MAGNETIC SYMMETRY AND CRYSTAL LATTICES

BY S. BHAGAVANTAM, F.A.Sc. AND P. V. PANTULU
(Ministry of Defence, South Block, New Delhi-11)
Received November 22, 1965

ABSTRACT

One-dimensional, two-dimensional and three-dimensional magnetic lattices have been derived making use of methods adopted by the authors in an earlier paper in deriving crystallographic magnetic point groups.

1. INTRODUCTION

In crystals which possess antiferromagnetic structures, the translational periodicity in certain directions may be accompanied by a reversal of the individual magnetic moments associated with each lattice point out of which the magnetic structure is built. The operation of the reversal of magnetic moment is of order two and may be denoted by \mathcal{R}. This can be combined with the elements of a discrete translation group to give rise to a derived group which may be called a variant of the original translation group. The fourteen translation groups corresponding to the 14 Bravais lattices give rise to 22 such variants. The translation groups are also referred to as vector groups in the following. It is customary to refer to these 36 lattices as magnetic lattices.

It is proposed to present here a derivation of the variants of the one-dimensional, two-dimensional and three-dimensional vector groups using methods similar to those given for the derivation of the magnetic variants of crystallographic point groups in an earlier paper by Bhagavantam and Pantulu (1964).

A vector group in one dimension is an infinite group generated from one basic vector by the group operation of vector addition. In two dimensions, such a group is generated from two non-collinear basic vectors. Three non-coplanar basic vectors generate such a group in three dimensions. A vector group may therefore be denoted by its generating elements. Thus, the one-dimensional vector group may be denoted by a single element T_1. All integral multiples—positive or negative or zero—of this basic vector
form the group. It is easily seen that there is only one variant of this one-dimensional group and it is generated by a single composite element which is the basic vector T_1 accompanied by the reversal operation R. We shall denote the composite element thus formed by $\overline{T_1}$ and call it a magnetic vector. It is evident that an even multiple of $\overline{T_1}$ is an ordinary vector. This vector group generates a linear chain of equally spaced magnetic moments which are alternately oppositely aligned. If, on the other hand, R is taken to signify a change of colour of the lattice point, say from black to white and white to black, the group generates a linear chain of equally spaced black and white points. Figure 1 (a) shows a one-dimensional lattice of equidistant white dots. Its magnetic variant is shown in Fig. 1 (b) and consists of equidistant alternately white and black dots. The distance between two identical lattice points, that is points of the same colour or of the same alignment of magnetic moment, is called the crystallographic cell whereas the distance between the immediate neighbours is called the chemical cell. Similar terminology is adopted in two and three dimensions.

2. TWO-DIMENSIONAL VECTOR GROUPS

Let us denote the two basic vectors which generate a vector group in two dimensions by T_1 and T_2. To obtain the variants of such an infinite group, it is enough if we consider the number of ways in which one or both of the generating vectors may be taken as magnetic. There are evidently 4 ways of doing this. They may be put down as

$$
(1) \ T_1, \ T_2; \quad (2) \ T_2, \ T_1; \quad (3) \ T_1, \ T_2; \quad (4) \ T_1, \ T_2.
$$

We shall follow here the alternative notation of denoting an ordinary vector by $+$ and a magnetic vector by $-$ and write the above as

$$
(1) \ +_+; \quad (2) \ -_+; \quad (3) \ +_-; \quad (4) \ --.
$$

The problem is to consider each of the 5 two-dimensional lattices and pick out such of the above alternatives that are permitted by symmetry in each case. Those that are distinct from amongst such alternatives are the variants. We note that the first alternative gives the conventional lattice and we need consider only (2), (3) and (4) while looking for the variants. Whether a particular variant is distinct or not can be decided in each case by examination with the help of some general principles which emerge during the course of the derivation.

(i) Monoclinic.—Alternatives (2) and (3) are not distinct because we can regard either of the two vectors T_1 and T_2 as a magnetic one without
any loss of generality. The lattice corresponding to alternative (4) may also be generated by choosing \(\mathbf{T}_1 \) and \(\mathbf{T}_1 + \mathbf{T}_2 \) as the basic vectors. \(\mathbf{T}_1 + \mathbf{T}_2 \) is, however, an ordinary vector. This results in (4) not being distinct from (2) and (3). In other words, the lattice which is generated by two unequal basic vectors, both of which are magnetic with no restriction on the angle between them, may equally well be regarded as being generated by another set of two vectors one of which is a magnetic and the other an ordinary vector. There is no restriction on the angle between the vectors nor are they equal in the alternative way of generating the lattice and the lattice therefore is of the same type as (2) or (3). We shall have occasion to use this result in the derivation of the three-dimensional groups. Thus we have only one distinct variant for the monoclinic translation group which may be numbered as (i) \(a \).
(ii) Orthorhombic primitive.—Alternatives (2) and (3) are not distinct and we can take either of them and number it as (ii) a. Alternative (4) is distinct and is numbered as (ii) b.

(iii) Orthorhombic face-centred.—The vectors T_1 and T_2 that generate the group are equal in length with an arbitrary angle not equal to 90° or 60° between them and they are equivalent by symmetry of the lattice. Thus, alternatives (2) and (3) are not permitted and we have only one variant given by (4) which is numbered (iii) a.

(iv) Tetragonal.—Symmetry requires that the generating basic vectors T_1 and T_2 which may be taken as the edges of a square are equivalent. The only possibility is given by (4) which is numbered as (iv) a.

(v) Hexagonal.—If we take T_1 and T_2 as equal in length and inclined at 60°, we have that both T_1 and T_2 must be magnetic or ordinary and that $T_2 - T_1$ which is non-magnetic is equivalent to T_1. Thus we arrive at a contradiction and conclude that the sixfold symmetry forbids all alternatives except the conventional one.

The results deduced above in respect of two-dimensional lattices are contained in Table I in a connected form.

Table I

Two-dimensional magnetic lattices

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Basic vectors and angle</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Monoclinic</td>
<td>$T_1 \neq T_2$, $a \neq 90^\circ$</td>
<td>(i) a</td>
</tr>
<tr>
<td>(ii) Orthorhombic</td>
<td>$T_1 \neq T_2$, $a = 90^\circ$</td>
<td>(ii) b</td>
</tr>
<tr>
<td>(iii) Orthorhombic face-centred</td>
<td>$T_1 = T_2$, $a \neq 60^\circ$</td>
<td>(iii) a</td>
</tr>
<tr>
<td>(iv) Tetragonal</td>
<td>$T_1 = T_2$, $a = 90^\circ$</td>
<td>(iv) a.</td>
</tr>
<tr>
<td>(v) Hexagonal</td>
<td>$T_1 = T_2$, $a = 60^\circ$</td>
<td>None</td>
</tr>
</tbody>
</table>

Figure 2 shows the crystallographic unit cells of the five conventional two-dimensional lattices. Against each of the conventional lattices, the appropriate variants are shown. In (i) a, (ii) a, (ii) b and (iv) a of Fig. 2, the magnetic vectors are of length half of their corresponding non-magnetic
basic vectors of the conventional lattice. There is no loss in generality involved, because it only amounts to altering the scale of the diagram in the direction of the magnetic vector. In the case of the face-centred orthorhombic lattice, this procedure is not followed. It may be noted that if all lattice points in a variant are taken alike—say all as white dots—the variant reduces to its corresponding conventional lattice.

3. Three-Dimensional Vector Groups

The possible alternatives of taking some or all of the three basic vectors as magnetic are 8. They are the following:

\[(1) \hfill +++ \quad (2) \hfill -++ \quad (3) \hfill +-- \quad (4) \hfill +-- \quad (5) \hfill --+ \quad (6) \hfill --\$
(7) \hfill --- \quad (8) \hfill ---\.

We shall take each of the 14 vector groups and find out the alternatives permitted by symmetry and number the distinct ones among them. Let us denote the basic vectors by T_1, T_2, T_3 and angles between them by a_1, a_2, a_3 such that a_1 is the angle between T_2 and T_3, a_2 is the angle between T_3 and T_1 and a_3 is the angle between T_1 and T_2.

I. Triclinic.—From considerations analogous to those given in (i) of the foregoing section, it follows that there is only one distinct alternative. For convenience, we may choose (4) for this purpose and number it as I a.

II. Monoclinic primitive.—We note that $T_1 \neq T_2 \neq T_3$ with a_2 as arbitrary and $a_1 = a_3 = 90^\circ$ gives the lattice under consideration. T_2 is a two-fold axis and T_1 and T_3 are interchangeable. It follows that (2) and (4) are not distinct and we may take (4) and number it II a. (3) gives a distinct variant numbered as II b and the only remaining distinct one is (5) which is numbered as II c.

III. Monoclinic side-centred.—We shall take that the side T_1, T_2 of II is centred but in this case denote the vector reaching the lattice point at the centre from the origin as T_1 and the one equivalent to it by T_2. T_2 is obtained from T_1 by the operation of twofold rotation, an element of symmetry for this group. This equivalence rules out (2), (3), (5) and (6). Alternative given by (4) is numbered III a. We find from considerations analogous to those given in (i) that (8) is not distinct from this. (7) is distinct and is numbered III b.

IV. Orthorhombic primitive.—The basic vectors are unequal and mutually perpendicular. We readily see that (2) gives IV a and (3) and (4) are not
distinct from it. Similarly (5), (6) and (7) are not distinct and (7) may be numbered IV b. (8) is distinct from all the above and is numbered IV c.

V. Orthorhombic side-centred.—We take basic vectors as in III which rules out (2), (3), (5) and (6). Making use of the considerations given in (iii) of the foregoing section, we have (4) as a distinct alternative and number it V a. (7) and (8) are also distinct and are numbered V b and V c respectively.

VI. Orthorhombic body-centred.—We shall take the basic vectors as lines drawn from the body centre of a rectangular parallelepiped to three of its corners not belonging to the same face. Symmetry requires that either all of them be magnetic or all of them be ordinary. Thus we have only (8) as a permissible alternative and this is taken as VI a.

VII. Orthorhombic face-centred.—We shall take the lines joining a corner to the centres of the three faces meeting at that corner of a rectangular parallelepiped as basic vectors T₁, T₂, T₃. Symmetry requires that either a pair of them or none of them be magnetic. Since we can call any two of them as T₁ and T₂, we have (5), (6) and (7) as not distinct and can take (5) as VII a. (2), (3), (4) and (8) are ruled out by symmetry considerations as explained above.

VIII. Tetragonal primitive.—We can immediately see that only (4), (7) and (8) are distinct and permissible because T₁ and T₂ being the sides of a square should be equal and both magnetic or ordinary. These are numbered VIII a, VIII b and VIII c respectively.

IX. Tetragonal body-centred.—Considerations analogous to those given in VI show that (8) is the only alternative permitted. We number this as IX a.

X. Rhombohedral.—We take T₁ = T₂ = T₃; a₁ = a₂ = a₃ ≠ 90° or 60° or cos⁻¹ (−½). Symmetry permits only (8) which is numbered X a.

XI. Hexagonal.—We take T₁ = T₂ and a₃ = 60°. T₃ is perpendicular to T₁ and T₂. From considerations analogous to those given under (v) of the foregoing section, it follows that only (4) is permitted. This is numbered XI a.

XII. Cubic primitive.—We take T₁ = T₂ = T₃; a₁ = a₂ = a₃ = 90°. Again, since all the three basic vectors are symmetrically equivalent, (8) is the only permitted alternative. This is numbered XII a.

XIII. Cubic body-centred.—From considerations similar to VI and to IX, we get (8) as the only permitted alternative. This is numbered XIII a.
Table II

Three-dimensional magnetic lattices

<table>
<thead>
<tr>
<th>Bravais lattice</th>
<th>Basic vectors</th>
<th>Angles</th>
<th>Variants</th>
<th>No.</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Triclinic</td>
<td>$T_1 \ T_2 \ T_3$</td>
<td>$\alpha_1 \neq \alpha_2 \neq \alpha_3$</td>
<td>1a</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>II. Monoclinic</td>
<td>$T_1 \ T_2 \ T_3$</td>
<td>$\alpha_1 = \alpha_2 = 90^\circ$, $\alpha_3 \neq 90^\circ \neq 120^\circ$</td>
<td>1a, b, c</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>III. Monoclinic</td>
<td>$T_1 = T_2 \ T_3$</td>
<td>α_3 is arbitrary, $T_1 + T_2$ is at right angles to the plane of $T_1 - T_2$ and T_3</td>
<td>IIIa, b</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>IV. Orthorhombic</td>
<td>$T_1 \neq T_2 \neq T_3$</td>
<td>$\alpha_1 = \alpha_2 = \alpha_3 = 90^\circ$</td>
<td>IVa, b, c</td>
<td>- + +</td>
<td></td>
</tr>
<tr>
<td>V. Orthorhombic</td>
<td>$T_1 = T_2 \ T_3$</td>
<td>$T_1 + T_2$, $T_1 - T_2$, T_3 are mutually perpendicular</td>
<td>V a, b, c</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>VI. Orthorhombic</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$\alpha_1 \neq \alpha_2 \neq \alpha_3$ and T_1, T_2, T_3 are mutually perpendicular</td>
<td>VIa</td>
<td>- + -</td>
<td></td>
</tr>
<tr>
<td>VII. Orthorhombic</td>
<td>$T_1 \neq T_2 \neq T_3$</td>
<td>T_1, T_2, T_3 are the vectors reaching the face centres of a rectangular parallelepiped from one of its corners</td>
<td>VIIa</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>VIII. Tetragonal</td>
<td>$T_1 = T_2 \neq T_3$</td>
<td>$\alpha_1 = \alpha_2 = \alpha_3 = 90^\circ$</td>
<td>VIIIa</td>
<td>+ + -</td>
<td></td>
</tr>
<tr>
<td>IX. Tetragonal</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$\alpha_1 = \alpha_2 = \alpha_3$</td>
<td>IXa</td>
<td>- + -</td>
<td></td>
</tr>
<tr>
<td>X. Rhombohedral.</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$\alpha_1 = \alpha_2 = \alpha_3 \neq 90^\circ$ or 60° or $\cos^{-1}(-\frac{1}{3})$</td>
<td>Xa</td>
<td>- + -</td>
<td></td>
</tr>
</tbody>
</table>
Magnetic Symmetry and Crystal Lattices

Table II—(Contd.)

<table>
<thead>
<tr>
<th>Bravais lattice</th>
<th>Basic vectors</th>
<th>Angles</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI. Hexagonal</td>
<td>$T_1 = T_2 \neq T_3$</td>
<td>$a_1 = a_2 = 90^\circ$; $a_3 = 60^\circ$</td>
<td>XI a ++ --</td>
</tr>
<tr>
<td>XII. Cubic primitive</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$a_1 = a_2 = a_3 = 90^\circ$</td>
<td>XII a -- --</td>
</tr>
<tr>
<td>XIII. Cubic body-centred</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$a_1 = a_2 = a_3 = \cos^{-1}(-\frac{1}{3})$</td>
<td>XIII a -- --</td>
</tr>
<tr>
<td>XIV. Cubic face-centred</td>
<td>$T_1 = T_2 = T_3$</td>
<td>$a_1 = a_2 = a_3 = 60^\circ$</td>
<td>None</td>
</tr>
</tbody>
</table>

XIV. **Cubic face-centred**.—Symmetry prohibits all alternatives except (I) which is the conventional lattice.

The variants deduced above in respect of three-dimensional lattices are contained in Table II in a connected form. Results agree with those obtained earlier by Belov, Neronova and Smirnova (1957) and by Zamorzaev (1957). Figure 3 gives the drawings corresponding to the 36 magnetic lattices. Crystallographic unit cells of Bravais lattices are arranged columnwise and against each one are given its magnetic variants. The same procedure as outlined in connection with the drawings of two-dimensional lattices, has been followed. It may be noted that if in a magnetic variant all the lattice points are taken alike—say all of them as white points—it reduces to the conventional Bravais lattice from which it is derived.

References

Bhagavantam, S. and Pantulu, P. V.

Belov, N. V., Neronova, N. N. and Smirnova, T. S.
Soviet Physics, Cryst., 1957, 2, 311.

Zamorzaev, A. M.
Supplement to the
"Proceedings of the Indian Academy of Sciences"

INDEX TO VOL. LXIII (A)

AUTHORS’ INDEX

Agrawal, R. M. and
Nigam, Amar Nath
X-ray K-absorption edges of cobalt in two recently
prepared chelates, 200.

Alurkar, S. K.
.. See Rastogi and Alurkar.

Ambady, G. K.
.. See Dweltz and others.

Aruldhas, G.
.. \(\text{H}^1 \) and \(\text{F}^{19} \) nuclear magnetic resonance spectra
of some \(p \)-substituted fluorobenzenes, III, 349.

Athavale, R. N.
.. See Lal and Athavale.

Bhagavantam, S. and
Pantulu, P. V.
Magnetic symmetry and crystal lattices, 391.

Bhat, A. N., Gupta, R. D.
and Jain, B. D.
Bis-2-pyridyl glycel as a reagent for gravimetric
determination of uranium, aluminium and
beryllium, 356.

Choudhary, R. C. and
Sinha, K. D. P.
Steady laminar boundary layer of a viscous in-
compressible fluid in a convergent channel
with distributed suction at the wall, 91.

Cowsik, R., Pal Yash and
Tandon, S. N.
Evaluation of high energy natural neutrino ex-
periments, 217.

Daniel, R. R. and
Stephens, S. A.
Directional variation of geomagnetic cut-off rigidity
around Hyderabad, India, 275.

Dharmatti, S. S. (late),
Govil, G., Kanekar, C. R.,
Khetrpal, C. L. and
Virmani, Y. P.
Proton spin-spin interactions in \(m \)-disubstituted
benzenes, 9.

Dweltz, N. E., Ambady,
G. K. and Radhakrishnan,
T.
Small angle X-ray scattering from deposits in
cotton, 26.

Ganguli, A. K.
.. Stability of viscous flow over concave cylindrical
surface, 105.

401
Govil, G. . . See Dharmatti and others.
Govinda Rajulu, B. V. and Shariff Asadulla A calciferous hornblende from amphibolite of Kushalnagar, Coorg District, Mysore State, 361.
Gupta, R. D. . . See Bhat and others.
Jain, B. D. . . See Gupta and others.
Jha, B. L. and Rao, D. Ramachandra $F^g \Delta r^A^g \Pi$, band system of CN, 316.
Kanekar, C. R. . . See Dharmatti and others.
Katiyar, R. S. . . Raman and infra-red spectra of crystalline ammonium sulphamate, 20.
Khetrapal, C. L. . . See Dharmatti and others.
Kida, Kōji . . See Shimomura and Kōji.
Lal, D. and Athavale, R. N. The measurement of tritium activity in natural waters, I, 166.
Nath, Girishwar . . Dissociation effects in hypersonic flow past a circular cone at an angle of attack, 184. Dissociation effect on the hypersonic flow past a circular cylinder, 376.
Nigam, Amar Nath . . See Agrawal and Nigam.
Pal, Yash . . See Cowsik and others.
Pantulu, P. V. . . See Bhagavantam and Pantulu.
Prakash, Surya . . On a proper delta function, 118.
Purushothama, C. M. . . Propagation of small disturbances in magnetoelastics, 53.
Radhakrishnan, T. . . See Dweltz and others.
Ramakrishnan, S. . . See Shirke and Ramakrishnan.
Rao, P. Ramakoteswara and Ghosh, P. C.
Rastogi, R. G. and Alurkar, S. K.
Rudraiah, N.
Saraiya, S. C.
Shariff, Asadulla \textit{See} Mehta and others.
Shimomura, T. and Kida, Kôji \textit{See} Govinda Rajulu and Shariff.
Shirke, J. S. and Ramakrishnan, S.
Shrivastava, K. N. and Venkateswarlu, Putcha
Sinha, K. D. P. \textit{See} Choudhary and Sinha.
Sundaram, A. K. \textit{See} Mehta and others.
Tandon, S. N. \textit{See} Cowisik and others.
Venkateswarlu, Putcha \textit{See} Shrivastava and Venkateswarlu.
Virmani, Y. P. \textit{See} Dharmatti and others.
Voisin, J. \textit{See} Mackey’s theory and the true representations of the Galilei group, 39.

Electrodeless discharge lamps and some features of spectra emitted by them, 305.
Lunar tidal variations in f_0F_2 in the American zone during period of low solar activity, I, 75.
Pulsating magneto-hydrodynamic flow in an annular channel, 293.
Measurements of total electron content over Ahmedabad and Bombay from Beacon satellite data, 338.
Electron spin resonance of Mn$^{2+}$ in NaCl single crystal and lattice defects, 284.
Forbidden hyperfine transitions in electron spin resonance of Mn$^{2+}$ in NaCl single crystal, 311.
TITLE INDEX

Bis-2-pyridyl glycol as a reagent for gravimetric determination of uranium, aluminium and beryllium (Bhat and others), 356.

Boundary layer, steady laminar, of a viscous incompressible fluid in a convergent channel with distributed suction at the wall (Choudhary and Sinha), 91.

CN, F \(^8\Delta_r\text{-}A^2\Pi\), band system of (Jha and Rao), 316.

Cobalt in two recently prepared chelates, X-ray K-absorption edges of (Agrawal and Nigam), 200.

Delta function, proper, on a (Prakash), 118.

Electrodeless discharge lamps and some features of spectra emitted by them (Rao and Ghosh), 305.

Electron content, total, over Ahmedabad and Bombay from Beacon satellite data, measurements of (Shirke and Ramakrishnan), 338.

Geomagnetic cut-off rigidity around Hyderabad, India, directional variation of (Daniel and Stephens), 275.

High energy natural neutrino experiments, evaluation of (Cowsik and others), 217.

Hornblende, a calciferous, from amphibolite of Kushalmagar, Coorg District, Mysore State (Govinda Rajulu and Shariit), 361.

Hypersonic flow past a circular cone at an angle of attack, dissociation effects in \(\text{N}^-(\text{Nath}), 184.\)

Hypersonic flow past a circular cylinder, dissociation effect on the (Nath), 376.

Lunar tidal variations in \(f_0\text{F}_2\) in the American Zone during period of low solar activity, I (Rastogi and Alurkar), 75.

Mackey's theory and the true representations of the Galilei group (Voisin), 39.

Magnetic symmetry and crystal lattices (Bhagavantam and Pantulu), 391.

Magnetoe-elastic, propagation of small disturbances in (Purushothama), 53.

Magnetohydrodynamic flow, pulsating, in an annular channel (Rudraiah), 293.

Mn\(^{2+}\) in NaCl single crystal, electron spin resonance of, and lattice defects (Shrivastava and Venkateswarlu), 284.

Mn\(^{2+}\) in NaCl single crystal, electron spin resonance of, forbidden hyperfine transitions in (Shrivastava and Venkateswarlu), 311.

404
Nuclear magnetic resonance spectra, 1H and ^{19}F, of some p-substituted fluoro-benzenes III (Aruldas), 349.

Photoelectric Raman spectrometer (Shimomura and Kida), 244.

Proton spin-spin interactions in m-disubstituted benzenes (Dharmatti and others), 9.

Raman and infra-red spectra of crystalline ammonium sulphamate (Katiyar), 20.

Tritium activity in natural waters, the measurement of, I (Lal and Athavale), 166.

X-ray scattering, small angles, from deposits in cotton (Dweltz and others), 26.

Uranium (V), disproportionation of, effect of complexing agents on the (Mehta and others), 371.

Viscous effects in the liquid conductor model of hard-core pinch (Murty), 145.

Viscous flow over concave cylindrical surface, stability of (Ganguli), 105.