serves
as a valuable check on the schemes of independent components of various
tensors obtained by the longer methods involving application of symmetry
transformations to them. Moreover, even the mere knowledge of numbers
of independent tensor components has been found to be of considerable help
in the study of properties of crystal systems of high symmetry.

It is proposed to extend such work here to the galvanomagnetic and
thermomagnetic effects and piezo-galvanomagnetic effects in single crystals,
the study of which is gaining importance in semi-conductor physics. Some
studies have already been made in that direction. The earliest were those
by Kohler (1934). Okada (1955) derived the schemes of non-vanishing
independent components of galvanomagnetic tensors up to the third power
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in H. Juretschke (1955) pointed out the need for studying the galvanomagnetic
effects up to the fourth power in H and made a detailed study for only the
point group 3m. We will present here a comprehensive picture of the
effect of symmetry on the galvanomagnetic and thermomagnetic phenomena
of all orders in H up to the fourth, giving the numbers of independent compo-
nents in each of the 32 classes.

Of the piezo-galvanomagnetic effects, the piezo-resistance has been
‘investigated earlier by Smith (1958) who gave the schemes of indepsndent
non-vanishing components in all the 32 classes. We are giving here the
numbers of non-vanishing independent components of piezo-Hall effect
tensor and piezo-magneto-resistance tensor.

It will be noticed that some of the physical properties that are now being
studied are represented by tensors already included in the previous work
mentioned. In such cases, it is in fact only necessary to show that the parti-
cular physical property under consideration is represented by a tensor of a
particular rank and kind which was already studied and the number of con-
stants under each point group symmetry computed. The physical properties
numbered 1, 2, 4, 5 in Table II are such. The numbers of independent
constants for these are included in Table ITI only for the sake of completeness.

2. Tee METHOD

Since the method of finding the number of independent non-vanishing
tensor components under a crystallographic point group symmetry has already
been described (Bhagavantam and Suryanarayana, 1949) in detail, we give
here the outline only. #, the number of non-vanishing independent compo-
nents of a tensor, is given by the formula

n=x ), b ®
P

where N is the order of the point group under consideration, 4, is the number
of elements in the pth class, X, (R) is the character of the element R belonging
to the pth class in the representation of the group formed by the tensor compo-
nents as basis. X, (R) for tensors of higher ranks is found by interpreting
the representation formed by the tensor as a direct product representation
of lower rank tensors in which the characters are known, and making ‘use
of the result that the character in a direct product representation is the product
of characters in the factor representations. A more elegant way would
be to adopt the method given by Lyubarskii (1960). The general form of
characters in the representations formed by various tensors under considera-
tion is given in column 3 of Table II.
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3. THE GALVANOMAGNETIC AND THERMOMAGNETIC EFFECTS

The galvanomagnetic and thermomagnetic effects occur when an electric
current flows in a crystal in the simultaneous presence of an electric field,
a magnetic field and a temperature gradient. The phenomenological descrip-
tion of the effect in anisotropic media is given by a set of simultaneous tensor
equations which express the electric field E and heat current density g, as
linear functions of electric current density j and negative temperature gradient
G. These equations are same as those which govern the thermoelectric
phenomena in anisotropic media, except that the coefficient tensors are now
functions of the magnetic field H. The equations are written in the following
form adopting the usual summation convention :

Ei = pix ji + ai1Gy

. (1)
qi — gji = — Bix Jr + KirGg

In (1), £ is the chemical potential of the electrons and e is electron charge.
On the application of Onsager’s principle to equations (1), the following
symmetry relations for the coefficient tensors may be obtained (Landau and
Lifshitz, 1960).

pik (H) = pp; (— H) ©

Kix (H) = Ky; (— H) 3)
Bix (H) = Tay; (— H). : @

T is the absolute temperature and all the tensors may be developed in power
series in H to obtain the effects of various orders of magnitude in H. We
may, therefore, write

pik (H) = pik® + piretHi + pigrmHHp + PiktmnHiHpHy,
-+ PiklmanleHan + ...

Kix (H) = Kite® + KirtHy + Ky HiH , + KikimnHiHp Hy,
+ KiklmanleHan + ...

aik (H) = aik’® + aiggHy + aipimHiHpy, + aikimnHiHmHy,
-+ 0’~ik:lmafr,leI'ImHnHp + ...

Bie (H) = Bik® + BiiHy + BikimHiH,, + BikctmnHiHp H,,
+ feiklmanleHan + ...
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We shall consider the galvanomagnetic and thermomagnetic effects up to
fourth power in H, and therefore limit the development of the tensors to
terms of fourth power in H. The coefficient of a part1cular power in H in
the development of a tensor gives that particular order effect of magnetic
field on the physical property represented by the tensor. For example, the
first term p;° in the development of pix (H) in powers of H is independent
of H and represents the electrical resistivity in the absence of H. The co-
efficient pix; in the second terms gives the first order effect of H on electrical
resistivity. Thus pii tensor represents the physical property which is the
interaction of the magnetic field to the first power and electrical resistivity.

The quantities pix’, pikl> Pikims Piklmn, --- and Bk’ Bikl, Piklm,
Bixlmn, ... are called galvanomagnetic coefficients. The quantities K;x°,
Kixt, Kiim, Kiximn, ... and o’ aikl, oiklm, %ikimn, ... are called

thermomagnetic coefficients. It can be seen from relations (2), (3) and (4)
that p and K coefficients of corresponding order are tensors of same rank
and kind. Similarly, the a« and B coefficients of corresponding order are
tensors of same rank and kind. Moreover o and § are not independent
of each other. We shall investigate the effect of symmetry on these tensors
of increasing rank in succession.

Zero order effects and tensors of second rank.—The Onsager rec1prOC1ty
relations (2) and (3) show that pix (H) and K;x (H) are not symmetric in i and
k. Each one of them can be expressed as the sum of a symmetric tensor and
an antisymmetric tensor of second rank. From relations (2) and (3), it further
follows that the symmetric parts of these tensors are even functions of H
while the antisymmetric parts are odd functions of H (Landau and Lifshitz,
1960). In the power series exapansion, the symmetric part is given by the
terms of even powers of H and antisymmetric part by the terms of odd powers
of H. Therefore, it can be concluded that p;r° and K;x° are symmetric in
suffixes i, k, which result must also follow from the fact that p;° and K;p°
are electrical resistivity and thermal conductivity respectively in the absence
of a magnetic field which are known to be symmetric second rank tensors,
again from Onsager’s principle.

In the case of ajx (H) and Bix (H) it does not follow that a;,° and Bir’®
are symmetric in 7, k. They are thus second rank general tensors. a;° is
the thermoelectric power in the absence of a magnetic field. B;x° similarly
represents an effect independent of a magnetic field but it appears that no
agreed name has so far been assigned to it.

First order effects and tensors of third rank.—Let us consider p;x; which
may be called the Hall tensor. From (2) it follows that
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pitHy = — peitHi; 50 pikl = — pril.

Thus pik relates an antisymmetric tensor of second rank (which is equivalent
to an axial vector) and an axial vector (H) and is equivalent to a second rank
general tensor. Same considerations hold for Kjx; which may be called the
Leduc-Righi tensor.

Regarding o;x1 and Bix1, which may be called the Nernst tensor and
Ettingshausen tensor respectively, the relation (4) does not impose any kind
of symmetry on the suffixes 7, k. They are therefore third rank tensors which
relate a second rank general tensor and an axial vector. The character of
a general symmetry element in the representation formed by such a tensor
is given in Table IT and numbers of independent components in various classes
in Table III. ‘

Second order effects and tensors of fourth rank.—pigim, is the magneto-
resistance tensor. It is symmetric in suffixes 7 and % because from (2) it follows
that piximHiHm = pritm (—Hi1) (— Hyp). It is also symmetric in suffixes 7
and m because the order in which H; and Hyy, are multiplied does not matter.
Thus pikim (also Kixim) is a fourth rank tensor which relates two second
rank symmetric tensors. Kixum is the magneto-thermal conductivity tensor.

aiklm and Bikim on the other hand are not symmetric in i and k. They
relate a second rank general tensor with a second rank symmetric tensor.
They give the second order effect of magnetic field on the thermoelectric power
and on the effect described by Bix° to which we have not assigned a name.

Third order effects and tensors of fifth rank.—pijimz Which represents the
third order effect of the magnetic field on electrical resistivity can be regarded

as second order Hall effect. Similarly Kjximn can be regarded as second order
Leduc-Righi effect. These tensors are antisymmetric in 7, & and totally
symmetric in Imn. They relate an antisymmetric tensor of second rank to
a totally symmetric third rank tensor.

aikimn and Bigimn on the other hand relate a second rank general
tensor with a totally symmetric third rank tensor. They can be regarded
- as second order Nernst effect and second order Ettingshausen effect respec-
tively.

Fourth order effects and tensors of sixth rank.~—pikimnp represents the
second order magneto-resistance. Similarly Kikimnp represents the second
order magneto-thermal conductivity. They both relate a second rank Symme-
tric tensor with a fourth rank totally symmetric tensor (totally symmetric
in suffixes lmnp), ' ' '
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aikimnp and Bikimnyp Telate a second rank general tensor with a fourth
rank totally symmetric tensor.

In Table I are given the galvanomagnetic and thermomagnetic coefficients,
conveniently tabulated under columns and giving properties of increasing
order effects in H.

4. PIEZO-GALVANOMAGNETIC EFFECTS

The effects of elastic stress on the electrical resistivity in the presence of
a magnetic field may be called piezo-galvanomagnetic effects. From the point
of view we have been adopting here, it amounts to the study of elastic stress
on the various coefficient tensors in the expansion of pir (H) in power series
in H.

The zero order term or the coefficient independent of H is pj,° which is
the ordinary electrical resistivity. The effect of elastic stress Six on pir° is
called piezo-resistance and, as mentioned earlier, has been studied in some
detail by Smith (1958). S;x and p;° are both second rank symmetric tensors.
Piezo-Hall effect relates a general second rank tensor to which Hall tensor
pikl reduces and the elastic stress S;x. The numbers of independent compo-
nents of such tensors have already been given in the papers referred to earlier
and are reproduced in columns numbered 4 and 5 in Table III for the sake of
completeness. Piezo-magneto-resistance relates the magneto-resistance tensor
pikim with elastic stress S;jx. The character of a general symmetry element
in the representation formed by such a tensor and the numbers of independent
components are shown in Tables II and IIT against No. 10.

5. RESULTS AND CONCLUSIONS

Results in respect of the ten types of physical properties as classified in
Table II are given in Table III for all the 32 crystal classes. The number
at the head of each column in Table III corresponds to the number in the
first column of Table II, each number representing one type of properties.
One can now pick out any physical property and study it in detail in respect
of a particular crystal class. It is interesting to note that in respect of all
the properties studied in this paper, the 32 classes divide themselves into
eleven groups.
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TasLE I

Number of coefficients in each of the 32 crystal classes

o PropertyNo. 1 2 3 4 5 6,7 8 9 10

Class sy 28 ™ i ,, :
I R ' %

1,1 . . 6|9 27|36|5¢ 30 % 90135 216
m,2,2m .. . 4|5 13|20 16| 48 4 69 | 112
2mm, 222, '3 '3 6!12 15 9 27 21| 36 60
2/m 2/m 2/m * § ‘ ‘ ; :
4,3,4m .. . 1213 7/18 14 8 24 22 35 56
4mm,32m, 422, 2 2 3.7 8 5 15 10 19 32
4/m 2/m 2/m i

3,3 .. 23 9|12 18 10 30 30]45 7
3m,32,32/m 2 /2 4|8 .10 6 18 14| 24 40
3/m, 6, 6/m 23 7|8 12 6 16 16 23 40
§2m, 6mm, S l2 316 7 4 11 7, 13 24
622, 6/m 2/m 2/m N ‘
23,2/m3 .. Lt l1 214 513 9, 712420
i3m, 432,4m32m |1 |1 | 1]3 3|2 6| 4| 7| 12

6. SUMMARY

A group theoretical method given by one of us in earlier publications
for studying the effect of crystal symmetry on physical properties is now
extended to cover the galvanomagnetic, thermomagnetic and piezo-galvano-
magnetic effects in single crystals. These effects have gained importance
in semi-conductor physics and such studies are therefore of current interest
and may be expected to yicld valuable new information,
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