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7. Introduction

THE optical coefficients of a crystal give us the relation between the three
components of an incident light vector and those of the induced optic
moment vector. They should accordingly be 9 in number but reduce to
6 on account of the relation C,,= C,,. While their number remains at 6
in crystals of the triclinic system, a further reduction takes place when higher
symmetry is present as the latter involves mutual relationships between the
various coefficients. Similarly, the moduli of elasticity give the relation
between the six components of the stress tensor on the one hand and
those of the strain tensor on the other and these could be 36 in number
but reduce to 21 even in triclinic crystals on account of the relation C,, = C,,.
The stress-optical coefficients deal with the photo-elastic behaviour and give
the relation between the optical coefficients of the crystal and the compo-
nents of an applied stress tensor. Their maximum number is 36 and this
number remains undiminished in the triclinic system of crystals because
the relation C,,=: C,, does not generally hold good for stress-optical coeffi-
cients. Just as in the case of optical coefficients, the largest number of
moduli of elasticity and of stress-optical coefficients that are required in each
case depends on the symmetry properties of the crystal in question. The
usual methods of ascertaining the number of coefficients required for each
crystal system and of writing them out are known and described in standard
treatises.!

A Group theoretical treatment of the subject in so far as it relates to the
elastic properties has recently been given by Jahn.? In this paper, it is
proposed to give an easy method based on the theory of groups for obtaining
the number of optical, elastic and stress-optical coefficients necessary for

1 Reference may be made to Love’s Mathematical Theory of Elasticity for litcrature relating
to the elastic moduli. The subject of photo-elasticity in crystals is dealt with by Coker and
Filon in their Treatise on Photo-Elasticity and by Szivessy in Handbuch Der Physik, 1929, 21, 832.
These authors have, however, only quoted the earlier and pioneering work on the subject by
Pockels contained in Lehrbuch der Kristalloptik, 1906.

2 Z. Kristall., 1937, 98, 191..
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describing these properties for each of the 32 classes of crystals. There are
some discrepancies between the results. thus obtained and those given earlier
by Pockels in respect of photo-clasticity. With a view to clarify these,
detailed tables containing the stress-optical coefficients are worked out and
given for all the classes of crystals.

2. Formulation of the Method

Let oyps @)y o 0ysy @y, and o, represent the set of 6 independent
optical coeflicients of a crystal. Under an operation Rg consisting of a
rotation through ¢ or a rotation reflection through ¢, these coefficients
which comnstitute a tensor transform as products of cartesian co-ordinates.
If R¢ is a covering operation for the crystal, the equations connecting the
optic moments with the Components of the incident light vector should
remain invariant under such an operation. This requirement imposes certain
restrictions on the coefficients and those or such combinations of those
which remain invariant for ail the covering operations alone will survive.
The problem before us is to find the number of such surviving terms for
each class of crystal symmetry.

Relations (1) and (2) show respectively how the cartesian co-ordinates
and the tensor components transform. The plus and the minus sign where
the alternative occurs refer respectively to cases of pure rotation and rotation
reflection 1n the order in which they are given.

X—>XCosd+ysing; y>—xsind-+ vcos¢; z— =+ z (1)
Uy —> Cyy COS? 4 @y, SIN? 4 @y, sin ¢ cos ¢

ayy —> %xx SID? ¢+ a,, COS® b — a,, sin ¢ cos &

Lzz > Ay

yz > £ 4y COS @ F a,, sin ¢

Oy ~> k @y, SID ¢k ay, cOS ¢ ,

Oy —> —Oyy SID @ COS b +a,, sin ¢ cos é 4 a,, (Cos? ¢ — sin? ¢) (2)

(2) may be regarded as a linear substitution. It is easily seen that the
character of the transformation matrix in (2) works outas 2 cos ¢ (= 1+ 2
cos ¢). These linear substitutions constitute a reducible representation of
the group G. Six mutually orthogonal and independent linear combinations
of the above variables may now be found in such a way that they fall into
six or less number of scts, the members in each set transforming among
themselves by every operation of the group G. These will constitute the
basis for a new and completely reducible representation of the group G.
The character appropriate to any element Rg in this representation will be
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the same as that obtained before since the two are equivalent. It is now
quite easy to find »,, the number of times a particular irreducible represent-
ation repeats itself in the representation consisting of the new variables with
the help of the following formula®:—

mee o Sl (R) 3/ (R) ... 3)
J
Since we want to know the number of combinations that remain invariant
for all operations R, we need only find the value of »n; appropriate to the
total symmetric irreducible representation. This is characterised by the fact
that x; (R)=1 for all R. 1n this case x; (R) has already been shown to be
equal to 2 cos ¢ (+ 1+ 2 cos ¢) and #; is the number of elements in the
Jjth class of the symmetry group.

As has already been said, the elastic moduli which connect the com-
ponents of the stress tensor with those of the strain tensor are 21 in number.
Under a change of axes, these coefficients transform as products of tensor
components. The transformation matrix can easily be written down with
the help of (2) and it can be shown that the character appropriate to Rg
18 1—4 cos? ¢ £ 3 cos® &+ 16 cost ¢. the plus or the minus sign being
used according as the operation is a pure rotation or a rotation reflection.
Similar remarks as in the case of the optical coefficients apply here also and
formula (3) will enable us to know the number of combinations that
remain invariant for all operations R if we put x; (R)==1 for all R and
carry the summation over all the elements of the symmetry group. This
result represents the number of moduli required to describe the elastic
properties of the particular crystal.

The stress-optical cocfficients are 36 in number and connect the optical
coefficients with the components of the stress tensor. Under change of axes,
they transform as the clastic moduli but differ from them in that C,, has
to be distinguished from C,. Il this is taken into account, the character
of the transformation matrix works out as 4 cos® ¢ + 16 cos® ¢+ 16 cost .
Use of this character in formula (3) will enable us to know the number of
coeflicients required to describe the photo-elastic properties of particular
crystals.

The general formula for obtaining the numbezrs of coefficients in each
case along with the appropriate character is thus given as follows :—

n; = %I 21'3’/7,- x; (R)

3 For further elucidation of the formula and the notation employed in this paper, reference
may be made to Bhagavantam, Scattering of Light and the Raman Effect, 1940,
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where x;/ (R) = 2cosp(x1+2cosd).......... for optical
= 1—4cos? ¢+ 8cos®d+ 16 cos* ¢ for elastic
= 4 cos? ¢ & 16 cos® ¢+ 16 cos? ¢....for stress-optical (4)

3. Application to Crystals

Results of applying formula (4) to all the 32 classes of crystals are given
in Table I.

TABLE [
. . . Stress-
Crystal system | Symbol Symmetry operations Optical | Elastic optical
Triclinic R B o E 6 21 36
G Ei 6 21 36
Monoclinic G E o4 4 13 20
C, EC, 4 13 20
Cy ECyiay 4 13 20
Orthorhombic ..| Cy, E C, 0,07 3 9 12
D, EC, Cy CyY 3 9 12
Dg/z E C2 Cgl Cgl/ oy Oyl C’:y” 3 9 12
Tetragonal Gy E 2C, C, 2 7 10
Ss E 25, C, 2 7 10
C4Iy E 2C4 Cz 20’@ 20'7/ 2 6 7
D2d E CQ Cg’ Cgﬂ Oy 2S4 0'7}, 2 6 7
D, E 2C,; C, 2C, 2Cy 2 6 7
Dy E 2C, C, 2C, 2Cy 2 6 7
i 25,04 204 20y
Hexagonal Y O E 2G, 2 7 12
S, E 2C; i 2S, 2 7 12
Dy E 2G, 3C, 2 6 8
Dyy E 2Cg 3Cy i 254 30y, 2 6 8
Ca/l E 2C3 G} 283 2 5 8
C, E 2C, 2C, C, 2 5 8
Cok E 2C6 2C3 Cg 2 5 8
125425, 04
Dgy E 2C; 3Cq 0 2Sg 30y 2 5 6
ng, E ZCG 2C3 Cz 30'2/ 30"0’ 2 5 6
D, E 2C; 2C4 C, 3C, 3Gy’ 2 5 6
Dﬂﬁ E ?'CG 2C3 C2 3C2 3C2’ 2 5 6
izss 286 Gﬁ 30'1} 30'7},
Cubic R E 3C, 8C, 1 3 4
Ty E 3C, 8C;3 i 30 8S, 1 3 4
Tg E 8C4 3C, 60 65,4 1 3 3
(o) E 8C; 3C, 6C, 6C, 1 3 3
0; E 8C; 3C, 6C, 6C, 1 3 3
i 854 30 6 63,

The number of optical coefficients in each case is quite familiar and can
easily be verified. Numbers in respect of elastic properties agree with the
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known results in all cases. Numbers in respect of photo-elasticity agree
with those given by Pockels in all cases except C,, S, and C,; of the tetra-
gonal system, C,, S, C,;, Cq and Cg; of the trigonal system and T and
T, of the cubic system. With a view to obtain confirmation of the results
reported in the present paper and to clarify the discrepancies, the stress-
optical coefficients have also been worked out for all crystal classes by the
direct method explained by Coker and Filon in their book. The results
are given below and they show that the numbers of surviving coefficients
in all cases are in agreement with those given in Table I. These may be
compared with the results of Pockels quoted by Szivessy in the Handbiich
Der Physik already referred to as the notation employed is the same.

First group.—(Triclinic Hemihedral and triclinic Holohedral) (36 coeffi-
cients) |

Ju 12 iz 914 G5 e
Jo1  Goe a3 Gaa Gas Yo
51 32 Y933 93 d3s s
Qe 9e2 943 Gaa 9a5 Jae
Js1 G52 dss 9sa 455 Gse
Te1 Ge2 Jez  qea  des5 e

Second group.—{(Monoclinic Hemihedral, monoclinic Hemimorphic and
monoclinic Holohedral) (20 coefficients)

qu Gz Gz O 0 d16
o G2 Gz O 0 o

Gy Gz 3 O 0 36
0 0 0 qas Gz O

0 0 0 g5y 455 O
o1 Te2 Gsa O 0 Us6

Third group.—(Rhombic Hemimorphic, rhombic Hemihedral and
rhombic Holohedral) (12 coefficients)

qu G2 4 0 O 0
a1 G2 Gz 0 0 0
Ja1 Gsa G330 0 0
0 0 0 gq O 0
0 0 0 0 g5 O
0 0 0 0 0 Jee
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Fourth group.—(Trigonal Tetartohedral and trigonal Paramorphic)
(12 coefficients)
11 412 d13 Gr1a G5 2Ges
q12 d11 i3 —q14 dos  —2gey

ds1 s J33 0 0 0

9y —qau 0 d44 d45 2459
—{s52 d52 0 —4q45 a4 2944
g2 de2 0 25 914 9117 412

Fifth group—(Trigonal Hemimorphic, trigonal Enantiomorphic and
trigonal Holohedral) (8 coefficients)

d11 d)2 Gis 914 0 0

q12 11 13 —4q14 0 0

ds1 UEN (33 0 0 0

9ea  —Ya 0 Guq 0 0

0 o 0 0 a4 294

0 0 0 0 - gy 11— q12

Sixth group.—(Tetragonal Tetartohedral I, tetragonal Tetartohedral II
and tetragonal Paramorphic) (10 coefficients)

dn T2 T3 0 0 d16
12 n 4y3 0 0 — 15
(31 E3 s 0 0 0
0 0 0 G4 445 0
0 0 0 — 445 444 0
dsr  — Je1 0 0 0 9ee

Seventh group.—(Tetragonal Hemimorphic, tetragonal Hemihedral I,
tetragonal Enantiomorphic and tetragonal Holohedral) (7 coefficients)

11 die 13 0 » 0 0
12 qd11 d13 0 0 0
31 ds1 33 0 0 v
0 0 0 m 0 0
0 0 0 0 q44 0
0 0 0 0 0 Jes

Eighth group—(Hexagonal trigonal Paramorphic, hexagonal Terarto-
hedral and hexagonal Paramorphic) (8 coefficients)

d1 d12 413 0 0 26]52
d12 411 d13 0 0 — 2g4gs
ds1 31 qs3 0 0 0
0 0 0 G54 q 15 0
0 0 0 — 43 914 0

— G2 o2 0 0 0 di1— 12
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Ninth group—(All other classes of the Hexagonal system) (6 coefficients)

du 12 q13 0 0 0
q12 qu 913 0 0 0
qs1 s d33 0 0 0
0o 0 0 m 0 0
0 0 0 0 gy 0
0 0 0 0 0 11— Gi2

Tenth group.—(Cubic Tetartohedral and cubic Paramorphic) (4 coeffi-
cients) |

d11 d12 413 0 0 0
q13 G 12 0 0 0
dio 13 du 0 0 0
0 0 0 q 44 0 C
0 0 0 0 q44 0
0 0 0 0 0 q 14

Eleventh group.—(All other classes of the cubic system) (3 coefficients)

d11 q12 G12 0 0 0
d12 711 12 0 0 0
q12 q12 qu 0 0 c
0 0 0 q 44 0 0
0 0 0 0 9ua O
0 0 0 0 0 G4

It is not clear how the extra coefficients in the classes cited above have
been regarded by Pockels as vanishing. An important result of the present
investigation relates to the T and T, classes of the cubic system. It will
be noticed that they require 4 stress-optical coefficients for the description of
their photo-elastic behaviour while the rest of the classes under the cubic
system require only 3. Such a distinction does not occur in respect of

elastic moduli.
4. Summary

An easy method, based on the theory of groups, for obtaining the number
of optical, elastic and stress-optical coefficients necessary for describing
these properties for each of the 32 classes of crystals is given. The stress-
optical coefficients are worked out in detail for all the 32 classes. It is
noticed that the Tetartohedral and the Paramorphic hemihedral classes of
the cubic system require four stress-optical coefficients for the description
of their properties while the rest of the classes under this system require
only three.



