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NORMAL OSCILLATIONS OF THE DIAMOND
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1. Introduction

IN an earlier paper, Venkatarayudu' has used group theoretical methods
to show that the primary normal oscillation of the diamond structure con-
sists of a mutual displacement or the two interpenetrating lattices, the
direction of displacement being arbitrary. This analysis and similar work
in respect of other crystals already published by the author and Venkata-
rayudu® are based on the fundamental assumption that the smallest unit
or the Bravais ceil of the structure is the repeating pattern both from the
static and from the dynamic points of view. That the next stage in the
analysis would be to consider a super-lattice of which the cells have twice
the edge length of the smallest cell and that the oscillations thus derived
would have also to be reckoned in formulating the basic theory of crystal
dynamics and of the thermal energy of crystalline solids was pointed out
by Raman.® In a paper* now under publication, Raman* is giving a proper
theoretical foundation for the idea of the super-lattice frequencies put for-
ward by him earlier.

In this paper, group theoretical methods are applicd to the case of
diamond and the results appropriate to a repeating unit which has eight
times the volume of the smallest unit cell are given. This repeating unit
is formed by taking twice the primitive transiation as the side of the cell
along each direction instead of the primitive translation itself. Such a cell
contains 16 carbon atoms whereas the smallest one contains only 2.

2. Diamond Structure and its Symmetry Operations

In Fig. 1 is shown a portion of the diamond structure which is made
up of two interpenetrating lattices. The dark circles denote atoms belong-
ing to one lattice whereas the white circles denote the atoms belonging to the
other. The smallest unit cell is a rhombohedron formed by the primitive
translations 1,2; 1,3 and 1,4. Such a rhombohedron contains only two

* An advance copy of this paper has been very kindly sent by Professor Raman to the
present author. .
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distinet atoms which are numbered 1 and 5. In such a_ case t:’anslatic.)ns
1,2; 1,3 and 1, 4 cannot be regarded as distinct from the identity operation
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and all the atoms numbered 2, 3,4, 9, 10, 11 and 12 are equivalent to 1,
whereas those numbered 6, 7, 8, 13, 14, 15 and 16 are equivalent to 5. The
symmetry group will then consist of 48 elements only and has been dealt with
earlier. The unit cell chosen in this paper is, however, a larger rhombo-
hedron formed by the primitive translations which are twice 1, 2; 1, 3 and
1,4. Such a rhombohedron contains 16 distinct atoms which are numbered
1 to 16 in Fig. 1.” Besides the 48 elements of the simple group, seven trans-
lations (1,2; 1,3; 1,4; 1,9; 1, 10; 1,11; 1, 12), which were hitherto
identical with the identity element, have now to be regarded as distinct
symmetry operations. These, along with the identity operation, constitute
a sub-group of order 8 and the total group of symmetry operations appro-
priate to the diamond structure in which there are 16 non-equivalent points
as shown in Fig. 1, will be formed by obtaining the product of the simple
43 elements with the above translational group consisting of 8 elements.
The resulting group is of order 384. The elements of this group fall into



253

\©
T

\o
AN

(=]
i

o0
~r

Lo bty

—

e O QD

O |IQC |0 |O

N |O O o |O

N INIO |0 |Q

~
|

—
l

—
|

O |0l Q|0 |lC o O

Yt

NO O |0 Q|0 |0 |0 1O

N[O | ©C |0 |00 |o|0|O

i)

o
l

=)

O IN|O OO0  ©|C | QIO |o

o~
l

QIO |0 |0 |0 |0 0|0 ||| |O

oclo|lololojolololo]lolun

Njolanlold |||l |o|o e
!

NN N NO IO |OC I |0 |0 |«

M‘l

—lolo|lco|lo|lo]lo|o|olo|lolo |o

I

MII

Yy
|

— —
I

T

i

O IO | |IQ |0 |0 |0 O

njeneninm O |]O|[O|OC AN

r—

l

l

C|lo|lOo ||| |O |

vt

N
I

-y
|

NNl |fenlen|on [0 O |0 |0

- - O QO[O0 O O IO |0

I

NN |Jonjen|on AN N

|- OO IO IO |C|O|OC |0

o O

o | O

AN

)

N[ |en|en O VO[O0 ||t || |00 |0 |O

Normal Oscillations of the Diamond Structure

L

i

.ﬂl

ot
I

-

Al

i

—

.H'n

L e}
I

— ] -

IO IO |0 |C |10 |2

v— | v

- i ol Aol
|

g XAl

°s e

4!

o ¥4

29T

L9

Lo k4!

o X4!

8y

o) 74

74

’s Z¢

*S 8p

271

Lo XAl

o Y4




254 s Bhagavantam

20 conjugate classes®* and the appropriate character table is given here.
Notation used is similar to that employed in the earlier papers of the author. .
The table shows that besides the translation, there are one threcfold, three
sixfold, two fourfold and two eightfold degenerate normal oscillations
coming under various symmetry classes.

If all the last six columns and the last six rows-are deleted, we get the
character table containing only fourteen conjugate classes and if the number
of elements in each conjugate class is properly adjusted, we get results that
are appropriate to a group of 192 elements which refers to the case where
the smallest cubic cell containing 8 atoms only is regarded as the repeating
unit. ¥

3. Normal Modes and Normal Frequencics

Below is given one representative mode under each class. Those
omitted may be written down from considerations of symmetry and taking
into account the order of degeneracy in each case and the manner in which
each normal co-ordinate transforms under the different symmetry opera-
tions. If the normal co-ordinates given below are read with reference to
Fig. 1, it is easy to get a physical picture of each one of the modes.

(x1+ X+ X3+ Xg+ X+ Xy X33+ X10)

— (x54+ xg+ X7+ Xg+ X3+ X947+ X15+ Xi6) .. .. .. F
1+ X)) — (X + X9 + (X + xlo)'“‘ (%13 + X12) . .. .. H,
(31— X+ X5— X9 + (¥s— Ye+ Ya— ¥s) + (X5— XNio + X313 — X39)

+ (V13— Yigt Vis— Vie) .. .. .. H,
(= Xo+ X3— Xg) = (35— Yo+ Yo— Vo) + (Xg— X190+ X33 — Xy)

— (V13— Y1a+ V15— Yie) . .. .. H,
(P2t P3+ Dot Pe+ Pat P+ Pyt Pra)

— (P1+ Ps+ Pro+ Pt Prat Prat pis+ Pig) -- .- .o Ky
(p2+ Ps+ Pa— Ps— P1— Ps+ Po— P13)

— (P1—Ps+ Pro+ Put Pia—Pra— P1s— Pie) - . .. o Ky

— (X3—= zg) + (Xo— Zo+ X3— 23+ X3— 24) + (X — z,)

— (Xz0— Zao+ X1 Zya+ Xpa— Z3) — (65— z5) + (6 — Zg

+ Xp— Z7+ Xg— zg) + (X5 — 213) - (x14“' Ziat+ Xy5— Z35

+ X6 — Z16) .. .. .. .. .. ..o My
— (= z)+ (X3—z,+ Xg—Z3+ X4—2Z D+ (xg— Zg)— (Xy0— Z 10

+ Xp— Zut X —Z1) + (55— 25) — (Xg— Zg+ X7 — z,+ Xg—Zg)

— (X3 —2Z13) + (X14— 214+ Xi5—Z15+ X1g— Z16) .. .. M

* Writing down all the 384 elements in the form of circular permutations and classifying

them into conjugate classes is a very laborious process but follows the well-known methods of
group theory. Details are not given here as they would occupy much space.

T This case had been fully worked out last year by the author in collaboration with Dr. T.
Venkatarayudu but the results remained unpublished.
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In K; and K, p stands for a displacement x, y, z. The frequencies of these
modes can be evaluated in the usual manner. Below is given a state-
ment which shows the frequency in each case and contains a description
of the corresponding normal mode.

Mode . Degeneracy 4n?y?

F, One interpenetrating lattice oscillating 3 8K, 64K,
against the other. 3m 3 3mp?

H, Consecutive planes parallel to the cube faces 6 4K, 40K, , 8K,
of any one lattice moving along the cubic 3m " 3mpt +~_
axis normal thereto in opposite directions.

H, Consecutive planes parallel to the cube faces 6 12K, +4K3
of any one lattice moving transverse to the mp* - m

cubic axis normal thereto in opposite
directions while those of the second lattice
do the same thing but in phase.

H4 - tH 2 " 6 8K +4Ko 4K3
while those of the second lattice do the 3m 3mpr U m

same thing but in opposite phase.

K, Consecutive planes parallel to the 111 faces 4 zK +64K9 n 8K,
of any one lattice moving along the (111) _}'ﬁ"
axis normal thereto in opposite direc-
tions while those of the second lattice do the

same thing but in phase.
K3 ” L] 23 4 2K1 8K3

[RSNE . SN —

while those of the second lattice do the m m
'same thing but in opposite phase.

M, Same planes as in K; now move transverseto § 8K, n 34K, | 2K,
the (111) axis and hence acquire twice the 3m " 3mp®  m
degeneracy.

M, Same as in M, but planes belonging to the 8 6K, +&
two lattices are in opposite phase. mp:  m

K, and K, are respectively the force constants referring to any pair of atoms
which constitute the nearest neighbours and the next nearest neighbours.
K, represents the force called into play when the angle between any two
valence bonds which meet at an atom varies. p stands for the distance

between a pair of nearest neighbours and is the samé as the length of the

yalence bond,
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In conclusion, the author desires to express his thanks to Sir C. V.
Raman with whom he had the opportunity of discussing this subject on
several occasions.

Summary

Group theoretical methods have been applied for obtaining the normal
oscillations of the diamond structure on the basis of a 16 atom cell as the
repeating unit. It is shown that besides the translation, there are eight
normal oscillations one of which is threefold degenerate, two of which are
fourfold degenerate, three of which are sixfold degenerate and two of which
are eightfold degenerate. Expressions are derived for the corresponding
normal frequencies by postulating suitable potential energy functions.
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