MEASURABLE SUBSPACES AND SUBALGEBRAS!
R. R. BAHADUR

1. Introduction. Let (X, S, u) be a probability measure space.
Here X is a set of points x, S is a o-algebra of subsets of X, and u is
a g-additive measure on S with u(X) =1. Let V=L2(X, S, p) be the
real Hilbert space of S-measurable functions f(x) with [xf2du < .

For fand gin V, we write (f, g) = [xf gdu where (f-g) (x) =f(x) - g(x),
and ||f|| =(f, )2. Convergence in V is defined as usual in the norm
topology, that is to say, lim,.. f,=f means lim,., ||fa—f|| =0. If f
and g are functions in V such that “ f— g” =0, they are regarded as
identical and we write f =g. f= g means that u{x:f(x) <g(x) } =0. For
any real «, the function which is equal to « for every x is also denoted
by a. A function f in V is said to be bounded if there exist a and 8
such that a =f<6.

A function on X which takes only the values 0 and 1 is called a
characteristic function. For any set A CX, x4 denotes the character-
istic function which equals 1 on 4 and vanisheson X — 4. If S;and S;
are subclasses of S, we write S;CS; if corresponding to each set A €S,
there exists a BE.S; such that xg=x4; we write S;=.S; if S;CS; and
S:CS..

Let W be a subspace (=closed linear manifold) in V. W is algebraic
if it contains the function 1 (and therefore every constant function)
and if, for any two bounded functions f and g in W, the function f- g
is also in W. W is bounded (so to speak) if the set of bounded func-
tions in W is dense in W. W is measurable if there exists a (necessarily
unique) o-subalgebra of S, S* say, such that W=.(X, S*, u), that
is to say, W is the set of all S*-measurable functions in V.

Let T be the (orthogonal) projection to the subspace W. T is
constant-preserving if Ta =« for every constant function a. T is posi-
tive if f=0 implies T7=0.

Let S° be the smallest o-algebra of sets of X such that each fin W
is an S°measurable function. Let Sy be the class of all sets ACX
such that x4 is in W. While .Sy is not necessarily a o-algebra, it is a
nonempty class of sets, with SoCS°CS.

The main result of this note can then be stated as follows.

THEOREM. The following propositions are equivalent:
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(1) T is constant-preserving and positive.
(i) W is algebraic and bounded.

(iii) So=.S°.

(iv) W=La(X, S° w).

The proof of the theorem is given in the next section.
By the equivalence of (ii) and (iv) we have

COROLLARY 1. 4 subspace is algebraic and bounded if and only if it is
measurable.

This result is essentially about the set ., of bounded functions in
V, and it may be worthwhile to state it entirely in terms of L as
follows. Regard ., as a linear algebra under pointwise multiplication
of functions, and for the moment suppose closure in ., to mean
closure in the usual .., topology. Then Corollary 1 can be shown to
be equivalent to the proposition that a closed linear subalgebra of ..
contains 1 if and only if it is a measurable algebra, that is to say,
it is the closure of the linear algebra generated by a set of character-
istic functions including 1.

It is easy to show (cf. the last paragraph of the following section)
that if S* is a g-subalgebra of S then the projection to La(X, S*, u)
is exactly the conditional expectation operator relative to S*. In
other words, a transformation T is a conditional expectation if and
only if T is the projection to a measurable subspace.? In consequence,
the equivalence of (i) and (iv) yields the following characterization of
conditional expectation.

COROLLARY 2. A transformation T on V into itself is a conditional
expectation if and only if T is linear, idempotent, self-adjoint, constant-
preserving, and positive.

This result is closely related to a characterization of conditional
expectation operators on . which was obtained by Moy [1, Theorem
2.2]. An essential part of the proof which follows is based on an argu-
ment of Moy.

2. Proof of the theorem. Since T is a projection, we have

(1) T(af + Bg) = aT(f) + BT(g),
(2) Tf = Tf,

and

3 (Tf, &) = (f, Tg)

* This fact, which motivated the work presented here, was pointed out to the
writer by L. J. Savage.
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for all o, B, f and g; moreover, since T is the projection to W,

) w = {Tf:f €V},
and also

(5) W= {rTf=ffEV}
(Cf., e.g., [2]))

We shall prove the theorem by showing that (i)—(ii)—(iii) —(iv)
—(i).
Suppose then that (i) holds, that is,

(6) Ta = « for every a
and

@) Tf=z0 whenever f = 0.
It follows from (1) that (6) and (7) are equivalent to

(8) a=Tf=B whenevera < f < 8
and

©) Tf = Tg whenever f = g.

Consider a fixed g in W. Define f,(x) =g(x) if | g(x)l =<n and =0
otherwise, for n=1, 2, - - - . Clearly, { f,.} is a sequence in V such
that lim,.,, fn=g. Set g.=Tf,. Then, for each n, g, EW by (4), and
—n=g.<n by (8). Since ||Tf] <|lf|| for all f (by (3)), and since
Tg=gby (5), we have ||ga—gl| =|| Tfa— Tel| =[| T(fa —2)[| < [|fa—el], s0
that lim, .. g.=g. Since gis arbitrary, Wis thus shown to be bounded.

According to (5) and (6), W does contain every constant function.
It remains therefore to show that fE W, g&E W implies f-gE W, pro-
vided that f and g are bounded. It will suffice to show that

(10) f € W implies f2 €& W provided that f is bounded.

For, if f and g are bounded functions in W then f+g is such a func-
tion also, and it will follow from (10) that f2, g2, and (f+g)? are in
W; consequently f-g=(f+g)2/2—f2/2—g?/2 isin W.

We proceed to establish (10). Choose and fix a bounded fE W, and
define g =Tf*—f2 In view of (5), we have to show that g=0.

Consider the parabola v=u? in the uv-plane, and for any real r
let v=a,4+b, be the tangent to the parabola at the point u =7,
v=r%(a,=2r, b,= —r?). Let R be a countable everywhere dense set
(e.g. the rational points) of the real line. Then, for each u, — © <u
< o, u?2au+b, for every r, and u?=suprcr{au+b,}.
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We have f2=a,f+b, for each fixed r. Hence, for each r, Tf*= T'(a.f
+b,) =a,f+b,, by (9), (1), (5), and (6). It follows that

Tf*zsup,cria.f+b,} =1
Thus g=0. We observe next that, for any hCV,

fx hdu = (h, 1)

= (k, T1) by (6)
= (Th, 1) by (3)

=f T hdp.
x

Since Tg=T**—Tf*=Tf*—Tf*=0 by (1) and (2), it follows from
(11) that fx gdu=0, and hence g=0. This completes the proof that
(1) —(ii).

Suppose now that (ii) holds. We shall show first that S, is a o-
algebra. Since W contains the function 1, x4aEW implies xx_4
=1—x4EW, since W is closed under pointwise multiplication of
functions, xaEW, xsEW implies x4np=x4-x8€W; and since W
is a closed subset of V, if f1, f2, - - - is a sequence of characteristic
functions in W such that f,-f, =0 for r s, g= »_.f, is a characteristic
function in W. By referring to the definition of Sj-we see that the
class S, is closed under complementation, under intersection, and
under countable union of disjoint sets; Sy is therefore a o-algebra. We
proceed to show that S°C.S,; this will establish (iii), since SoCS° in
any case.

Let f be a bounded function in W, and suppose that a <f<@. Let
I denote the interval [a, 8], and let M be the class of Borel measura-
ble sets of I. Define »(C) =u(f~1(C)) for CE M. Then v is a probability
measure on M. It is well known (cf., e.g., [3] )that the set of poly-
nomial functions on I is dense in .La2(I, M, »). Let us consider a fixed
CE M. There exists a sequence {p.} of polynomials on I such that
liMpeupn=xc. Writing 4 =f-1(C), we have ||pn—xc|| =||pa() — x4
for every n, so that lim,_., p.(f) =xa. Since W is algebraic, and f is a
bounded function in W, we have p,(f) EW for each n; hence, since
W is closed, x4 E W, that is to say, 4 =f~1(C)ES,. Since C is arbi-
trary, f is So-measurable.

We have therefore shown that every bounded fEW is an S-
measurable function. Since W is bounded, it follows that every f&W
is S¢-measurable. Consequently S°C.S,, by the definition of S° This
completes the proof that (ii)—(iii).

(11)
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Suppose next that S, is a o-algebra, which is less than supposing
that (iii) holds. Consider an fEL2(X, So, p). There exists a sequence
{fa} such that each f, is of the form D r., a;g; where g1, g2, -+ * , g
are Sp-measurable characteristic functions, and also such that
lim,.. fa=Ff. It follows from the definition of S that { f,.} is a sequence
in W; hence f& W, since W is closed. Since f is arbitrary, we have
L2(X, So, 1) CW. On the other hand, fE W implies (by the definition
of 8% that f is S°-measurable and therefore in L2(X, S° u), so that
WCLa(X, S° p). Thus Lo(X, So, p) CWCL2(X, S° p), provided
only that S, is a g-algebra; if in fact Sy =.S° the three subspaces must
be identical. This proves, in particular, that (iii)—(iv).

Suppose, finally, that (iv) holds. Let U be the conditional ex-
pectation operator relative to S° that is to say, for each f in .£i(X,
S, 1) let Uf be the unique function in £i(X, S° p) such that [4fdu
= [4Ufdp for all AES°. The existence of such a function follows
easily from the Radon-Nikodym theorem (cf., e.g., [4]). Consider an
fEV. Since TfEW by (4), the hypothesis (iv) implies that

Treli(X, S° u).
Also, for any 4 €S° we have

Lm=mw

= (/, Txa) by (iv) and (5)
= (T, xa) by (3)

= L Tfdu.

It follows hence by the uniqueness of conditional expectation that Tf
differs from Uf on a set of u-measure zero. Since f is arbitrary, we con-
clude that T=U on V. (It follows incidentally that f& V implies
ure v, | Ufl <|Ifll). As is well known, U is constant-preserving and
positive, so that (i) holds. This completes the proof of the theorem.

3. Applications to a finite-dimensional function space. By way of

an example, let X = {1, 2, -, n}, S =the class of all sets of X, and
p=the uniform distribution on X, that is to say, u({x}) =1/ for
x=1, 2, - -, n In this case V is the real vector space of all real-

valued functions on X, every f& V is bounded, and every linear mani-
fold in V is closed.

Let W be a linear manifold in V. By definition, W is algebraic if it
contains every constant function, and if W is closed under pointwise
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multiplication of functions. It follows from Corollary 1 that a k-
dimensional linear manifold W is algebraic if and only if there exists
a partition of X into £ mutually exclusive nonempty sets, X =U’., X,
say, such that W is the set of all functions of the form f(x) =e, for
x€X, (r=1, 2, - - -, k). The verification is omitted.

For each 1=1, 2, - - -, n let fi(x) =1 for x=17 and fi(x) =0 for
x#1. Then {fl,fz, <o ,f,.} isa basisin V. Let {t;,} be an #n Xn sym-
metric probability matrix (i.e. fij=t;;, £;;20, >, ti;=1), and for
F=201 afi let Tf= D o, a;Tfi, where Tfi= D 7, tif;. Then the
transformation T is linear, self-adjoint, constant-preserving, and posi-
tive.

Clearly, T is idempotent if and only if the matrix {t;;} is idem-
potent (i.e. D1 tutsi=t;). Moreover, it follows easily from the
definition of a conditional probability that T is a conditional ex-
pectation, with a k-dimensional subspace as its range, if and only if
there exists a partition of » into k positive integers, # =n,+ns+ - - -
+mn; say, such that (except for a permutation of rows and columns)
{t;;} is the matrix

iV 0
l...-..,___._‘
- iy
Mk(nlv LTI "lc) = ""'-2"".-

where N, is the n, X#n, matrix with each element equal to 1/#,.
It now follows from Corollary 2 that a symmeiric n Xn probability
matrix of rank k is idempotent if and only if there exists a partition of n

into k positive integers mi, na, - - - , i Such that the matrix is a permuta-
tion of the rows and columns of My(ni, ne, - - -, Bi).
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