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ABSTRACT

A simple procedure, based on the transformation properties of the
nonlinear susceptibility tensors of different ranks referred to appropriate
coordinate systems, is given for studying the selection rules and polariza-
tion characters in regard to all orders of harmonics. By this procedure,
results covering both Jinearly and circularly polarized incident light for
all the 32 crystal classes with some simplifying restrictions are obtained and
listed in the paper. Attention is drawn to special features in each casc.
There is complete agreement with what has been reported earlier by Tang
and Herbert Rabin for circularly polarized incident light.

]. INTRODUCTION

FroM an experimental point of view, it is of interest to consider using
(i) linearly polarized incident light and (ii) circularly polarized incident
light for the generation of harmonics in nonlinear optics relating to crys-
talline media of different symmetry propertics. The phenomena due 1o
circularly polarized incident light arc different from those due to lincarly
polarized light and, because of the nonlinearity, the former cannot be obtained
from the latter or vice versu, by a simple process of superposition. The
two cases arc thercforc to be studied independently. Tang and Rabin
(1971) have considered the problem of circularly polarized incident light and
obtained many intercsting results. In this paper, we have developed a simple
procedure, based on the transformation properties of the nonlinear suscepti-
bility tensors of different ranks referred (o appropriafe coordinate systems,
By this procedure, we have obtained the results in @ comprehensive mauner,
covering both linearly and circulatly polarized incident light for all the 32
crystal classes. As it should be expected, there is complete agreement with
what has been reported by earlier authors, particularly by Tang and Rabin,
for circularly polarized incident light. Complex cases, wherc the trans-
mission is pot along a chosen symmetry axis or where the state of polariza-
tion of the generated harmonic bears no simple relation to that of the incident
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light, are not dealt with in this paper as there is not much interest attached
to them in practice.

2. THEORY

The polarization P of a nonlinear dielectric due to an applied electric
field E may be written as in (1).

P; = ofEj + o;'F EjEx + ok E;ExE; -+ - - 4 (O

P;, etc., and Ej;, etc., are the components of P and E in a general coordinate
system. o3 of the first term is the linear susceptibility tensor and the «’s
in the second term onwards represent the nonlinear susceptibility tensors
of higher ranks. Summation over the repeated indices is implied. We
have taken the polarization and clectric field to be covariant vectors so
that the susceptibility tensors are of the mixed type. For example, «F is
covariant in one index and contravariant in the other two. Such a distinc-
tion between covariant and contravariant indices disappears when we
consider the special case of a cartesian coordinate system.

The form of the susceptibility tensors depends on the coordinate system
chosen. This choice should be made to suit the particular physical prob-
Iem under consideration. In the case of linearly polarized incident light,
a cartesian coordinate system. x, », z numbered 1, 2, 3 respectively is the most
convenient choice. We choose the axis in such u way that the incident light
propagates along the z-axis and is polarized along cither the A- or the p-axis.
When linearly polarized light as specified above is incident upon the crystai
and the propagation is taken to be along the principal symmetry axis (along
one of the cubic axes in the case of the cubic classes), we seek to know the
selection rules and polarization characters for harmonic generation in the
32 crystal classes. It is presumed that observation is always made in the
forward dircction, i.e., along the direction of propagation.

Neumann's principle requires that every physical property of a crystal
should exhibit at least the symmetry of that crystal. Consequently, a tensor
representing harmonic generation of a particular order in @ nonlincar crystal
with a certain pomt group cymmetry must be wmvariant under all the sym-
metry operations of that poini group. ‘lhe pisssnce or absence of a parti-
cular harmonic in our problem and its state of polarization are thus dictated
by whether the appropriate tensor components have a non-zero value or not.
As an illustration, we may cite the well-known result that in a centrosymmetric
crystal, all components of the tensor a7 are zero and hence the second-
harmonic is not present in these crystals.
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The procedure for determining the number of non-zero components
of a tensor and the components themselves, subject to a point group sym-
metry, is a straightforward onc and has been given elsewhere (Bhagavantam,
1966). In a general coordinate system x,, X, x. under a transformation
given by equations like (2),

Ny o= A X (2)

the tensor components transform as in (3).

atgk = Azp .AqJ Ark aqu. (3)

In the special case of cartesian coordinatcs, we do not distinguish between
the contravariant and covariant indices and write the transformation of the
tensor components as in (4).

a’ijk = AmquArk Apqr- (4)

It is thus possible, with the help of the above transformation laws and Neu-
mann’s principle, to write out in cxfenso the non-zero components of the
corresponding tensor and study the features of harmonic generation of any
order. For instance, in the example of third harmonic generation (THG),
a tensor ey of rank 4 and intrinsic permutation symmetry in all the three
indices jk/, represents the relevant physical property. The corresponding
character of transformation is given in (5) and by the methods described
carlier (Bhagavantam, 1972} one can lind the number of non-zero com-
ponents

x (Rg) =8 cos® ¢ -k 12 cos* o - 8cos*h |- 2cos ¢ (9)

for each of the crystal classes. The maximum number in this case thal is
appropriate for the triclinic asymmetric class is 30.  Maker, "I’crhun‘c and
Savage (1964) have listed explicitly all the non-zero componenls ol such
a tensor Lor each of the 32 crystal classes and theiv table can be readily used
for arriving at the results regarding THG.

However, in our parteular problem the restrichons segarding wluch
have already been stated, we are not wtercsted i all the HOU-ZLH0 Cotl-
ponents of the susceptibility tensor. Taking the simplest example ol second
harmonic generation (SHG), the compoqents wc.need to study arc only
Oy Oaggs Ggge @04 app. 1E for example in a particular cry_stal, a4 O and
remains invariant for all the generating operations of the point group appro-
priate to the crystal, it means that incident light polarized in the x direction
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gives rise to a second harmonic with the same polarization. If as; #0 in
a similar manner, we get a second harmonic polarized along y. Since the
observation is confined, to the - direction , harmonics present due to non-
zero values of components like ay, and asy, are not observed. We may find
instances when a;,, % 0 and transforms into a linear combination with other
components like ay; under the application of one of the generating opera-
tions. In such a case, the harmonic is expected to be present and exhibit
elliptic polarization. We can extend these considerations to harmonics of
any order and note that we need to study the behaviour of components like
@jgq. ... and ajss. ... wWhere i can take the values 1 and 2 only.

3. RresuLts WITH INCIDENT LINEARLY POLARIZED LIGHT

The results obtained for the 32 crysial classes are given in Table I. In
this, 0 under a particular barmonic signifies that the harmonic is forbidden
in all crystals having point group symmetries against which 0 is shown.

TABLE 1

Linearly polarized light

Cyclic Other groups Order of harmonic
group akin to
Cp Cy 2 3 4 5 6 7
C1 Cs X
Cs C; Cun 0
Cay Dy Dax 0 +
1 Tx
Cs Can b X X
Cay D, Dy + + -+
Cy Can S¢ 0 X 0 X
Civ Dy Dy, 0 -+ 0 +
D
T 0 O
Cs Cen Cai 0 x 0 X 0 bt
Dsa Ces 0 + 0 + 0 +
Da Den
3D 0 + 0o+ 0 +
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A + sign indicates that the harmonic is present and that its state of polariza-
tion is preserved, i.e., it is linearly polarized along the axis which is the same
as the one along which the incident light is polarized. An X sign means
that in addition to a component along the direction of polarization of the
incident light, there is also a component of that paiticular harmonic pola-
rized in a direction perpendicular to it giving in general, elliptically polarized
light. Results for the 3-dimensional rotation group (Isotrcpic medium)
are also included. For the cyclic group Cp and other groups akin thereto,
results are given only up to the harmonic of order p 4+ 1 because in each
case, the pattern is found to repeat itself thereafter.

We observe the following points of interest. Even harmonics are
absent in the cyclic groups C,, C,, Cy, in the related groups and in the
3-dimensional rotation group. There is no group in which a linearly polarized
harmonic is present with its direction of polarization different from that of
the incident light. Addition of a mirror plane oy, perpendicular to the
z-axis does not change the selection rules. On the contrary, the additions
of a dihedral axis or a oy, plane parallel to the z-axis reduces elliptically pola-
rized light to linearly polarized light. In all such cases, we have chosen the
coordinate axes such that the incident light is polarized either along the
dihedral axis or along an axis parallel to the plane.

4. ResuLtsS WITH INCIDENT CIRCULARLY POLARIZED LIGHT

Once again we shall take the propagation to be along the principal sym-
metry axis, and the incident light is either right circularly polarized or left
circularly polarized with respect to the direction of propagation, along which
the observation is being made. The coordinates chosen are defined by

X4y, x—iy, =z
and numbered successively as I, 2, 3.
In this system, the components of the incident light vector are:
E; = Eg - iBy 5 By = By — iliy,.

E, and E, may be regarded as respectively representing left and right circularly
polarized light. Under a rotation through an angle ¢ about the z-axis, the
coordinates transform as:

E1’ = e‘”’ El’ Egl = ei¢ Eg, E3’ = Eg.
A9
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We observe that the transformation matrix for this set of coordinates is
diagonal. The tensor components transform under such a rotation as in
(3). In this case, it is necessary to distinguish between contravariant and
covariant indices. Taking the second harmonic as an illustration, once
again we are interested only in components like o1, a,'l, ;®? and a,™.
In the case of higher harmonics also, we need consider only components
of this kind. The transformation laws for these components are (for a p-th

harmonic given by the component «iil-- p-times)

10r2

o/ e = ole o—iDe i = et (-9 ay e

OLf211... — e*i‘f’ e-ip¢ OLG... — i (P %11..._

If ;! survives in a particular point group, it means that the corresponding
p-th harmonic is present, and that left circularly polarized light gives a left
circularly polarized harmonic. If a,'- is present, it means that left circu-
larly polarized light gives a right circularly polarized harmonic. Analogous
results hold good for right circulaily polarized incident light. In fact, the
problem is completely symmetric with regard to right and left circular pola-
rization.

The results for vircularly polarized incident light are summarized in
Table II. A 0 under a particular harmonic indicates that the harmonic is
forbidden in crystals of that particular symmetry. A + sign signifies that
the harmonic is present and the polarization is the same as that of the
incident light. A — sign signifies that a right circularly polarized incident
light gives a left circularly polarized harmonic and vice versa. A X sign
indicates the presence of both states of polarization giving in general, ellip-
tically polarized light.

For the cyclic groups, we arrive at the following rules from the (rans-
formation laws for the tensor components:

If

p— 1 =2nn/d,
we obtain a + sign indicating that the polarization is preserved.
If

p+ 1 =2nn[¢,

we obtain a — sign indicating that the polarization is reversed.

D e ——
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If neither of the above conditions is satisfied, we obtain a 0 sign indicating
that the harmonic is forbidden. # in the foregoing relations is any integer
and the symmetry operation for the group is a rotation through the angle
¢ about the z-axis.

TABLE I

Circularly polarized light

Cyclic Other groups Order of Harmonic
group akin to
o Cy 2 3 4 5 6 T
G Cy X
Cs C; Cop Cop 0 X
D. Doy,
T 1y
Cs Cap Ca - 0 +
Dy Dy
Cq Can Cyo 0o - 0 +
Se Dy Dan
Doy
Ty 0 0}
Ce Con Cey 0 0 0 - 0 +
D, Dyy,
Csi Dsq
3D 0 0 0 0 0 0

It may be seen that even harmonics are absent in the centro-symmetric
groups and in C,, C,, Cq and the 3-dimensional rotation group. Addition
of a dihedral axis or a mirror plane op, does not change the selection rules.
None of the harmonics are present in the 3-dimensional rotation group.
It is interesting to note that unlike in the case of incident linearly polarized
light, the selection rules in this case are not the same for all the five cubic
classes. For instance, third harmonic in the classes T and Tp, is elliptically
polarized whereas it is circularly polarized (opposite to the sense of the
incident light) in the classes Tq, O and Op. That this distinction does not
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exist in the linearly polarized case may be seen from Table I. That the
five classes in the cubic system of crystals fall into two such groups for some
chosen physical properties was first recognised and pointed out by one of
us in connection with a study of crystal symmetry in relation to photo-
elasticity (Bhagavantam, 1942).
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