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ABSTRACT

One-dimensional, two-dimensional and three-dimensional magnetic
lattices have been derived making use of methods adopted by the authors
in an earlier paper in deriving cystallographic magnetic point groups.

1. INTRODUCTION

IN crystals which possess antiferromagnetic structures, the translational
periodicity in certain directions may be accompanied by a reversal of t:,he
individual magnetic moments associated with each lattice point out of which
the magnetic structure is built. The operation of the reversal of maggetic
moment is of order two and may be denoted by s®. This can be combined
with the clements of a discrete translation group to give rise to a derived
group which may be called a variant of the original translatlo_n group.
The fourteen translation groups corresponding to the 14 Bravais lattices
give rise to 22 such variants. The translation groups are also referred to
as vector groups in the following. It is customary to refer to these 36
lattices as magnetic lattices.

It is proposed to present here a derivation of the variants of the one-
dimensional, two-dimensional and three-dimensional vector groups using
methods similar to those given for the derivation of the magnetic variants
of crystallographic point groups in an earlier paper by Bhagavantam and
Pantulu (1964).

A vector group in one dimension is an infinite group generated from
one basic vector by the group operation of vector addition. In two dimen-
sions, such a group is generated from two non-collinear basic Vec_tors.
Three non-coplanar basic vectors generate such a group .in three dimensions.
A vector group may‘therefore be denoted by its generating 'elements. Thus,
the one-dimensional vector group may be denoted by a single element T,.
All integral multiples—positive or negative or zero—of this basic vector
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form the group. It is easily seen that there is only one variant of this one-
dimensional group and it is generated by a single composite element which
is the basic vector T, accompanied by the reversal operation #. We shall
denote the composite element thus formed by T; and call it a magnetic
vector. It is evident that an even multiple of T, is an ordinary vector.
This vector ‘group generates a linear chain of equally spaced magnetic
moments which are alternately oppositely aligned. If, on the other hand,
& is taken to signify a change of colour of the lattice point, say from black
to white and white to black, the group generates a linear chain of equally
spaced black and white points. Figure 1 (@) shows a one-dimensional lattice
of equidistant white dots. Its magnetic variant is shown in Fig. 1 (4) and
consists of equidistant alternately white and black dots. The distance
between two identical lattice points, that is points of the same colour or of
the same alignment of magnetic moment, is called the crystallographic cell
whereas the distance between the immediate neighbours is called the
chemical cell. Similar terminology is adopted in two and three dimensions,

2. Two-DIMENSIONAL VECTOR GROUPS

Let us denote the two basic vectors which generate a vector group in
two dimensions by T, and T,. To obtain the variants of such an infinite
group, it is enough if we consider the number of ways in which one or both
of the generating vectors may be taken as magnetic. There are evidently
4 ways of doing this. They may be put down as

M Te To; @ Ty To; )Ty Tys @ Ty, Ty

We shall follow here the alternative notation of denoting an ordinary vector
by -- and a magnetic vector by — and write the above as

D++ 5 @ -+ A +— 5 @ ——

The problem is to consider each of the 5 two-dimensional lattices and pick
out such of the above alternatives that are permitted by symmetry in each
case. Those that are distinct from amongst such alternatives are the variants.
We note that the first alternative gives the conventional lattice and we need
consider only (2), (3) and (4) while looking for the variants. Whether a
particular variant is distinct or not can be decided in each case by examina-

tion with the help of some general principles which emerge during the course
of the derivation. '

() Monoclinic—Alternatives (2) and (3) are not‘distinct because we
can regard either of the two vectors Ty and T, as a magnetic one without
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any loss of generality. The lattice corresponding to alternative (4) may
also be generated by choosing T, and T, +T, as the basic vectors.
T;+ T, is, however, an ordinary vector. This results in (4) not being distinct
from_(Z) and (3). In other words, the lattice which is generated by two
unequal basic vectors, both of which are magnetic with no restriction on
the angle between them, may equally well be regarded as being generated
by another set of two vectors one of which is a magnetic and the other an
ordinary vector. There is no restriction on the angle between the vectors

nor are they equal in the alternative way of generating the lattice and the -

lattice therefore is of the same type as (2) or (3). We shall have occasion
to use this result in the derivation of the three-dimensional groups. Thus
we have only one distinct variant for the monoclinic translation group
which may be numbered as (i) a.
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(ii) Orthorhombic primirive.—Alternatives (2) and (3) are not distinct
and we can take ecither of them and number it as (i) @. Alternative (4) is
distinct and is numbered as (ii) 5.

(iii) Orthorhombic face-centred—The vectors T; and T, that generate
the group are equal in length with an arbitrary angle not equal to 90° or
60° between them and they are equivalent by symmetry of the lattice. Thus,
alternatives (2) and (3) are not permitted and we have only one variant
given by (4) which is numbered (iii) a.

(@iv) Tetragonal —Symmetry requires that the generating basic vectors
T, and T, which may be taken as the edges of a square are equivalent. The
the only possibility is given by (4) which is numbered as (v) a.

(v) Hexagonal —If we take T, and T, as equal in length and inclined
at 60°, we have that both T, and T, must be magnetic or ordinary and that
T, — T, which is non-magnetic is equivalent to T,. Thus we arrive at a
contradiction and conclude that the sixfold sym_Eletry forbids all alter-
natives except the conventional one.

The results deduced above in respect of two-dimensional lattices are
contained in Table I in a connected form,

TABLE T

Two-dimensional magnetic lattices

Lattice Basic vectors and angle Variants
(i) Monoclinic .. Ty Te, az% 90° () a + —
(ii) Orthorhombic o Ti%#= T, a=:90° (i) @ + —
(i) b - -
(i) Orthorhombic face-centred Ti=T, a# ¢ 68° (iii) a - —
| 190°
(iv) Tetragonal . Ty =T, a=90° (iv) a. - —

(v) Hexagonal .. Ty =T, a=60° None

Figure 2 shows the crystallographic unit cells of the five conventional
two-dimensional lattices. Against each of the conventional lattices, the
appropriate variants are shown. In (i) g, (i) g, (i) b and (iv) @ of Fig. 2, the
magnetic vectors are of length half of their corresponding non-magnetic
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basic vectors of the conventional lattice. There is no loss in generality
involved, because it only amounts to altering the scale of the diagram in the
direction of the magnetic vector. In the case of the face-centred - ortho-
rhombic lattice, this procedure is not followed. It may be noted that if
all lattice points in a variant are taken alike—say all as white dots—the
variant reduces to its corresponding conventional lattice.

3. THREE-DIMENSIONAL VECTOR GROUPS

The possible alternatives of taking some or all of the three basic vectors

as magnetic are 8. They are the following:

@ +++ @ —++ @) +-+ @ +4—
O == ® =4~ D ——+ B ———.

We shall take each of the 14 vector groups and find out the alternatives
permitted by symmetry and number the distinct ones among them. Let
us denote the basic vectors by T,, T,, T; and angles between them by a,,
as, ag such that «, is the angle between T, and Ty, @, is the angle between T,
and Ty and «; is the angle between T, and T,.

L. Triclinic—~From considerations analogous to those given in @ of
the foregoing section, it follows that there is only one distinct alternative,
For convenience, we may choose (4) for this purpose and number it as Ia.

II.  Monoclinic primitive—We note that T, # To# Ty with a, as arbit-
rary and a, = a; = 90° gives the lattice under consideration. T, isa two-
fold axis and T, and T, are interchangeable. Tt follows that (2) and (@)
are not distinct and we may take (4) and number it II 4. (3) gives a distinct

variant numbered as 1[5 and the only remaining distinct one is (5 which
is numbered as IIc.

L. Monochnic side-centred—We shall take that the side Ty, T, of
I is centred but in this case denote the vector reaching the lattice point at
the centre from the origin as T, and the one equivalent to it by T,. T,is
obtained from T, by the operation of twofold rotation, an element of sym-
metry for this group. This equivalence rules out ), (3), (5 and (6).
Alternative given by (4) is numbered IIIa. We find from considerations

analogous to those given in (i) that (8) is not distinct from this. (7 is
distinct and is numbered IIT 5.

IV.  Orthorhombic primitive~The basic vectors are unequal and mutually
perpendicular.  We readily see that (2) gives IV a and (3) and (4) are not
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distinct from it. Similarly (5), (6) and (7) are not distinct and (7) may be
numbered IV 5. (8) is distinct from all the above and is numbered IV c.

V. Orthorhombic side-centred.—We take basic vectors as in III which
rules out (2), (3), (5) and (6). Making use of the considerations given in
(iii) of the foregoing section, we have (4) as a distinct alternative and number
it Va. (7) and (8) are also distinctand are numbered V 4 and V ¢ respectively.

VI. Orthorhombic body-centred—We shall take the basic vectors as
lines drawn from the body centre of a rectangular parallelepiped to three of
its corners not belonging to the same face. Symmetry requires that either
all of them be magnetic or all of them be ordinary. Thus we have only
{8) as a permissible alternative and this is taken as VIa.

VIL.  Orthorhombic face-centred—We shall take the lines joining a
corner to the centres of the three faces meeting at that corner of a
rectangular parallelepiped as basic vectors Ty, T, Ty Symmetry requires
that either a pair of them or none of them be magnetic. Since we can call
any two of them as T, and T,, we have (5), (6) and (7) as not distinct and
can take (5) as VIIa. (2), (3), (4) and (8) are ruled out by symmetry con-
siderations as explained above.

VIIL. Tetragonal primitive—~We can immediately see that only (4),
(7) and (8) are distinct and permissible because T; and T, being the sides
of a square should be equal and both magnetic or ordinary. These arc
numbered VIIIq, VIII& and VI ¢ respectively.

IX. Tetragonal body-centred —Considerations analogous to those given
in VI show that (8) is the only alternative permitted. We number this as
X a x

X. Rhombohedral—We take T;=T,=Ty; ¢ =a,= ag% 90° or
60" or cos.”! (—%). Symmetry permits only (8) which is numbered X a.

X1. Hexagonal—We take T, =T, and a; =60°. T, is perpendicular
to T, and T,. From considerations analogous to those given under V) of
the foregoing section, it follows that only (4) is permitted. This is numbered
X1a. '

XIL.  Cubic primitive—We take T, =T, =T,; q = a; = az = 90°.
Again, since all the three basic vectors are symmetrically equivalent, (8) is
the only permitted alternative. This is numbered XII g.

XIIL. Cubic body-centred.——From considerations 'simjlai' to VI and
to IX, we get (8) as the only permitted alternative. This is numbered XIII a.
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Tanre 11

Three-dimensional magnetic lattices

Bravais Basic | Variants
lattice VECtors Angles
No. Vectors
I. Tridinic Tl Tg T3 U‘l# ag# dg 1 P .+. + —
1. Monoclinic T, Ty T, ay = @y == 90° Ma 4o -
primitive as 7 907 1207 b b
L ¢ b
L. Monoclinic side- Ty =T, T3 a3 is arbitrary 11 @ -
centred T, +Tyisatright 116 — — -
angles to the plane
of Ty — Ty and
T,
1V. Orthorhombic T,5# T T, oy = oy == ag == 90° lV a -
. primitive Vb ——
V¢ ——
V. OfthOI'hombIG TI::T:} T3 T1-§'T2, leT23 T3 V a —-»}-— J!.— —
side-centred are mutually per- Vb —_—— e
pendicular Ve —_———
V. Orthorhombic ~ T;=Tg=Tg wyF e ag and Vi g ——
body-centred Ty Tat+Ty Ty
4 Ty Ty= —1
V1I. Orthorhombic Ti#Te# T, Ty, Ty, Ty are the VI « N -
face-centred vectors reaching
the face centres of
a rectangular paral-
lelepiped from
one of its corners
VIIL. Tetragonal Ty=Ty#=Ty ==ty ==ay==90° Villag 4+ 4 —
primitive Vils — — -
VIIL ¢ — — —
IX. TCtl‘agonal Tl';-T_:,v—:T:; oy :CL:;#: Uy Tyl. TAJ JX 17 [
body-centred +Ty Tg+Ty. Ty
X. Rhombohedral.. Ty=T,=T; ——

== ay=0g7%90° or X u
60° or cos™* (—3) .
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Table II—(Contd.)

Bravais Basic Variants
lattice vectors Angles

No. Vectors

XI. Hexagonal .. T;=T,#T, ay=a,=90°; Xla + + —
a3=60°
XL Cubic primitive = Ty=T,=T, oy == ay=ay=<90° Xllag — — —
XII1. Cubic body- Ti=Ty,=T; a;=a,=a, XlMla — — —
cenired = cos! {—3)
XIV. Cubic face- T, =T,=T; @y == gy == a3 ==60° None
centred

1

XIV. Cubic face-centred —Symmetry prohibits all alternatives except
(1) which is the conventional lattice.

The variants deduced above in respect of three-dimensional lattices
are contained in Table II in a connected form. Results agree with those
obtained earlier by Belov, Neronova and Smirnova (1957) and by Zamorzaev
(1957). Figure 3 gives the drawings corresponding to the 36 magnetic lattices.
Crystallographic unit cells of Bravais lattices are arranged columnwise and
against each one are given its magnetic variants. The same procedure as
outlined in connection with the drawings of two-dimensional lattices, has
been followed. It may be noted that if in a magnetic variant all the lattice
points are taken alike—say all of them as white points—it reduces to the
conventional Bravais lattice from which it is derived.
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