Bisiminocamphor Derivatives with Exalted Optical Activity.

Forster and Thornley (*J. C. S.*, 95, 942, 1909) observed that bisiminocamphor derivatives display remarkably high rotatory power, and this was later ascribed to an optimum association of azethenoid groups, conjugated linkages and a benzene ring within a narrow molecular compass (Forster and Spinner, *ibid.*, 115, 889, 1919). B. K. Singh and his collaborators have prepared
1: 4-naphthylenebisiminocamphor and \textit{pp'-}bisiminocamphordiphenylamine, with molecular rotations 13416° (pyridine) and 14231° (ethyl alcohol), respectively. These two compounds were known so far to possess the highest molecular rotation. We have now prepared 1: 4-naphthylenebisiminobenzylideneiminocamphor, in which the number of conjugated double linkages has been increased to seventeen; and the molecular rotation reaches 22050° in pyridine for the mercury yellow line, 5780. This compound has been obtained by condensing \textit{p}-acetaminobenzaldehyde with 1: 4-naphthylendiamine, removing the acetyl groups by dilute hydrochloric acid in alcohol, and condensing the resulting bisaminobenzylideneenaphthylendiamine with camphorquinone.

The bisiminocamphor derivatives of \textit{pp}-diaminodiphenylcarbamide and \textit{pp}-diamino- nodiphenyloxamide show molecular rotations 8911° and 12094° respectively in chloroform.

P. C. GUHA.
S. M. PATEL.

Indian Institute of Science, Bangalore,
\textit{August 28, 1933.}