SOME NEW AMINOTHIAZOLES THE discovery by Smirk and McGeorge¹ of the remarkable blood pressure raising property of S-methylthiourea sulphate and the discovery by Rose et al² of the promising local anæsthetic property of thiazole derivatives led us to the synthesis of a few new compounds of types (A) and (B) which could be considered as cyclised derivatives of both S-methylthiourea and of aminothiazole and hence would be possible pressor anæsthetics. Following the known methods 3,4,5,6 compounds 1, 2, 3, and 4 (Table 1) were prepared by refluxing phenacylbromide with m-and-p-nitro as well as o-methoxy-phenythioureas and β -naphthyl thiourea respectively and isolating the products and purifying them from suitable solvent. The action of thiourea on 3:4:5—triacetoxy ω -bromoacetophenone led to the formation of 4- (3':4':5') triacetoxy-phenyl-2-aminothiazole which was isolated as its hydrobromide 5 (Table I) the base being unstable. The reaction of phenyldithiobiuret with phenacyl-and β -napthacylbromides even when conducted in monomolecular proportions led to the formation of substituted 2-thiazolyl 2'-iminothiazolines (1 and 2, Table II) of type (B). TABLE I | I ADDE I | | | | | | | | | | | |-----------------------|---|--|---------------------------------|---|------------------------------------|-----------------------------------|--|--|--|--| | No. | R ₁ | $ m R_2$ | m.p. °C. | Empirical
formula | Nitrogen Per cent | | | | | | | | | | | | Found | Calculated | | | | | | 1
2
3
4
5 | $C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 3:4:5-(CH_3CO\cdot O)_3C_6H_2-$ | m-C ₆ H ₄ NO ₂
ρ-C ₆ H ₄ NO ₂
ο-C ₆ H ₄ OCH ₃
β-C ₁₀ H ₇ | 165
202
195
127
171 | $C_{15}H_{11}O_{2}N_{3}S$ $C_{15}H_{11}O_{2}N_{3}S$ $C_{16}H_{14}ON_{2}S$ $C_{19}H_{14}N_{2}S$ $C_{15}H_{15}O_{6}N_{2}S$ Br | 14·1
13·6
10·0
9·1
6·5 | 14·1
14·1
9·9
9·2
6·5 | | | | | | TABLE II | | | | | | | | | | | |----------|---|----|------------|---|------------------------|----------------|--|--|--|--| | No. | R ₁ | R. | m.p. °C. | Empirical | Nitrogen
Percentage | | | | | | | | | | | formula | Found | Calcu
lated | | | | | | 1
2 | С ₆ Н ₅
β-С ₁₀ Н ₇ | | 227
242 | $\substack{C_{24}H_{17}N_3S_2\\C_{32}H_{21}N_3S_2}$ | 10·2
8·2 | 10·2
8·2 | | | | | Org. Chem. Laboratories, Bangalore. M. V. BHATT. Indian Institute of Science, September 17, 1948. B. H. IYER. P. C. GUHA. ^{1.} Smirk and McGeorge, Lancet, 1942, 243, 301. 2. Rose, Shonle and Chen, Pharm. Arch., 1940, 11, 81-89. Am. Chem. Abstracts., 1941, 35, 1522. 3. Walther, J. fur. Prakt. Chem., 1907, 87, (ii) 187-199. Chem. Abstracts, 1907, 92 A, 349-50. 4. Walther and Roch, J. fur. rakt. Chem., 1913, 87, (ii), 27-66. 1913, Chem. Abstracts, 1913, 10 A, 189-203. 5. Hantzsch and Traumann Ber., 1888, 21, 938-941. Chem. Abstracts. and Traumann, Ber., 1888, 21, 938-941, Chem. Abstracts, 1888, 54A, 573. 6. Traumann, Innalen, 1888, 249, 31-53. c.f. Chem. Abstracts, 1889, 56A, 414-15.