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1. Introduction

It is now widely recognised that a study of the Raman effect furnishes a
convenient and powerful method of solving several problems of physical and
chemical interest. During the past ten years, its applications have been
varied and numerous as may be seen from the very large number of original
communications that have appeared from time to time. Amongst the major
fields of investigation thus opened up, mention may be made of the structure
of molecules, nature of interatomic forces, electrolytic dissociation, formation
of molecule complexes, etc. Numerous as have been its successes in
the above fields, there is little doubt that this discovery is capable of
yielding much more and that it has not yet been made use of to
the fullest extent to which it is possible. In this conmection it is of
interest to recall the following remarks of Lord Rutherford.! “I'he Raman

1 Proc. Roy. Soc., 1931, (4), 130, 250.
A
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effect must rank among the best three or four discoveries in experimental
physics of the last decade. Tt has proved, and will prove, an instrument of
great power 1n the study of the theory of solids.”” This latter aspect is of special
importance in connection with the physics of the solid state but has not yet
been the subject of any intensive investigation. The comparative ease with
which experimental data may be collected in liquids has resulted in the
accutnulation of a wealth of information relating to this branch but the
advance has not been so marked in the case of solids. The experimental
difficulties arising out of the fact that it is not easy to get large and trans-
parent solid lumps have been the chief obstacles in the latter case. Special
methods have nevertheless been devised and some progress has been made
even with crystals.

No systematic attempt has however so far been made to correlate the
meagre results that are available with the known crystalline properties.
Results of great complexity are usually obtained with crystals and their
interpretation has hitherto been merely empirical. A proper study of the
normal modes of oscillation of a crystal with special reference to the selection
rules in Raman effect and infra-red absorption is likely to throw considerable
light on a variety of detail such as the appearance of several additional
component lines in crystals, the origin of low frequency Raman hands in
certain solids, the relationship of such bands to the wings in the corresponding
liquids, the variations which the Raman spectrum undergoes as we pass from
one crystalline modification to another, the dependence of the characteristics
of Raman lines on the direction and manner of excitation and manvy other
similar problems.

Apart from throwing light on such details, these studies may confidently
be expected to bring into evidence the connection between Raman effect
and certain other physical properties of crystals. Th: Raman spectrum
results may be broadly divided into three branches, namely, those relating to
(i) the fine structure of the Rayleigh lines, (ii) Raman lines due to the oscillations
of the lattice groups as a whole and (iii) Raman lines due to internal oscillations
of the atoms within the groups themselves. Resultsin respect of the first
item are closely connected with the elastic properties of tha crystal. On the
other hand, the symmetry of the crystal and the disposition of the atoms
and molecules in the lattice will determine th2 appearance or otherwise of
Raman lines corresponding to specific normal modes coming under the second
and the third items. It may be mentioned here that when a group of ions or
molecules, each of which is characterised by a certain degree of symmetry are
built into a crystal lattice having a lower degree of symmetry, some of the
degenerate normal modes may be expected to split up. Thus the results
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in respect of the lattice and the internal oscillations are very intimately con-
nected with crystal structure. Next in importance is the subject of specific
heat of solids. A complete analysis of the normal modes of oscillation of a
crystal and a verification of the same with the help of Raman and infra-red
absorption spectra is obviously of great help in evaluating its specific heat.
Among the other fields which have a bearing on this hranch of investigation,
mention may be made of the anisotropic properties of crystals in respect of
refraction, magnetic susceptibility, thermal expansion, etc. The effect of
temperature on the positions and sharpness of Raman lines, particularly those
coming under the category of lattice oscillations, is of special interest as it
is likely to throw light on the nature of the crystalline forces and how they
are released with increasing temperature. The gradual transition of these
bands into the continuous wing usually encountered with in the molten state
is intimately connected with the mechanism of melting. Thus practically
all the important physical properties of a crystal are brought into the

discussion when we attempt to explain the phenomenon of light scattering
in crystals.

Brester,? Dennison® and others have studied the normal modes of some
symmetrical systems by employing certain special methods. Wigner* has
recently shown that the application of group theory to a study of the molecular
oscillations greatly facilitates the work. Other investigators such as Tisza,®
Wilson,® Placzek” and Rosenthal and Murphy® have subsequently made
important contributions to the subject. In the present investigation, an
account of this theory is given in a form that is applicable to crystals. The
question of selection rules has been examined in detail and a section dealing
with the same is included. The methods have been applied to a few simple
cases of crystals and the results are discussed with special reference to Raman
effect with a view to illustrate the more important points.®

% Kristallsymetrie und Reststrahlen, Diss. Utrecht, 1923 ; Z. f. Phys., 1924, 24, 324,

3 Rev. Mod. Phys., 1931, 3, 280.

4 Gottinger Nachrichten, 1930, 133.

5 Z. 1. Phys., 1933, 82, 43.

8 Phys. Rev., 1934, 45, 706.

" Handbuch Der Radiologie, 1934, 2, 203.

8 Rev. Mod. Phys., 1936, 8, 317.

¥ A comprehensive account of the theory formally applicable to crystals is purposely
included with a view to make the paper self-contained. A similar treatment in a form
that is applicable to molecules has already been published by Tisza and by Rosenthal
and Murphy. Attempts have been made to draw physical analogies wherever possible.
The more important conclusions are given in italics and a reader who is interested

only in the application of the group theoretical methods will find these statements
useful.
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11, Groups and Group Characters

Rosenthal and Murphy have given an excellent exposition of the subject
in the paper already referred to and a detailed description need not be attempted
here. Some of the theorems which have to be used in the following sections
may be enunciated.

.All the symmetry operations of a crystal lattice furnish a typical illustra-
tion of the elements of a group. If G is any abstract group and H is a group
of linear substitutions and if to every element A of G there corresponds an
element A’ of H such that the product of two elements A and B of G corres-
ponds to the product of the two corresponding elements A’, B’ of H, then the
group of matrices H is called a representation of G.

The character of a group element is the same in equivalent representations.

A group of homogeneous linear substitutions is spoken of as reducible, if
it is possible to find a set of linear functions of the variables (X,, X,, .., X))
less in number than the variables such that they are transformed among
themselves by every operation of the group. If it is not possible to find
such a set of linear functions of the variables, the group of substitutions is
said to be rreducible. A reducible group of homogeneous linear substitutions
is called completely reducible when it is possible to choose the variables in
such a way that (i) they fall into sets, each set of variables being transformed
among themselves by every operation of the group while (1) the group in each
set is irreducible.

III.  Normal Modes of Oscillation of a Crystal Lattice

1. Normal Modes and Irreducible Representations.—We will now regard
all the equivalent points of the lattice as having the same motion at a given
instant of time. Accordingly, we need describe the position of only one set
of non-equivalent points for completely specifying the motion of the whole
lattice. It there be # non-equivalent points in a crystal lattice. The
position of the atoms may be described by giving the 3n cartesian co-ordinates
X6 Y 21 o Xy Yo, %y and they may be taken to correspond to zero values
for the equilibrium position. For oscillations of small amplitudes, the poten-
tial and kinetic energies may be expressed as general quadratic functions of
the co-ordinates. These may be simultaneously reduced to the canonical form

2V =2)Q2; 2T =2 (2
with the help of suitable linear transformation of co-ordinates. Q;, Q,, .., Qs
are called the normal co-ordinates and the corresponding normal frequencies
are given by the equations 472 v;> = A;. The normal co-ordinate gives ths
mode of oscillation. Thus, if

Qﬂé =2 ap ¥, + 2 bém Vm T P Con %n
]

m n
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is the expression for the normal co-ordinate Q, in terms of the 3u cartesian
co-ordinates of the » non-equivalent points, the amplitude of oscillation of the
jth atom in the x direction is given by the coefficient of x;, namely a;,. The
configuration of the lattice may now be denoted by Q. If we perff)rm a
symmetry operation R on the lattice, we get a new configuration which we
c{enote by RQz. If by means of the operation R the kth atom goes over into
the /th atom, we shall suppose that the /th atom remains in its own neighbour-
hood but gets the motion of the Ath atom. By doing this for every atom we
keep all the atoms in the neighbourhood of their original equilibrium positions
and obtain a configuration of the lattice which is geometrically identical with
RQ;. 1f we denote this new configuration by RQ,, RQ; evidently represents
a normal co-ordinate having the same frequency v, because the relative
configuration of the atoms is not altered. 1f RQ), is distinct from Q, we obtain
two distinct modes of oscillation having the same frequency v;. Such a
case will not arise for non-degenerate modes of oscillation. New if R runs
through all the symmetry operations of the group G we get all the normal modes
of oscillation belonging to the same frequency. But all these modes of oscil-
lation may not be linearly independent,

Let Qy, Qs .., Qfbe a set of linearly independent normal co-ordinates
having the frequency v;. Then every other normal mode of oscillation with
the frequency v can be obtained as a superposition of these f normal modes of
oscillations. The oscillation »; is therefore f-fold degenerate. Similarly
we obtain the normal co-ordinates of different frequencies. Now the normal
co-ordinates belonging to a definite frequency define an irreducible representa-

tion of the group G. TForif Q;, Q., .., Qrare a set of normal co-ordinates
with a certain frequency v, the co-ordinates Q1, Qs .., Q 7 combine among
themselves by the application of a symmetry operation and we cannot find
linear combinations of Q,, Q,, .., Q, smaller in number than J which
combine among themselves by symmetry operations. Thus, if

ﬁQl _all QI .......... —'|"[llfo

R Qg Zaal Q1 .......... + a:)f Q}a

R Qr=anQy .......... + ayr Qf
then R —R —the matrix (a;)

and the correspondence also defines a representation of the group G. Thus

a set of normal co-ordinates of a definite Jrequency define an irveducible
representation.

-
"i

. Determination of the Number of Normal Modes that belong to a given

Irreducible Representation—We divide the 31 normal co-ordinates into




