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1. Introduction. Let (X, S, n) be a probability measure space.

Here X is a set of points x, S is a <r-algebra of subsets of X, and ju is

a <r-additive measure on S with ju(X) =1- Let V=/jt(X, S, fi) be the

real Hilbert space of S-measurable functions/(x) with JxPdn< <*>.

For/ and g in V, we write (/, g) =fxfgdfx where (/• g) (x) =f(x) -g(x),

and ll/H =(/, /)1/2. Convergence in F is defined as usual in the norm

topology, that is to say, limn,M/n=/ means lim,,.,,*, ||/n—/|| =0. If/

and g are functions in V such that ||/—g\\ =0, they are regarded as

identical and we write/ = g./^g means that /x{x:f(x) <g(x)} =0. For

any real a, the function which is equal to a for every x is also denoted

by a. A function /in V is said to be bounded if there exist a and 8

such that a g/g 8.

A function on X which takes only the values 0 and 1 is called a

characteristic function. For any set A EX, xa denotes the character-

istic function which equals 1 on A and vanishes on X—A. If Si and St

are subclasses of S, we write S\ES2 if corresponding to each set A ESi

there exists a BESt such that xb=Xa\ we write Si = S2 if SiES2 and

StCSi.
Let Whe a subspace ( = closed linear manifold) in V. Wis algebraic

if it contains the function 1 (and therefore every constant function)

and if, for any two bounded functions/ and g in W, the function f-g

is also in W. W is bounded (so to speak) if the set of bounded func-

tions in W is dense in W. W is measurable if there exists a (necessarily

unique) <r-subalgebra of S, S* say, such that W=Jji(X, S*, ju), that

is to say, W is the set of all 5*-measurable functions in V.

Let T be the (orthogonal) projection to the subspace W. T is

constant-preserving if Ta=a for every constant function a. T is posi-

tive if/=t0 implies 7/^0.

Let 5° be the smallest <r-algebra of sets of X such that each f in W

is an S°-measurable function. Let S0 be the class of all sets A EX

such that xa is in W. While S0 is not necessarily a <r-algebra, it is a

nonempty class of sets, with S0ES°ES.

The main result of this note can then be stated as follows.

Theorem. The following propositions are equivalent:
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(i)  T is constant-preserving and positive.

(ii)  W is algebraic and bounded.

(iii) 5o = 5°.
(iv)  W=j&(X, S°, a).

The proof of the theorem is given in the next section.

By the equivalence of (ii) and (iv) we have

Corollary 1. A subspace is algebraic and bounded if and only if it is

measurable.

This result is essentially about the set J^, of bounded functions in

V, and it may be worthwhile to state it entirely in terms of £„, as

follows. Regard J^, as a linear algebra under pointwise multiplication

of functions, and for the moment suppose closure in J^a to mean

closure in the usual J^x topology. Then Corollary 1 can be shown to

be equivalent to the proposition that a closed linear subalgebra of ■£«,

contains 1 if and only if it is a measurable algebra, that is to say,

it is the closure of the linear algebra generated by a set of character-

istic functions including 1.

It is easy to show (cf. the last paragraph of the following section)

that if S* is a cr-subalgebra of 5 then the projection to J^(X, S*, p.)

is exactly the conditional expectation operator relative to S*. In

other words, a transformation J" is a conditional expectation if and

only if T is the projection to a measurable subspace.2 In consequence,

the equivalence of (i) and (iv) yields the following characterization of

conditional expectation.

Corollary 2. A transformation T on V into itself is a conditional

expectation if and only if T is linear, idempotent, self-adjoint, constant-

preserving, and positive.

This result is closely related to a characterization of conditional

expectation operators on ^i which was obtained by Moy [l, Theorem

2.2 ]. An essential part of the proof which follows is based on an argu-

ment of Moy.

2. Proof of the theorem. Since T is a projection, we have

(1) T(af+fig) = aT(f) + fiT(g),

(2) T2f = Tf,

and

(3) (Tf, g) = (/, Tg)

1 This fact, which motivated the work presented here, was pointed out to the

writer by L. J. Savage.
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for all a, fi, f and g; moreover, since T is the projection to W,

(4) W={Tf.feV],

and also

(5) w= {f.Tf = f,fev}.

(Cf., e.g., [2].)
We shall prove the theorem by showing that (i)—>(ii)—>(iii)—>(iv)

-(i).

Suppose then that (i) holds, that is,

(6) Ta = a for every a

and

(7) Tf ^ 0 whenever / ^ 0.

It follows from (1) that (6) and (7) are equivalent to

(8) ui Tf ^ fi whenever a^f^fi

and

(9) Tf ^ Tg whenever / ^ g.

Consider a fixed g in W. Define/„(x) =g(x) if |g(:c)| ^n and =0

otherwise, for n = l, 2, • ■ • . Clearly, {/„} is a sequence in V such

that limn,M/n=g. Set gn = Tfn. Then, for each n, gnGJF by (4), and

-n^gn^n by (8). Since ||7/||g||/|| for all/ (by (3)), and since

rg=gby(5),wehave||gnrg||=||r/B-rg||=||r(/n-g)||^||/n-g||,so
that lim„^„ gn=g- Since g is arbitrary, Wis thus shown to be bounded.

According to (5) and (6), Wdoes contain every constant function.

It remains therefore to show that/G W, gG W implies/gG W, pro-

vided that/ and g are bounded. It will suffice to show that

(10) / G W implies f2 G W provided that / is bounded.

For, if / and g are bounded functions in W then f+g is such a func-

tion also, and it will follow from (10) that/2, g2, and (f+g)2 are in

W; consequently f-g = (f+g)2/2-f2/2-g2/2 is in W.

We proceed to establish (10). Choose and fix a bounded/GW7, and

define g = J/2—/2. In view of (5), we have to show that g =0.

Consider the parabola v = u2 in the «i/-plane, and for any real r

let v = aru+br be the tangent to the parabola at the point u=r,

v=r2 (aT = 2r, 6r= —r2). Let R be a countable everywhere dense set

(e.g. the rational points) of the real line. Then, for each u, — «j <m

< <x>, M2^arM-|-6r for every r, and M2=suprg«{arM+6r}.
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We have f^arf+br for each fixed r. Hence, for each r, Tf2^T(arf

+br)=arf+br, by (9), (1), (5), and (6). It follows that

r/2^supre«{ar/+6r}=/2.

Thus g^O. We observe next that, for any hEV,

f hdu = (h, 1)
J x

= (h, ZT) by (6)

= (r*. 1) by (3)

=   I   Thd/x.
J x

Since Tg = T2f2-Tf2 = Tf-Tf = 0 by (1) and (2), it follows from
(11) that fxgdn = 0, and hence g = 0. This completes the proof that

(i)-(ii).   "
Suppose now that (ii) holds. We shall show first that So is a a-

algebra. Since W contains the function 1, XaEW implies Xx-a

= 1— XaEW; since W is closed under pointwise multiplication of

functions, XaEW, xbEW implies Xac\b=Xa-XbEW; and since W

is a closed subset of V, if /i, f2, ■ ■ ■ is a sequence of characteristic

functions in Wsuch that/r/,=0 for r^s, g= 2~2*fr is a characteristic

function in W. By referring to the definition of So,-we see that the

class So is closed under complementation, under intersection, and

under countable union of disjoint sets; So is therefore a ff-algebra. We

proceed to show that S°CSo; this will establish (iii), since SoES0 in

any case.

Let/ be a bounded function in W, and suppose that a^/^/3. Let

I denote the interval [a, j8], and let M be the class of Borel measura-

ble sets of I. Define v(C) —ti(f~l(C)) for CEM. Then v is a probability

measure on M. It is well known (cf., e.g., [3] )that the set of poly-

nomial functions on I is dense in Xjid, M, v). Let us consider a fixed

CEM. There exists a sequence \pn\ of polynomials on I such that

lim„.00/>B = xc Writing A=f~1(C), we have ||^»-Xc|| =\\pn(f) ~Xa\\

for every n, so that lim,,^ pn(f) =Xa- Since W is algebraic, and / is a

bounded function in W, we have pn(f)EW for each n; hence, since

W is closed, XaEW, that is to say, A =/_1(C)G50. Since C is arbi-

trary, / is So-measurable.

We have therefore shown that every bounded fEW is an So-

measurable function. Since W is bounded, it follows that every fEW

is So-measurable. Consequently S°CS0, by the definition of S°. This

completes the proof that (ii)—*(iii).
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Suppose next that 50 is a cr-algebra, which is less than supposing

that (iii) holds. Consider an/G-0(-X", ^o, p)- There exists a sequence

{/„} such that each/„ is of the form zZ*-i a»'g» where gi, g», • • • , gt

are So-measurable characteristic functions, and also such that

limn^nfn =/. It follows from the definition of So that {/„} is a sequence

in W; hence /GIF, since W is closed. Since / is arbitrary, we have

/ji(X, So, p)CW. On the other hand,/G W implies (by the definition

of 5°) that/ is S°-measurable and therefore in J^(X, S°, p), so that

WC&(X, So, M). Thus J^(X, So, m)C WOOCX", S°, p), provided
only that 50 is a cr-algebra; if in fact S0 = S° the three subspaces must

be identical. This proves, in particular, that (hi)—>(iv).

Suppose, finally, that (iv) holds. Let U be the conditional ex-

pectation operator relative to 5°, that is to say, for each / in j(jl(X,

S, u) let Uf be the unique function in j(jl(X, S°, p) such that fAfdp

=Ja Ufdp for all A G5°. The existence of such a function follows

easily from the Radon-Nikodym theorem (cf., e.g., [4]). Consider an

/G V. Since Tf££ W by (4), the hypothesis (iv) implies that

TfG&VC, So, p).

Also, for any A G5° we have

j fdp = (f, xa)

= (/. Txa) by (iv) and (5)

= (Tf, xa) by (3)

= f Tfdp.

It follows hence by the uniqueness of conditional expectation that Tf

differs from Uf on a set of ju-measure zero. Since/ is arbitrary, we con-

clude that T—U on V. (It follows incidentally that /G V implies

(7/G V, || Uf\\ ^||/||). As is well known, U is constant-preserving and

positive, so that (i) holds. This completes the proof of the theorem.

3. Applications to a finite-dimensional function space. By way of

an example, let X = {1, 2, • • • , n}, S = the class of all sets of X, and

p = the uniform distribution on X, that is to say, ju({x}) = l/w for

x = l, 2, • • • , n. In this case V is the real vector space of all real-

valued functions on X, every/G Fis bounded, and every linear mani-

fold in V is closed.

Let IF be a linear manifold in V. By definition, W is algebraic if it

contains every constant function, and if W is closed under pointwise
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multiplication of functions. It follows from Corollary 1 that a k-

dimensional linear manifold W is algebraic if and only if there exists

a partition of X into k mutually exclusive nonempty sets, X = U*_i X,

say, such that W is the set of all functions of the form f(x) =ar for

xEXr (r = \, 2, ■ ■ • , k). The verification is omitted.

For each i = l, 2, • • ■ , n let /<(x)=l for x=i and ft(x)=0 for

x?±i. Then {/i,/2, • • • ,/„} is a basis in V. Let {/,-,} be an nXn sym-

metric probability matrix (i.e. /,•,=/,,•, Uj^O, 2~l"-i Ui = l), and for

/= E?-i «<f< let T/= 2Zt-i ctiTfi, where Tft= £?_, ttfj. Then the
transformation Tis linear, self-adjoint, constant-preserving, and posi-

tive.

Clearly, T is idempotent if and only if the matrix {ta} is idem-

potent (i.e. / ,"_i tirtrj=tij). Moreover, it follows easily from the

definition of a conditional probability that T is a conditional ex-

pectation, with a ^-dimensional subspace as its range, if and only if

there exists a partition of n into k positive integers, «=«i+«2+ • ■ ■

+nk say, such that (except for a permutation of rows and columns)

{tij} is the matrix

f   IN'i) 0    )

art                      ̂                  L^»Mk(nu n2, • • • , nk) = L.rr

0 'Wk\

where Nr is the nrXn, matrix with each element equal to \/nr.

It now follows from Corollary 2 that a symmetric nXn probability

matrix of rank k is idempotent if and only if there exists a partition of n

into k positive integers «i, n2, ■ ■ ■ ,nk such that the matrix is a permuta-

tion of the rows and columns of Mk(ni, n2, ■ • ■ , nk).
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