SUFFICIENCY AND STATISTICAL DECISION FUNCTIONS
By R. R. Banapur
Columbia University

Summary. This paper contains an account, in abstract terms, of sufficiency
and of its role in statistical decision problems. The study of sufficiency in ab-
stract terms was initiated by Halmos and Savage [1], and the present paper,
although self-contained, is to be regarded as a continuation of their work. The
main objects of the paper are to show that the justification for the use of suffi-
cient statistics in statistical methodology which is sketched in the final section
of [1] is valid under certain quite general conditions, and to extend this justifica-
tion to the case of sequential experiments. The paper falls into two parts of
which the first (Sections 2-7) is mainly expository and provides an account of
the theory of sufficiency in the nonsequential case. The second part (Sections
8-11) then extends the theory to sequential experiments.

1. Introduction. In a given experimental program, let X be the sample space of
all possible outcomes x, and suppose that z is distributed in X according to an
unknown one of a certain set P of probability measures p. Let T be a function
of z, and let Y be the set of all values of 7. The function T is said to be a suf-
ficient statistic if, for each subset A of X and for each y in Y, the conditional
probability of A given T'(x) = y is the same for every p in P.

It is well known that, in most applications, P is a dominated set of measures,
that is, there exists a measure X such that each p in P admits a probability den-
sity function with respect to A. In this case, a statistic 7 is sufficient if and only
if each of the probability density functions can be written as the product of two
factors, the first factor being the same for each density and the second depend-
ing on x only through T, say

p(4) = [ h(z) - gy [T()] dA

for all sets A and each p in P (Corollary 6.1).

In a statistical decision problem, let D be the set of all decisions from which
the statistician is required to select some one decision, on the basis of the ob-
served outcome. This set D is called the decision space. A (possibly randomized)
function of z which takes value in D is called a decision function based on z.
If 7' is a sufficient statistic, then, corresponding to any decision function u based
on z, there exists a decision function » based on y such that, for each p, the values
of u and » are identically distributed. Consequently, in his search for a “good”
decision function, the statistician may confine his attention to decision functions
based on y, that is, to decision functions whose values depend on the outcome
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only through 7'. It is shown that this reduction of the decision problem by means
of a sufficient statistic is valid if D is, or may be taken to be, a subset of a eu-
clidean space (Theorem 7.1).

The notion of euclidean space is not essential to the result just described. If
D is a Borel set of a euclidean space, there exists a one-to-one mapping of D
into the real line which takes the (Borel) measurable sets of D into Borel sets
and conversely. The proof depends only on this last property, and, therefore,
applies equally well to any measurable space D which possesses it. This remark
applies with little or no modification to all euclidean space conditions stated
in this section.

It might be argued that if in the given case there does exist a one-to-one meas-
urability-preserving mapping of D into the real line, one might as well take the
real line to be the decision space. This is perfectly feasible in principle, but in
many cases (such as (iii) below) the real line is an unnatural representation
which obscures the problem itself, as well as the results obtainable by applica-
tion of various general theorems. The analogous remark applies to the possi-
bility of taking the sample space to be the real line if, say, X is a euclidean space.

The following are some special cases of the general result. Let T be a suffi-
cient statistic.

(1). Testing hypotheses. Let Py be a subset of P, and let Hp be the hypothesis
that the unknown distribution p is an element of P, . For any procedure u for
testing Hy, let a,(u) be the probability, corresponding to p, of rejecting H, .
Regarded as a function of p, a,(u) is called the power function of u. By letting
the two decisions “accept H,” and “reject Hy” correspond (say) to the real
numbers 0 and 1, respectively, it follows that, corresponding to any test pro-
cedure based on z, there exists one based on y which has the same power func-
tion (cf. [2], p. 320).

(ii). Point estimation. Let 6 = 6(p) be a real parameter. Then corresponding
to any estimation procedure for 8 based on z, there exists one based on y such
that, for each p, the two procedures yield identically distributed estimates.

(iii). Confidence interval estimation. For any system p of confidence intervals
for 6, let I.(x) be the interval corresponding to z, let I,(x) be the length of I,(z),
and let a,(u) be the probability, corresponding to p, that I.(z) covers 6(p).
Take D to be the set of all pairs (u, v) with —o <4 < «© and 0 < v < =,
and let the point (u, v) of D correspond to the decision that the unknown value
of 6 lies in the interval with center u and length ». It then follows from the gen-
eral result that, corresponding to any system u based on z, there exists a sys-
tem » based on y such that, for each p, the lengths I,(x) and I,(y) are identically
distributed, and a,(r) = a,(v).

(iv). “Information.” The classical contention concerning sufficiency, namely,
that a sufficient statistic contains all the available information concerning the
unknown actual distribution, can be interpreted as follows (cf. [1], pp. 239241,
and [2], p. 320). If the observed outcome in a given instance is x, and the statis-
tician is supplied only with the observed value y = T'(x) of the sufficient statistic
T, he could, if he wished, calculate (with the aid of a random machine) a hypo-
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thetical outcome 2* in such a way that z* and z are identically distributed irre-
spective of the actual distribution of z. In other words, there exists a randomized
function of y whose values are statistically indistinguishable from the outcomes
z. Hence, knowledge of the observed value of T is equivalent to knowledge of
the observed outcome itself. By taking D = X and u(z) = z in the general
result, we see that a sufficient condition for the validity of this interpretation
is that X be a subset of a euclidean space. It now follows that this last is an
alternative sufficient condition for the validity of the sufficient statistic reduc-
tion of a decision problem.

Supposing that, in the given case, sufficient statistics do reduce the decision
problem, it is of interest to determine a statistic, if any, which affords the maxi-
mum reduction. This question is not to be confused with the equivalence of any
two sufficient statistics, which follows from the equivalence of any sufficient
statistic with the outcome itself. The problem here is to determine, if possible,
a sufficient statistic T* such that, for any sufficient statistic T, the class of
decision functions based on T*(z) is included in the class of those based on T'(z).

A “strong” solution of this problem is available in the case when P is a sepa-
rable metric space under the metric d(p, ¢) = sups | p(4) — q(4) | . If X is a
subset of a euclidean space, separability is equivalent to domination. In gen-
eral, however, separability is a stronger condition than domination. (See [14]
and the last paragraph of Section 6.) Lehmann and Scheffé [2] showed that in
the above case there exists a sufficient statistic 7* which is also necessary. That
is, if T is any sufficient statistic, then T* is a function of T'; clearly, T™ affords
the maximum reduction.

An alternative (and possibly better) solution is obtained here for the case
when D may be taken to be a subset of a euclidean space and P is a dominated
set of measures. It turns out that in this case there exists a class C of decision
functions such that C is equivalent, in the sense of the preceding paragraphs,
to the class of all decision functions based on z, and such that, for any sufficient
statistic T, this class C is included in the class of all decision functions based
on T(z) (Theorems 6.2, 7.1, and Lemma 7.1).

The reduction of a statistical decision problem to decision functions based on
a sufficient statistic is, of course, only one of the reductions available to the
mathematical statistician. Others, which apply in contexts somewhat more spe-
cific than the present one, are the reduction to non-randomized decision func-
tions (cf. [3], also [4] and [5]), and the reduction to invariant decision functions
(cf. [6] and [7]). Some interesting results (e.g., the theorem of Rao [8] and Black-
well [9] concerning unbiased minimum variance estimation) can be obtained by
combining the sufficiency reduction with one or both of the others mentioned.
In many special cases successive application of the sufficiency, nonrandomiza-
tion, and invariance reductions in this order solves the decision problem, that
is to say, determines a decision function which is “best”” in the class of all deci-
sion functions. These considerations are, however, outside the scope of this
paper.

Now consider the sequential case. Let x = (21, 22, - -+ ) be a sequence of
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chance variables, let X be the set of all possible sequences x, and suppose as
before that x is distributed in X according to an unknown one of a certain set P
of probability measures p. For each m let X,y denote the set of all truncated
sequences T(my = (Z1, ***, Tm), and let T, be a function on X, . Then 7,
Ty, -, is said to be a sufficient sequence if, for each m, T, is a sufficient
statistic for the possible distributions of z(m .

Let Day, Dy, -+ be a sequence of (terminal) decision spaces. A sequential
decision function consists of a sampling procedure and a terminal decision pro-
cedure. A sampling procedure is a set of rules for taking observations x; , x5, - -+
one by one on the components of z. The number of components observed in a
given instance is called the sample size and is denoted by 7n. In using a given
procedure, n need not be specified in advance; at each stage the decision whether
or not the sampling is to be continued may depend on the sample values avail-
able at that stage. A terminal decision procedure is a set of rules for employing,
when the sampling has terminated, the observed values ; , z2, - - - , , to select
some one decision, called the terminal decision, from the given set D¢, . In most
applications, such as testing hypotheses concerning p or estimating parameters
6 = 0(p), one has Dy = Dy = -+ = Dy = -+, but there are cases where
the set of possible terminal decisions does depend on the stage at which sampling
is terminated.

Let x and u* be sequential decision functions, and let n(x) and n*(x) be the
sample sizes and d(z) and d*(z) the terminal decisions, according to u and u*,
respectively, corresponding to the sequence x of outcomes. Then u and u* are
said to be equivalent if (i) for each p, the sample sizes n(x) and n*(x) are identi-
cally distributed, and (ii) for each p and m, the conditional distribution of d(z)
given n(x) = m is identical with the conditional distribution of d*(x) given
n*(x) = m.

Suppose first that the sampling operation is not under the control of the statis-
tician, but that he is to be presented with a sample obtained according to some
specified procedure and asked to select the terminal decision. In this case, two
terminal decision procedures are said to be equivalent if the sequential decision
functions obtained by combining them with the given sampling procedure are
equivalent. If 7'y, T, , - - - is a sufficient sequence, and each D may be taken
to be a subset of a euclidean space, it is shown that corresponding to any ter-
minal decision procedure there exists an equivalent terminal decision procedure
which has the following structure: if in a given instance the sampling terminates
at the mth stage, the terminal decision depends only on the observed value of
Tw{m =12, ---) (Theorem 10.1).

Suppose now that the statistician is free to choose the sampling procedure
as well as the terminal decision procedure. In this case, the above result affords
only a partial justification of sufficiency. A more complete justification is pro-
vided by the following result. If 71, T2 ; - - - is a sufficient sequence, if each D
may be taken to be a subset of a euclidean space, and if the experimental frame-
work is regular in a certain sense. then, corresponding to any sequential decision
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function, there exists an equivalent one which has the following structure:
when the first m observations have been taken, the decision whether or not
sampling is to be continued depends only on the observed value of
Tn(m = 1,2,---); and if in a given instance the sampling is terminated at
the mth stage, the terminal decision depends only on the observed value of T
(m =1, 2,---) (Theorem 10.3). The hypothesis of regularity is shown to be
essential to this result (Example 9.6). An explicit characterization of regular
frameworks is not obtained here. It is shown, however, that a sufficient con-
dition for regularity is that z;, #», --- be a sequence of independent chance
variables for each p, and the set of possible distributions of x(») be dominated
for each m (Theorem 11.5).

By taking D¢,y = X(m for each m in the results described above, one can
obtain certain interpretations of the statement that “In sequential experi-
mentation, a sufficient sequence contains all the available information.”” These
interpretations are given in the initial paragraphs of Section 8, which form an
alternative introduction to the main results in the sequential case, and may be
read before Sections 2 through 7.

2. Some definitions. Let X be a set of points z. A class S of subsets of X is
a (Borel) field if S contains X, if A ¢ S implies (X — A) ¢ S, and if 4; ¢ S for
i =1,2,... implies U;A; ¢ S. We shall have frequent occasion to consider
simultaneously more than one field of subsets of the same set X; the defini-
tions which follow take this situation into account.

Let S be a field of subsets of X. 4 set A < X is S-measurable if A ¢ S; a real-
valued function f on X is S-measurable if for every real r the set {x:f(z) < r} is
S-measurable. Henceforth, functions with unspecified ranges are understood to
be real-valued. For any set A4, the characteristic function of 4 is denoted by
X4, that is, xa(z) = 1forze A and = 0 for z ¢ (X — A). Clearly, a set 4 is
S-measurable if and only if x4(z) is an S-measurable function.

A measure on S is a nonnegative and countably additive function of the
S-measurable sets. A measure m on S is o-finite (on S) if there exists a sequence
Ay, Ay, -+ of S-measurable sets such that m(4;) < « foreachiand U 4; = X;
it is a finite measure if m(X) < o, and is a probability measure if m(X) = 1.
A function f on X is S-m-integrable if f is an S-measurable function of z and

f f(z) dm exists and is finite. A set A € X is S-m-null if 4 is S-measurable
p.

and m(A) = 0.

For each 2 ¢ X let x(x) be a statement concerning x. We write = () [S, m] if
there exists an S-m-null set N such that «(z) is true for each x ¢ (X — N). Thus
the statements f(x) = g(z) [S, m] and 0 = f(z) £ 1[S, m] mean, respectively,
that the sets {x:f(x) # g(x)} and {z:f(z) < 0 or f(x) > 1} are subsets of S-m-
null sets. ‘

A measure m on S is absolutely continuous with respect to another measure
n on S if every S-n-null set is also S-m-null; we then write m <« n. We write
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dm = f(z) dn if f is a nonnegative S-measurable function such that m(4) =
f f(x) dn for every A ¢ S. The Radon-Nikodym theorem states that if n is
4

a o-finite measure, then m <« n if and only if there exists an f such
that dm = f(x) dn.

Now let M be a set of measures on S. A set is S-M-null if it is S-measurable
and of m-measure zero for each m ¢ M; a function is S-M-integrable if it is
S-m-integrable for each m ¢ M. The statement x(z) [S, M] means that there
exists an S-M-null set N such that = (z) is true for each z (X — N). The set M
is said to be dominated if there exists a fixed o-finite measure A such that each
measure in M is absolutely continuous with respect to A; we then say that M
is dominated by A and write M < A. It is easy to see that domination by a
o-finite measure is equivalent to domination by a finite or even a probability
measure (cf. [1], p. 232).

A field Sy of subsets of X such that Sy C S, that is, such that every S,-
measurable set is also S-measurable, is said to be a subfield of S. It is pointed
out in the following section that the relations between the total outcome and a
statistic which are of interest to us can be studied conveniently in terms of
certain corresponding relations between the basic field and a subfield of it.
Meanwhile, we note several facts concerning Sy and S.

A measure m on S is also a measure on S;. An Sy-m-null set is S-m-null.

An Sy-m-integrable function f is S-m-integrable and (S,) fx f@) dm = (S)

f f(z) dm, where, as the notation suggests, the left and right integrals are
X
taken over the measure spaces (X, Sy, m) and (X, S, m) respectively; in such a
case f f(x) dm will usually denote the integral taken over (X, S, m).

X

Let m and n be measureson S.If m = non S,thenm = non S;. If m K n
on S, then m < n on S;. If n is o-finite on Sy, then % is s-finite on S. If a
set M of measures on S is dominated on S, then M is dominated on S, . If M
is complete ([2], p. 311) on S, then M is complete on Sy;. The converses of
these five propositions are not true in general.

Let S; and S, be subfields of S, and let M be a set of measures on S. We
write Sy © S: [S, M] if, corresponding to each set A ¢ S;, there exists a set
B ¢ S, such that the symmetric difference of the two sets, that is, the
set (A n[X — B]) u ([X — A] n B), i§ S-M-null. Since the characteristic func-
tion of the symmetric difference of A and B is | x4(z) — xa(%) |, it is easily seen
that S, € S, [S, M] if and only if corresponding to each A ¢ S, there exists a
B ¢ Sz such that x4(x) = xs(z) [S, M]. We write S; = S; [S, M]if both S; C S,
[S, M]and S; € S, [S, M].

The statement S € S, [S, M] means, of course, that (relative to the given
set M) S, is essentially a subfield of S,. Here “essentially’’ refers to a rather
weak null set condition. A stronger condition is that there exists a fixed S-M -null
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set, say N, such that to each set A, ¢ S; there corresponds a set 4, ¢ S; such
that A; — N = A; — N. There is also a weaker null set condition, namely that
S1 € S [S, m] for each m & M. The condition S; < S, [S, M] is, however, exactly
the one which we require (cf. Lemma 7.1).

3. Statistics and subfields. Let there be given a set X of points z, a field S
of subsets of X, and a set P of probability measures on S. The framework X, S,
P will remain fixed throughout the discussion. In a statistical context, X is the
set of all possible outcomes of the experiment, and S is the class of all sets A
such that the event “z ¢ A”” has a well defined probability p(4), where p is some
(unknown) one of the measures in P. In this context, (X, S) is called the sample
space, and z is said to be distributed in (X, S) according to p.

A statistic is a function (with arbitrary range) of x. Let y = T'(x) be a sta-
tistic, and let Y be the range of 7. For any B € Y let T'(B) = {x:T(z) ¢ B},
and let T be the class of all sets B such that T7'(B) is an S-measurable subset
of X. It is easy to see that T is a field, and that the event “y ¢ B’ has a well
defined probability, p(T~(B)) = pT*(B) say, if and only if B is a T-measurable
set. Thus y is distributed in (Y, T) according to pT . Let Q be the set of all
measures pT " corresponding to pin P.

Drrmvirion 3.1. T is a sufficient statistic for P if corresponding to each S-meas-
urable set A there exists a T-Q-integrable function ¢4(y) such that for all B¢ T
andpe P

/ dp = [ ¢a@) dpT™
AnT™1(B) B

This definition is equivalent to the one given by Lehmann and Scheffé [2].
Now we shall consider an alternative approach to the concept of sufficiency.
As an immediate consequence of Lemmas 1 and 3 of [1], and of the present
definition of T, we have’

Lemma 3.1. Let g be a function on Y. Then g(y) is T-measurable if and only if
gT(x) {= g[T(@)]} is an S-measurable function of z; also g(y) is T-Q-integrable
if and only if gT (x) <s S-P-integrable, in which case for each p € P,

[ 1@ ap = [ o) apr

The class Sy [= T7'(T)] of all sets T"(B), with B ¢ T, is a subfield of S; we
shall call it the subfield induced by the statistic T. By applying the first part of
Lemma 3.1 to Lemma 2 of [1], one obtains the following useful result.

Lemma 3.2. Let f be an S-measurable function on X. A necessary and sufficient
condition that f(x) be So-measurable is that there exist a function g on Y such that
fl@) = gT(x).

An important property of S, is that for each p the measure spaces (X, Sy, p)
and (Y, T, pT™") are isomorphic ([10], p. 167), the isomorphism being inde-
pendent of p. Consequently, explicit consideration of the sample space (Y, T)
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of the values y of 7', and of the possible distributions Q = {pT":p & P} of y,
is not essential to the study of 7. An equivalent procedure is to study the pos-
sible distributions P of z in the reduced sample space (X, S). For example, the
set @ of measures on T is dominated if and only if P is dominated on Sy, and
@ is complete on T if and only if P is complete on S, .

The evident notational simplifications which result from studying.a statistic
in terms of the subfield induced by it suggest the possibility of taking a suf-
ficient subfield rather than a sufficient statistic to be the basic concept in the
formal exposition. We can (and in the sequel, shall) proceed as follows. Given
X, S, and P, an arbitrary subfield S, of S is said to be sufficient for P if cor-
responding to each S-measurable set A there exists an So-P-integrable func-
tion ¢4 such that

/ dp = ] ea(z) dp for Ao e Sy, peP.
4Aon4 49

In addition to notational simplicity, this alternative approach to sufficiency
has a number of other technical advantages.

(1). It entails no loss of generality; the definitions and results concerning an
arbitrary subfield S, can be translated into corresponding definitions and re-
sults concerning an arbitrary statistic 7' by supposing that S, is induced by T
and applying Lemmas 3.1 and 3.2. For example, a statistic T' is sufficient for P
if and only if the subfield induced by T is sufficient for P. On the other hand, it
is not known whether every subfield is inducible by a statistic.

[While this paper was in process of publication, answers to some of the questions
raised here were obtained by several workers, including E. L. Lehmann and the
writer. This work is contained in two notes (entitled “Two comments on ‘Sufhi-
ciency and Statistical Decision Functions’” and ‘‘Statistics and Subfields’”)
which are to appear soon.]

(i1). It is easier to establish certain results for subfields than to establish
the corresponding results for statistics. Moreover, assuming that in the given
case the results in question are available for both statistics and subfields, the
results for subfields are at least as useful as those for statistics.

For example, it can be shown rather easily that if P is dominated, a subfield
which is necessary and sufficient for P exists. Proof of the corresponding result
for statistics is more complicated and requires the stronger assumption that P
is separable (cf. Sec. 6). The advantage in question is due to the considerations
that the class of sufficient subfields iricludes the class of subfields induced by
sufficient statistics (see (i) above), and that certain relations between subfields
are (at least apparently) weaker than the corresponding relations between
statistics.

The following is an illustration of this last consideration. Let 7'y and T’ be
statistics and let S; and S be the subfields induced by them. It is easy to see
that if there exists a function F on the range of 7T, into that of 7; such that
T:i(x) = F[T.(z)], then S; is a subfield of S.. It is not known whether the con-
verse is true in general.
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(iii). Our primary concern is not the properties of particular statistics but
the reduction of statistical decision problems by the sufficiency principle. It is
therefore desirable, if not logically necessary, to define sufficiency as directly as
possible in terms of X, S, and P; the subfield definition is closer to this require-
ment than the statistic definition. This reason for preferring the subfield defini-
tion seems at least as compelling as the reasons why, in the theory of testing
hypothesis, a “test”” is described without reference to any statistic as a meas-
urable subset of the sample space. It would be even more compelling if it should
turn out that there can exist subfields which are necessary and sufficient (or
even sufficient) but which are not induced by any statistic.

(iv). Finally, the quite simple notation and conditional expectation machinery
(cf. the following section) which we use for the study of subfields in the non-
sequential case prove to be sufficient for the corresponding study in the se-
quential case. The study of statistics in the sequential case requires a compli-
cated and very cumbersome notation.

For all these reasons the following sections are written mainly in terms of
subfields. It should be observed that the definitions and results of Halmos and
Savage [1] refer not to a statistic as defined here and in [2] but to the more
flexible notion of a measurable transformation. The difference is the following.
Let T be a statistic on X onto Y, let T be defined as before, and let T, be any
subfield of T; then T is a measurable transformation of (X, S) into (¥, To).
Thus a statistic corresponds, in general, to more than one measurable trans-
formation. L. J. Savage points out in this connection that there is a good non-
mathematical reason for taking the class of measurable subsets of ¥ to be T
rather than any smaller class T : the latter procedure is inconsistent with the
generally accepted view that a statistic is a mapping. For example, if T'(x) =
zthen Y = X, and T = S, but if T is regarded as a transformation of (X, S)
into (X, S«) where Sy contains only X and the empty set, it becomes equivalent
to the statistic T«(z) = 0 (say).

Since a measurable transformation 7' of (X, S) into (Y, T,) induces the sub-
field 77'(To), and a subfield S, is induced by the transformation I(z) = x of
(X, S) into (X, Sy), the notion of a measurable transformation is completely
equivalent to that of a subfield. The subfield notation is, however, simpler (cf.
(iv) above) and has certain psychological advantages (cf. (iii) above). When
first submitted for publication, this paper was written in terms of measurable
transformations. It has since been rewritten in the subfield terminology at the
suggestion of L. J. Savage and of a referee of the paper.

We conclude this section with two heuristic interpretations of the notion of
sufficient subfield. (i). “The given class of sets of interest is S, but if S, is suf-
ficient, the statistician could, without disadvantage, take the (generally much
smaller) class Sy to be the class of all sets which are of interest to him.” To
make this more specific, corresponding to each fixed z, let £ be the event that
the outcome lies in the common part of all S-measurable sets containing z, and
let E5 be the event that the outcome lies in the common part of all Sy-meas-
urable sets containing x. Then (ii) “If S, is sufficient, a statistician who knows
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only which of the events Ej has occurred is as well off as one who knows which
of the events E” has occurred.” Now, in most sample spaces, E” is the event
that the outcome be z. Also, if Sy is induced by an S-measurable statistic T', then
Ej is the event that the observed value of T be T'(z). It follows from the last
two statements that, in many cases, the specific interpretation (ii) coincides
with the interpretation of ‘“sufficient statistic’’ described in the introduction.

4. Conditional expectation. Let Sy be a subfield of S. Consider a particular
probability measure p on S, and let f(x) be an S-p-integrable function. It fol-
lows from the Radon-Nikodym theorem for signed measures that there exists
an Sp-p-integrable function, g(z) say, such that for all A, £ S,

[ 0@ v = [ 1@ a,

and that g is essentially unique in the sense that an S,-p-integrable function g*
satisfies the same relation if and only if g*(z) = g(z) [S, »] (see [10], p. 128).
Since g* and g are Sy-measurable, the stated null set condition is trivially equiva-
lent to g*(z) = g(x) [So, p]. For notational simplicity, we shall usually state
null set conditions in such cases in terms of S-measurable sets. We write g(z) =
E,(f() | So).

It is assumed henceforth that for any probability measure p on S, any
S-p-integrable function f(z), and any subfield S; of S, the corresponding
E,(f(z) | So) is a definite (but unspecified) So-p-integrable function of = such that
for all 4o £ Sy,

4.1) [ BG@ 180 dp = [ 1) ap.

This E,(f(z) | So) is called the conditional expectation function of f given Sp
and p, and a particular value E,(f(z) | So) of this function is called the con-
ditional expectation of f given Sy, z, and p. If f(z) = xa(x), we may replace
“expectation of f”’ by “probability of A’ in these terms concerning E,(f(z) | So).

The fact that in general a conditional expectation function is uniquely deter-
mined only up to a null set can lead to certain rather trivial but persistent nota-
tional complications. Many propositions concerning a subfield S, which are of
interest to us can be stated in terms of the existence of conditional expectation
functions which satisfy certain conditions for each fixed # when regarded as
functions of f and p (see [1], p. 230). The complications referred to arise from an
explicit consideration of the possibly different determinations which satisfy
different or increasingly strong conditions of this type. The actual determina-
tions which satisfy special conditions are, however, of little interest to the
theory, and we can and shall avoid the difficulty by studying their existence
and other properties in terms of the fixed determination {E,(f(x) | So)}.

It can be seen from Lemmas 3.1 and 3.2 that the relation between conditional
expectation with respect to a subfield, and the more familiar notion of conditional
expectation given the value of a statistic, is the following. Let T be a statistic,
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and let (Y, T) be the sample space of the values of T (Section 3). Let f(z) be an
S-p-integrable function. Regarding T as a transformation of (X, S) into (Y, T),
let g(y) be the conditional expectation of f given T'(x) = y and p ([10], p. 209);
then E,(f(z) | TX(T)) = gT(z) [S, pl. In other words, if S, is the subfield in-
duced by a statistic T, then E,(f(z) | So), which depends on z only through T,
is the conditional expectation of f given that the value of T is T'(x) and that the
outcome is distributed according to p. This relation supports (cf. the final
paragraph of the preceding section) the following intuitive description of con-
ditional expectations with respect to So : for each z, E,(f(x) | So) is the con-
ditional expected value of the random variable f given that the outcome lies
in the common part of all S,-measurable sets containing x and that the out-
come is distributed according to p.

Now we shall list some properties of conditional expectations which are
required subsequently. Most of these properties are well known, and all are
easy consequences of the defining relation (4.1).

LemMa 4.1. If f is S-p-integrable, then

[ @189 ap = [ 1) ap.

LemMa 4.2. Let f; and fs be S-p-integrable functions. If fi(x) =< fa(x) [S, p), then
Ep(fi(z) | So) = E,p(fa(x) | So) [S, p. If fi(x) = fa(@) [S, pl, then E,(fi(x) | So) =
E,(f2(2) | So) [, p].

Levma 4.3. If fis S-measurable and ¢ = f(x) < d[S, plwith — o <¢ = d £ o,
then ¢ = E,(f(z) | So) = d S, p].

LemMa 4.4. If fi, -+, fu are S-p-integrable functions, and c,, -+ , cm are
constants, then

E, (g cifi(x) |So> = ;: ¢ E(f:(x) | So) [S, pl.

LemmA 4.5. Let f1, fo, -+ - be a sequence of S-p-integrable functions such that
fm(@) £ fuu(@) [S, pl for m = 1,2, --- | and supm {fu(x)} s S-p-integrable.
Then

Sl;’l‘p {Ep(fm(x) I SO)} = Ep(s’l:p {fm(x)} lSO) [S, P]~

Lemma 4.6. If f(x) is So-p-integrable, then
B,(h(z) 1(2) | 80 = Byh(a) | $9-1(z) IS, 7]
for every h such that h(x) and h(z) f(x) are S-p-integrable; in particular,
Ep(f(z) | So) = f(=) [S, pl.

Lemma 4.7. If f(x) ©s S-p-integrable and E,(h(z)-f(z) | So) = E,(h(z) | So)-f(x)
[S, p] for every h such that h(x) and h(x)-f(x) are S-p-integrable, then f differsfrom
an Sy-measurable function on an S-p-null set; in fact

f(=@) = Ey(f(z) | So) [S, pl.
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LemMma 4.8. Let f be an S-p-integrable function, and let S; and S, be subfields
of S. If S; € S, [S, p), then

E,(f(z) | S1) = Ex(Ey(f(x) | S2) | ) [S, pl.

If S1 = S, [S, pl, then E,(f(x) | S1) = Eyx(f(x) | S2) [S, pl.
The proofs of these lemmas are omitted.

6. Sufficiency. Necessity.

DerniTion 5.1. A field Sy, € S is sufficient for the measures P on S (briefly, Sy
is sufficient for P) if corresponding to-each S-measurable set A, there exists an
Sp-measurable function ¢4 () such that

(5.1) ¢a(r) = Ep(xa(@) | So) [S, p] for each p in P.

This definition is readily verified as equivalent to the one given (without explicit
reference to conditional probabilities) in Section 3. The sufficiency of S, is equiv-
alent to the existence of a determination of the conditional probability func-
tions with respect to Sy such that, for each x ¢ X and 4 ¢ S, the conditional
probability of A given So, z, and p is the same for each p in P.

It is easy and instructive to investigate the sufficiency of the extremal sub-
fields of S, namely S itself and the one which contains only X and the empty
set, say Sk . By Lemma 4.6, for any S-measurable set A, we have x.(z) =
E,(xa(z) | S) [S, p] for each p in P, so that S is sufficient for P. The field S«
is more interesting. A function g(x) is Sx-measurable if and only if ¢ takes a
constant value, and hence for any S-measurable set A and any p, we have
E,(x4(x) | Sx) = p(4) for all z, by Lemma 4.1. Consequently, S« is sufficient
if and only if the set P of measures on S consists of only one measure. These
facts concerning S and Sx are intuitively obvious, as may be seen by turning
to the last paragraph of Section 3 and the fourth paragraph of Section 4.

TueoreMm 5.1. When R s the real line, and R the class of Borel sets of R, the
following statements are mutually equivalent.

(1) So 78 sufficient for P.

(ii) Corresponding to each S-P-integrable function f(x), there exists an So-P-
integrable function g(x) such that

(5.2) g(x) = Ey(f(x) | So) [S, pl for each p € P.

(iii) Corresponding to each function u(B, x) defined for B ¢ R and x ¢ X such
that u is S-P-integrable for each B and a measure on R for each x, there exists a
function v(B, x) such that v s So-P-integrable for each B and a measure on R for
each x, and such that

(5.3) v(B, x) = E,y(u(B, ) | So) [S, p] for each B e R and p € P..

Proor. We shall show that (i) — (i) — (iii)) — (i). Suppose then that (i)
holds. Let F be the class of all S-P-integrable functions f such that (5.2) is
satisfied by some Sy-P-integrable ¢g. By hypothesis, I contains all S-measurable
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characteristic functions. An application of Lemma 4.4 shows that F contains
all S-measurable simple functions ([10], p. 84). Since every nonnegative S-meas-
urable function is the limit of a nondecreasing sequence of S-measurable simple
functions, it follows by means of Lemma 4.5 that F' contains all nonnegative
S-P-integrable functions. Hence, by change of sign, F contains all nonpositive
S-P-integrable functions. Since each S-P-integrable function is the sum of a
nonnegative S-P-integrable function and a nonpositive one, it follows by means
of Lemma 4.4 that F is the class of S-P-integrable functions. Thus (ii) holds.

Now let there be given a u which is a measure on R for each z and an S-P-
integrable function for each B. [The argument which follows is a straightforward
generalization of J. L. Doob’s argument for the existence of a conditional proba-
bility measure on the real line, that is, for the case when X = R, S = R, P
contains only one measure p (so that every subfield is sufficient), u(B, ) = xz(x),
and S, is the subfield induced by a measurable transformation. See [15], pp. 30
and 623 and [10], p. 210. Exer. 5.] For any r, —® < r < o, let the open in-
terval (— «, r) be denoted by I,., and define f(r, ) = u(l,, z). Let K be an
enumerable everywhere dense subset (e.g., the set of rational points) of R. It
follows from (ii) that corresponding to each k in K there exists an S,-P-integrable
function, g*(k, z) say, such that for each p ¢ P

(54) g*(k, z) = Ey(f(k, 2) | So) [S, p].

Let ki, ks, --- be an enumeration of K, and for any 7 and 7, let a(z, j) =
min {k;, k;} and b(, ;) = max {k;, k;}. Since a(i, 7)) < b(s, j), we have
Jla(z, 7), ) = f(b(, 7), z) for all z. It follows easily from (5.4) by means of
Lemma 4.2 that

g*<a(i; .7)! .’L‘) = g*(b(Z, .7); .’E) [SO) P]’ 27.7 =1, 2; e

Hence g*(k, x) is a nondecreasing function of & [S, , P].

Foreachm = 1,2, -+ let um = min {ky, ks, -+, km}. Then u; = up = -+ -
and im u,, = — . Since u(R, z) is S-P-integrable, u(R, z) < =[S, P]. Hence
({10}, p. 179)

flu, 2) =2 fluz,2) 2 -+,  limf(um,2) = 0[S, P

Let a*(x) = inf,, {g*(un, )}. It follows from (5.4) by application of Lemmas
4.5 and 4.3 that a*(z) = 0[Sy, P]. Let a(z) = inf,{g*(k., z)}. The conclusion
of the preceding paragraph implies that a(z) = «*(x) [So, P]. Hence a(z) =
0[Sy, P).

Now let v,, = max {ky, k2, - -+, kn} and write 8(x) = supm {¢*(kw, )} and
B*(x) = supm {¢*(m, x)}. Arguments similar to the ones used above show that
B8* is S,-P-integrable, and that g*(x) = B(z) [So, P]. Hence B(z) < «[S,, PJ.

The preceding three paragraphs show that there exists an S;-P-null set, N
say, such that for x ¢ (X — N), g*(k, z) is a nondecreasing function of & with
a(zr) = 0, B(x) < «. Define g(k, x) = g*(k, z) for x e (X — N) and = 0 for
x e N. Then for each z, g is a nondecreasing function of k¥ with inf, ¢ = 0 and
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sup; ¢ < o, and for each k, ¢ is an Sy-measurable function of z. Also g(k, x) =
g*(k, z) for all k e K [S, P], so that for each ke K and p ¢ P

(5.5) gk, z) = Ep(f(k, z) | So) [S,

by (5.4) and Lemma 4.2. Corresponding to each point r in R, let ¢i(r), ea(r), - - -
be a fixed strictly increasing sequence of points in K such that lim ¢..(r) = r,
and define h(r, ) = lim g(ca(r), ). For each x, k is a nondecreasing, left-con-
tinuous function of r with inf,h = 0 and sup,h < «. Moreover, we have

fleu(r), ) < fleo(r), ) £ --- , with lim f(cn(r), ) = f(r, z) for each z. Hence,
for each r, and for each p ¢ P,
(5.6) h(r, x) = E,(f(r, z) | So) [S, pl

by (5.5), the definition of #, and Lemma 4.5.

For each z, let »(B, z) be the finite measure on R such that v(I,, ) = A(r, x)
for all 7([10], p. 179). Since & is an S,-measurable function of z for each r, it can
be shown (cf. [11], p. 364) that » is Sy-measurable for each B. Let p ¢ P and
Ay € Sy be fixed and define

m(B) = [ uB,2) dp, n(B) = [ v, a.

Then m and n are measures on R with m(R) < «, and m(I,) = n(I,) for all r,
by (5.6) and (4.1). Hence ([10], p. 179), m(B) = n(B) for all B ¢ R. Since p
and Ay are arbitrary, we conclude that

5.7 f uw(B, z) dp = f »(B, z) dp Ay e Sy, BeR, p ¢ P.
Ao A9

Since » is Sy-measurable for each B, it follows from (5.7) by the uniqueness
assertion of the Radon-Nikodym theorem that (5.3) is satisfied. It is evident
that » is Sy-P-integrable for each B. Since u is arbitrary, it follows that (iii)
holds.

Now let a and b be arbitrary but fixed points of R with a # b. Let A be an
S-measurable set, and define

r(B, ) = a(B)xa(=) + BB)(1 — x4(2)),

lifaceB, . _J1ifbeB,
«(B) = {O otherwise; B(B) = {0 otherwise.

Then u is a probability measure on R for each z and an S-measurable function
for each B. Hence by (iii) there exists a » such that v is S,;-measurable for each
B and (5.3) holds. It follows by taking B = {a} in (5.3) that (5.1) is satisfied
by ¢a(z) = »({a}, ). Since in this argument A ¢ S is arbitrary, (i) holds. This
completes the proof of Theorem 5.1.

ReMARK. Let Ry be a Borel set of R such that R, contains at least two points,
and let Ry be the class of Borel sets of R, . Let (iii)* denote statement (iii) with
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R replaced by R, and ‘“‘measure” by ‘“finite measure,” and let (iii)** denote
statement (iii)* with “finite measure’’ replaced by “probability measure.”’” Then
each of the statements (iii)* and (iii)** is also equivalent to (i). This follows
immediately from Theorem 5.1 and from its proof.

CoRrOLLARY 5.1. If Sy 7s sufficient for the measures P on S, and Sy is sufficient
for the measures P on Sy, then Sy is sufficient for the measures P on S.

This intuitively obvious result is an easy consequence of Lemmas 4.2 and
4.8, and the equivalence of statements (i) and (ii) of Theorem 5.1; the formal
proof is omitted.

Derintrion 5.2. A field 8* C S is said to be necessary for the measures P on S
(briefly, S* is necessary for P) if S* € S, [S, P] for each field Sy < S which is
sufficient for P.

The subfield S« , consisting of only X and the empty set, is evidently necessary
for P. A less trivial result is the following: If P is the set of all probability meas-
ures on S (more generally, if P is complete on S), then S itself is necessary for P.
That the converse is not true in general is shown by the following example.
Let X consist of the three points 0, 1, and 2, let S be the class of all subsets of X,
and let P consist of the two measures p and ¢, where p({0}) = p({1}) = } =
g({1}) = q({2}) and p({2}) = 0 = ¢({0}). Then S is necessary for P, but P
is not even complete on S.

The study of necessity alone is, however, of little interest to us, and we shall
be concerned mainly with subfields which are necessary and also sufficient for P.
The special role of such subfields in the reduction of statistical decision problems
is described in Section 7.

6. The dominated case. It is assumed in this section that P is dominated on S.
Let Py = {p1, p2, : - -} be a countable subset of P such that every S-Py-null
set is also S-P-null. The existence of such a P, is assured by Lemma 7 of [1].

Choose a corresponding sequence ¢; , ¢z, - -+ of positive constants such that
> ic: = 1, and define
(6.1) M(A) = 2oicipi(4).

TaEOREM 6.1. As defined, \q 2s a probability measure on S such that

i) PKL on S;

(i) Each S-P-null set is S-N-null;

(i) A mecessary and sufficient condition that a subfield S, be sufficient for the
measures P on S s that corresponding to éach p in P, there exist a nonnegative So-
measurable function 4, such that dp = g,(x) dho on S.

This theorem, which is basic to the results of this section, differs from Theorem
1 of [1] in that A, is a fized measure satisfying (i) and (ii) such that (iii) holds
for any subfield S, . As a matter of fact, the proof in [1] of Theorem 1 of [1] also
proves Theorem 6.1, so a separate proof need not be given here. The measure
Mo does not, of course, necessarily belong to the given set P.

Another useful result which is implicit in [1] is the following version of the
Fisher-Neyman factorization theorem for sufficient statistics.
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CoROLLARY 6.1. Let there be given a o-finite measure \ on S such that P < \.
A necessary and sufficient condition that a statistic T be sufficient for P is that there
exist a nonnegative function h on X and a set {g,:p € P} of nonnegative functions
on the range of T such that

(a) h(z) is an S-measurable function;

(b) For each p, g,T'(x) is an S-measurable function;

(c) For each p, dp = h(x)-g,T(x) d\ on S.

Proor. It will suffice to prove the corresponding result for a subfield S, ;
the corollary as stated will then follow by supposing that S, is induced by T
and applying Lemma 3.2. Suppose first that S, is sufficient for P. Then, by
property (iii) of Ao, there exist nonnegative Si-measurable functions g, such
that, for each p, dp = g,(x) d\o on S. The hypothesis P << A and property (ii)
of Ao imply that N\g < A; hence there exists a nonnegative S-measurable function
h such that d\o = h(z) d\ on S. It follows that for each p, dp = h(x)-g,(x) d\
on S.

Conversely, suppose that the last stated relations hold, where h is a non-
negative S-measurable function and each g, is a nonnegative Sy-measurable
function. It then follows from (6.1) that d\¢ = h(x)-k(z) d\ on S, where k is a
nonnegative Sy-measurable function. Hence, for each p, dp = ga(x) dh\o on S,
where g5(z) is a nonnegative Sy-measurable function; gi(z) = g,(x)/k(z) if
k(z) > 0, and is 0, say, otherwise. It follows from property (iii) of Ao that S,
is sufficient for P. This completes the proof. An alternative method of proof
is to deduce the necessity of the condition from Theorem 6.2 of [2] and its
sufficiency from Corollary 4 of [1].

Although Corollary 1 of [1] (when stated in terms of statistics), Theorem
6.2 of [2], and Corollary 6.1 are equivalent versions of the factorization theorem
in the sense that any one of them implies the other two, they differ from each
other in form. Theorem 6.2 of [2] is a “simplification”” (and extension to the
case when the given dominating measure is not necessarily finite) of Corollary
1 of [1]. Corollary 6.1 is a “simplification” of Theorem 6.2 of [2].

An example of contexts in which Corollary 6.1 is more useful than the other
versions follows. Let X be the m-dimensional euclidean space of points
x=(T1,*,Tm),let Sbethe field of Borel sets of X, andlet P = {ps:0 < 6§ < o}
where py is the probability measure corresponding to z;, 22, - -- and z, being
independently and uniformly distributed in the open interval (0, 6). Let
T(x) = max {z1, -+, xx} and let the dominating measure \ be m-dimensional
Lebesgue measure. It is desired to verify that T is a sufficient statistic by ex-
hibiting a suitable factorization of the probability densities with respect to \.
Each p, has the representation dps = h(z)-geT(x) AN where h(z) = 1 if
min {z;, +++, Zn} > 0 and is 0 otherwise, and g,(r) = (1/8)"if 0 < r < 6 and
is 0 otherwise. The desired result follows immediately from Corollary 6.1.

Corollary 1 of {1] and Theorem 6.2 of [2] do not apply to the simple and almost
inevitable factorization used in the above example because h is not integrable
with respect to N\. (In general, even if the common factor of the given factoriza-
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tion happens to be integrable with respect to the dominating measure, the
verification of this fact may be troublesome.) The only practical method of
establishing the sufficiency of T by means of, say, Theorem 6.2 of [2], seemingly
is to begin with the above representation of the measures in P and then discard
\ as the dominating measure and pass to a more suitable one, that is, to a meas-
ure \, for which it is easier to see that dps = h*(x)-gs T (z) d\o for each 6, where
h* and g; T are Borel measurable functions of z, and h* is integrable with re-
spect to Ao . This method, which is not entirely consistent with the spirit of the
factorization theorem, is exactly the one we have used to prove the sufficiency
part of Corollary 6.1.

By property (i) of Ao, corresponding to each p in P there exists a nonnegative
S-measurable function, g, say, such that on S

(6.2) dp = gp(x) do .

Let A,(r) = {x:g,(x) < r}, and let S* be the field generated by the sets A,(r),
that is, the smallest field of subsets of X which contains all sets A,(r) with
0 <r < « and p in P. Since each A,(r) is an S-measurable set, it is clear that
S* is a subfield of S.

THEOREM 6.2. S* 75 necessary and sufficient for P.

Proor. By definition of S*, each of the functions g, is S*-measurable; conse-
quently, by (6.2) and by property (iii) of g, S* is sufficient for P. To show
that S* is necessary, let S; be a subfield which is sufficient for P. By property
(iii) of Ao , corresponding to each p in P, there exists a nonnegative Sy-measurable
function h, such that dp = h,(x) d\o on S. It follows from (6.2) by the essential
uniqueness of density functions that g,(x) = h,(z) [S, N\o] for each p in P.

Let C be the class of all sets A such that x.(z) = xs(x) [S, P] for some B ¢ S, .
It is easy to see that C contains X, that A & C implies (X — A) ¢ C, and that
A;eCfori = 1,2, --- implies U;4; ¢ C, so that C is a field. Now, it follows
from the conclusion of the preceding paragraph, using property (i) of \o, that
each of the sets A,(r) is in C, the S;-measurable set corresponding to A,(r)
being B,(r) = {z:h,(x) < r}. Since S* is the smallest field containing the sets
A,(r), we conclude that S* € C. It now follows from the definition of C that
S* € S [S, P]. Since S, is arbitrary, S* is shown to be necessary for P, and
Theorem 6.2 is proved.

A method for constructing the necessary and sufficient subfield for a dominated
set of measures is given in the paragraphs preceding the statements of Theorems
6.1 and 6.2. We shall illustrate this method by a simple example. Let X be the

m-dimensional sample space of points £ = (z1, ---, Tn), let S be the field of
Borel sets of X, and let P = {ps: — o < 8 < o}, where p, is the probability
measure corresponding to z;, --- and ., being independent normal variables

each with mean 6 and variance unity. Let P, consist of the one measure po—o .
Then A\¢ = ps—o, and each p, has the representation dps = gs(x) dho, where
go(x) = exp {—m[6° — 20T (2)]/2} and T(z) = Z'{'xi/m. A simple computation
now shows that the sets A4(r) are X, the empty set, and all sets {z:T(z) < r}
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and {z:T(z) > r} with — < r <- . The field generated by these sets is
easily seen to be T7'(R), that is the class of all sets {z:T(z) ¢ B} with B¢ R,
where R is the class of Borel sets of the real line. Hence T™(R) is necessary and
sufficient for P.

In the preceding example, T is a sufficient statistic for P, so that the result
obtained is a special case of the following theorem, which is stated here without
proof,

TueoreM 6.3. If T s a sufficient statistic for P, there exists a field Ty of subsets
of the range of T such that the subfield T—*(Ts) is necessary and sufficient for P.

THEOREM 6.4. Let Sy and Sy be subfields of S such that S & So [S, P]. If Swo
18 sufficient for P, then so is S, .

This result is the converse of Corollary 5.1. The corresponding result for
statistics is: “If T is sufficient, and T is essentially a function of U, then U is
sufficient.”

Proor. Suppose that Sy is sufficient, and consider an arbitrary but fixed
p in P. It follows from property (iii) of Ao that there exists a nonnegative Soo-
measurable function g, such that dp = g,(x) d\o on S. It follows from the hy-
pothesis Sy & So [S, P] by an obvious argument (cf. Lemma 7.1) that there
exists a nonnegative So-measurable function, h, say, such that h,(z) = ¢,(z)[S, P).
Hence h,(x) = g,(x) [S, o], by property (i) of Aq . Hence dp = h,(z) d\o on S.
Since p is arbitrary, it follows from property (iii) of Aa that S, is sufficient, and
the proof is complete.

CoROLLARY 6.2. Let S* and S, be subfields of S, and suppose that S* is necessary
and sufficient for P. Then

(i) So 7s necessary for P if and only if Sy & S* [S, PJ;

(i1) Sy 7s sufficient for P if and only if S* < S, [S, PJ;

(i) So s necessary and sufficient for P if and only if So = S* [S, P).

The only part of Corollary 6.2 which does not follow immediately from
Definitions 5.1 and 5.2 is the ‘if’ part of (ii), and this part is a consequence of
Theorem 6.4. It follows from this remark that, except for the ‘if’ part of (ii),
Corollary 6.2 is independent of the present assumption that P is dominated.

A consequence of Theorem 6.2, Corollary 6.2 (ii), and Lemma 3.2 is: “Given
a sample space of possible outcomes and a dominated set of possible distributions
of the outcome, there exists an inherent class of events such that a statistic T
is sufficient for P if and only if each event in this class depends on the outcome
essentially only through 7.” .

A statistic 7™ is said to be necessary for P if, for each sufficient statistic T,
T* is essentially a function of T, that is, there exists a function F on the range
of T into that of T* such that T*(x) = F(T'(x))[S, P]. A statistic which is neces-
sary and sufficient is then a ‘minimal sufficient statistic’ in the terminology of
Lehmann and Scheffé [2]. As stated in the introduction, they proved the existence
of such a statistic in the case when, in addition to being dominated, the set P
is separable under the metric d(p, ¢) = supues|p(4) — ¢(4)|. Let @ =
{¢1, g2, ---} be a countable everywhere dense subset of P, and let dg;/d\, =
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ei(z) for ¢ = 1,2, --- . Then T*(z) = (e1(x), ¢2(x), :++) is a necessary and
sufficient statistic for P. This construction is based on Theorem 6.1 and Corollary
6.1; it differs from, but is necessarily equivalent to, the one given in [2].

Three unsolved problems, which appear to be of some theoretical interest,
are: 1) Whether Theorem 6.4 is valid in the general case. 2) Whether a necessary
and sufficient subfield exists in the general case. 3) The exact relations between
the notion of necessary and sufficient statistic and of necessary and sufficient
subfield. For example, does the existence of a necessary and sufficient subfield
always imply the existence of a necessary and sufficient statistic, and if so, is
the subfield induced by a necessary and sufficient statistic always a necessary
and sufficient subfield?

It is perhaps relevant to problem 3 that there do exist dominated sets which
are not separable. Consider an uncountably infinite collection of independent
binomial trials, each with probability } of success. Let the trials be indexed,
{8 : 0 ¢ Q} say, and let X denote the set of all possible outcomes of the col-
lection of trials. For each 8 let E(f) & X be the event that & results in success,
and let S be the field generated by the sets E(8). As is well known, there exists
a probability measure on S, say A, such that ANy E(6:)] = () for an finite
set 01,0, - -+ , 0 of indices with 6; = 6; . For each 6 define ps(4A) = 27(4 n E(6))
forA e S,andlet P = {ps : 8 £ Q}. Clearly, py < \ for each 6, so that P is a domi-
nated set of probability measures. We observe next that sup4.s | pe(4) — ps(4) |
= | polE(6)] — ps[E()]| = % for § = 4. Since Q is uncountable, it follows that
P is an uncountably infinite set such that the distance between any two distinct
points is at least 3. Hence P is not separable. This example was communicated
to the author by L. J. Savage.

7. Sufficiency and statistical decision functions. Let there be given a measura-
ble space (D, D), called the decision space, and suppose that the statistician is
required to construct a measurable procedure, called a decision function, for
associating each possible outcome x with a point of D. Of several general methods
of constructing decision functions, we shall adopt the following one.

Let u(C, z) be a function such that u is a probability measure on D for each
z and an S-measurable function of x for each C ¢ D. We then say that u is an
S-measurable decision function. In using u to arrive at a decision, the statistician
first obtains a particular outcome, say . He then performs an experiment whose
outcome § takes values in (D, D) according to the known distribution u(C, x).
He takes 6 to be his decision.

The decision adopted by the statistician in a given instance is called the
terminal decision. We assume that when the outcome is distributed in (X, S)
according to p, the terminal decision in using u is distributed in (D, D) according
to A, , where

(7.1) M(Cin) = [ W(C, ) dp.
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Two decision functions x and » are said to be equivalent if, for each p in P,
M(Cip) = A (C:v) for all C e D.
Let R be the real line and let R be the class of Borel sets of R, as in Section 5.
Suppose that there exists a one-to-one mapping p of D into R such that

(7.2) C ¢ D implies p(C) ¢ R, B ¢ R implies p (B) ¢ D.

We then say that (D, D) is of type (R, R). The justification for this terminology
is, of course, that in this case the decision space may, for theoretical purposes,
be taken to be (R, R). It is assumed henceforth that (D, D) is of type (R, R).
As stated in the introduction to the paper, this assumption is valid if, in par-
ticular, D is a Borel set of the m-dimensional euclidean space and D is the class
of Borel sets of D (1 = m £ «). ([10], p. 159, Exer. 7)

Let p be a one-to-one function on D into R such that (7.2) holds, and let
o(D) = R, . Then R, is a Borel set. Let R, be the class of Borel sets of R, that
is, all sets B N R, with B € R. Since u(C) <> u*(p(C)) is a one-to-one correspond-
ence between probability measures on D and R,, it follows from Theorem
5.1 (cf. the remark following its proof) that a subfield S, is sufficient for P if
and only if corresponding to each S-measurable decision function there exists
an Sp-measurable decision function » such that, for each Ce¢D and pe¢ P,
v(C, z) is the conditional expectation function of u(C, z) given S and p. An
application of Lemma 4.1 now yields

TueoreM 7.1. If Sy is sufficient for the measures P on S, then corresponding to
each S-measurable decision function, there exists an equivalent S,-measurable
decision function.

Theorem 7.1 is a rather special consequence of the apparently stronger result
preceding it. The proofs of the sequential analogues of ‘Theorem 7.1 are much
more dependent on the corresponding apparently stronger results; nevertheless,
the question whether the present definition of sufficiency is stronger than is
necessary remains open (cf. [12]).

LemMmA 7.1. Let Sy and S; be arbitrary subfields 6f S. Let ¢ and d be extended
real valued constants with — o =< ¢ <.d = . Then the following statements are
mutually equivalent:

@). S < S: [S, Pl
(ii). Corresponding to each Si-measurable function f such that ¢ < f = d, there
exists an Sy-measurable function g such thatc < g £ dand g(x) = f(z)[S, P].
(iii). Corresponding to each Si-measurable decision function p there exists an
Sy-measurable decision function v such that »(C, z) = u(C, z) for all
CeD]|[S, Pl

The proof of Lemma 7.1 is parallel to that of Theorem 5. 1, and so is omitted.
From the equivalence of statements (i) and (iii) of Lemma 7.1 it follows that
if S* is necessary and sufficient for P, then the sufficiency of S* affords the
maximum possible reduction of the decision problem by means of Theorem 7.1.
It follows also, by first applying Theorem 7.1 to Sg, that if Sy is sufficient,
and Se € So [S, P], then S, is “sufficient” at least in the sense that the con-
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clusion of Theorem 7.1 is valid. (cf. prob. 1 of Sec. 6, and the remark preceding
Lemma 7.1).

8. The sequential case. Two theorems in the statistic terminology. Let

&, &, --- be a sequence of experiments which are to be performed in the
order 1,2, --- and let x = (21, 72, ---) denote the sequence of outcomes in
case each of the experiments is carried out, x. being the outcome of &, for
m = 1,2, --- . Let X be the set of all possible sequences z, let S be a given

field of subsets of X, and suppose that z is distributed in (X, S) according to p,
where p is some (unknown) one of a certain set P of probability measures on S.
It is convenient to suppose for the present that the sequence of experiments is
infinite, but no particular relation such as functional or stochastic independence
is assumed to hold between their individual outcomes. Thus z = (x;, 22, - )
is an infinite but otherwise quite arbitrary sequence of chance variables whose
joint distribution is given by Pr {zx e A} = p(4) for 4 ¢ S, where p is some
member of P.

For each m, let rn(z1, 22, +++) = (@1, -, Tm) and let (X(m , Sm) be the
sample space of the values of 7., . (See Sec. 3.) For each m, let T'» be a statistic
on X m and let (Y,,, T.) be the sample space of the values of T . The typical
points of X, and Y, are denoted by z(» and y. respectively. Then () is
distributed in (X (my , Scm) according to prn', and y., is distributed in (Y , To)
according to prn T for m = 1,2, --- . It is important to observe that these
statements refer to nonsequential sampling distributions.

It might appear at first sight that denoting the typical value of 7w by y(m
and the set of all values of 7', by Yy would be a better notational parallel with
Z(my and Xy , but this is not the case. A statistician who is supplied with the
outcome of each &, possesses 2 = (1, &2, - - -), While a statistician who is sup-
plied only with the observed value of each T, possesses ¥ = (y1, Y2, --*).
In the present notation, the subscript m refers to the mth coordinate and (m)
refers to the first m coordinates of = or y. Thus (X, S») denotes the sample
space of the mth coordinate of z, that is, of the outcome of &, ; this space is not
required at present but it (or rather, the corresponding subfield of S) appears
later in conditions (b) and (c¢) of Theorem 11.5. Again, (Y (my, T(m) denotes
the sample space of the first m coordinates of y. This last sample space is, how-
ever, of little interest to us, one reason being that in many important cases
le.g., Znmreal and Tr(®1, -+ Tm) = &1 + + -+ + xw/mform= 1,2, -- -] Yy and
X are in one-one correspondence, so that simultaneous possession of the
observed values of Ty, T, ---, and T,, means possession of the outcomes of
8,8, -, and &,.

In terms of the sample spaces and distributions introduced above, our basic
definitions are the following. {7} is a sufficient sequence (for P) if, for each m,
T.. is a sufficient statistic for the possible distributions of & my . {T'm} is a transitive
sequence (under each p in P) if the following condition is satisfied for each m
and each p in P: For any event B depending only on #m..1, the conditional
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probability of B given z(s) depends on x(sy only through T, . In other words
(cf. Lemmas 4.6 and 4.8), {T.} is transitive if for each m the conditional dis-
tribution of ym+1 given z(m is the same as its conditional distribution given
Ym = T m(@(m). Intuitively speaking, transitivity means that, under each possible
distribution of the sequence x = (21, 22, - - - ), ¥m is exactly as good a predictor
of Ymi1 8818 Tmy = (@1, *++ , Tw), form = 1,2, --- . Less informal definitions,
and several characterizations, of “‘sufficient sequence’” and ‘““transitive sequence”
will be given later in terms of subfields. In this section and the following one, we
are concerned mainly with describing the reasons why these notions are of
importance, and the statistic terminology is the more appropriate one for our
immediate purposes.

For each m, let an(x(m) be an S(m)-measurable function on X(n such that
0 < a» = 1. We then say that the sequence {a.} is a sampling rule. In using
{an}, the statistician performs &; , & , - - - in succession. When the first m experi-
ments have been carried out, he performs an experiment the outcome of which,
Un say, takes only the values 0 and 1 with Pr {u.,, = 1} equal to the observed
value of @ . If u, = 1, the experimentation is terminated, but if %, = 0, then
Em+1 is carried out; m = 1, 2, - - - . The total number of experiments which are
carried out in a given instance is called the sample size and is denoted by =.
When z is distributed according to p, the probability distribution of # in using
{an} is given by

Pr {n = m} = L )am(x(m)) dPT;;ly m=12 -,
(m

where
ay(zy) m =1

(8.1) am(xl, e ,xm) = (ﬁl [1 _ a,,'(xly cee 1131)]> . am(xl’ ey, xm) m > 1.

t=1

The sampling rule is said to be closed if the probability of terminating the
experimentation at some stage is always unity, that is, if D_» Pr {n = m} = 1
for each p in P. A sampling rule does not, in general, require that the experiments
be performed one at a time. The possibility of grouping remains open, the group
size after the first m experiments have been carried out being a nonrandomized
function of their outcomes (m = 1,2, --;).

A sampling rule {a,} is said to be based on {7} if for each m there exists a
function, a3 say, on Y, such that am(Zwm) = 0m[Tm(Twm)]. In using such a
sampling rule, after the first m experiments have been carried out, the decision
whether or not experimentation is to be continued depends only on the ob-
served value of Ty, (m = 1,2, ---). :

Let the typical outcome z; , - - - , z, of using a closed sampling rule be denoted
by 2. It can be shown that if {T,} is a sufficient sequence, and z is obtained
according to a specified rule, then the sample size n = n(z) and T, = Tr(»(2)
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together constitute a sufficient statistic for the possible distributions of z. This
important result has the usual consequences in statistical decision problems
(cf. Sec. 1) In particular if the sample space of z is of type (R, R), and {T'.}
is a sufficient sequence, the statistician who is supplied only with the observed
sample size n and the observed value y, of T, in using a particular rule {a.}
could, if he wished, construct a hypothetical outcome z* = (z7, - -, 2% such
that, for each p and P, the probability distribution of z* is identical with that
of the total outcome of using {an}.

Now suppose that {T,} is a sufficient sequence. Let there be given a closed
sampling rule {a.,}, and consider the problem of constructing one based on {7},
say {aw}, which is equivalent to {a,} in some adequate sense. It is intuitively
clear (and easily proved) that in general there exists no {am} such that, for
each p in P, the probability distributions of z under the two rules are identical.
This last requirement is, however, unnecessarily strong; since {7} is a sufficient
sequence, the results stated above show that in using any given rule, the sta-
tistician could, without disadvantage, regard n and y, rather than z itself as
the outcome of the sequential experimentation.

The problem thus reduces to the construction, if possible, of a sampling
rule {a%} based on {T,} such that, for each p in P, the joint distribution of n
and y, under {ay} is identical with their joint distribution under the given
rule {a,}. The assumed sufficiency of the sequence {I'»} turns out to be a
necessary but insufficient condition for the existence (in general) of such an
{am}, and the additional condition required is precisely that {T.} be transitive.
Methods for constructing the {am} equivalent to a given {a.} are stated in the
paragraphs following Theorem 8.2 below.

By combining a part of the above result with the one stated at the end of
the third paragraph back, we obtain the following result. If {T',.} is a sufficient
and transitive sequence, and the sample space of z is of type (R, R), then corre-
sponding to any closed sampling rule {a.} there exists a closed sampling rule
{am} based on {T,} such that: (i) the two rules are equally expensive, that is,
for each p in P, the probability distribution of » is the same for the two; and
(ii) the two rules yield the same amount of information concerning the (unknown)
actual distribution of z, that is, a statistician who is supplied with the outcome
of using {a%} could calculate a sequence z* = (zf, ---, %) such that, for
each p in P, the probability distribution of z* is identical with that of the out-
come of using {an}, and conversely. If the sequence of experiments is regular
in a sense to be defined later, the requirement that {7} be transitive can be
omitted from the hypotheses of the last-stated result.

We proceed to a formal statement of the main results described above. Let

Z be the set of all finite sequences z = (21, - - , Zn) Where z; is a possible out-
come of & ,fors = 1,-+. ,mwithm = 1,2, --- . Foreachzin Z, write n(z) = m
if and only if z has m coordinates z;, withm = 1,2, --- . If K is a subset of Z
and Aqy, A, - - - is a sequence of subsets of Xy, Xz, - - - respectively, write

K~I[Aw, Ag, ---]1if and only if xx(2) = faw () for all z & Z, where
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Jm(@m) is the characteristic function of Amform = 1,2, ... . The relation ~
establishes a one-to-one correspondence between subsets of Z and sequences of
subsets of Xy, Xy, ++- . .

Let Z be the class of all sets K € Z such that K ~ [Aw, Aw , -+ -] where
A(m is an S(m-measurable set for m = 1,2, --- . That Z is a field is readily
seen. We take (Z, Z) to be the sample space of the outcome of using a closed
sampling rule on the given sequence of experiments. If K ~ Ay, Aw, -],
the event “z ¢ K" is, of course, the union over all m of the (mutually exclusive)
events K, = “n = m and () € Am”’. Note that E, is impossible and can
therefore be omitted from the union in case A (m) is the empty set. In particular,
if A(m is the empty set form > rand A,y = X @ , the event “z ¢ K” is simply
the event “n = r.” It is easy to verify that (Z, Z) is of type (R, R) if and only
if each of the spaces (X (m) , S(m) is of that type.

Let {an} be a closed sampling rule, and let {e,} be the corresponding se-
quence of functions defined by (8.1). When « is distributed in (X, S) according
to p and {an.} is used, z is distributed in (Z, Z) according to g, where for any
K~[Ag,Aw, -7le 2,

) = 3 [ anlaen) dpri,
m=1 VA (m)

Let Q be the set of all g corresponding to p in P; since Q depends on {an}, we

write @ = Q{an}.

Define V(z) = [n(2), Ta»(2)]. Then V is a statistic on Z. The typical value
of V is denoted by (n, y.).

THEOREM 8.1. {T'n} s a sufficient sequence if and only if, for each closed sampling
rule {an}, V is a sufficient stalistic for the measures Qfan} on Z.

An outline of the proof follows. Suppose first that {7,,} is a sufficient sequence.
Let there be given a closed sampling rule {a.,}, and let {a.,} be the corresponding
sequence of functions defined by (8.1). Choose and fix an arbitrary K ¢ Z, say
K ~ [Ag, Ay, ---] and let f, be the characteristic function of Amy for
m = 1,2, ---. For each m, let ¢, and ¢, be nonnegative T,-measurable
functions of y,, such that, for each p in P, ¢n(y.) and Ym(ym) are the condi-
tional expectations of om(z(m) fm(ZTm) and of om(Tem), respectively, given
Tw(@m) = ym . Define hn(ym) = en(Ym)/¥m(Ym) if Ym(ym) > 0 and = 1 (say)
otherwise for m = 1, 2, --- . Set g(n, ¥.) = hu(y.). Then, for each ¢ in Q{an},
g(n, y») is the conditional expectation of xx(z) given V(z) = (n, y.). Since K
is arbitrary, it follows that V" is sufficient for Q{a..}.

Suppose now that V satisfies the last-stated condition. Choose and fix a
positive integer &, and define a,, = 0 form < kand = 1 form = k. In using
{an}, (Z, Z) reduces to (X, Sw); V to Ti; and Q{an} to {prit:ip e P}.
It follows, therefore, that 7' is sufficient for {pri':p & P}. Since k is arbitrary,
{Tw} is a sufficient sequence. This completes the outline proof.

The non-trivial part of Theorem 8.1 appears to have been stated and used
first by Girschick, Mosteller, and Savage ([16], p. 15) in the context of esti-
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mation from binomial samples. A proof is contained in [9] for the case when
the given rule is based on {T.}. Since the result is valid without restriction,
Blackwell’s construction of unbiased sequential estimates [9] can be extended to
any closed sampling rule.

TueoreEM 8.2. {T.} is a sufficient and transitive sequence if and only if corre-
sponding to each closed sampling rule, there exists a closed sampling rule based on
{Tn} such that, for each p in P, the probability distribution of (n,y,) = V(2)
18 the same under the two rules.

This theorem is a consequence of Theorem 11.4, and its proof will be indicated
in Section 11. If {7} is a sufficient and transitive sequence, and there is given a
closed rule {a.}, the proof shows that the corresponding equivalent rule based on
{T.} is determined as follows. For each m, let E, be the event “n = m in using
{am},” and let E,, be the event “n = m in using {a.}.” For each m, regard
E; and E,, as events defined in terms of the nonsequential outcome of the first
m experiments and let fn and f, be functions of ., , with 0 < fa < fm, such
that, for each p in P, fa(yn) and fm(ym) are the conditional probabilities of En
and E, , respectively, given T,,(€m)) = Ym . The sampling rule in question is
am(Ym) = fom)/fm¥m) if fm(ym) > 0 and = 1 otherwise, for m = 1, 2, --- .
An alternative (but necessarily equivalent) construction for {ag} is the following:
amYm) = fum)/gnYm) if gmym) > 0 and = 1 otherwise, for m = 1, 2, - - -
where g1 = 1 and ¢g. = the conditional expectation given y. of
(1 — ad)(1 — a3) -+ (1 — am_y) for m > 1. Assuming that {a5} as defined is
a sampling rule, that is to say, 0 < a, =< 1 for each m, it is easily seen that
{am} is equivalent to {a.}. The fact that {am} is indeed a sampling rule (so that
gm(ym) = the conditional probability given y., of the event “n = m in using
{am}””), and that this rule is the same as the one defined in the preceding para-
graph, are consequences of transitivity.

The following result is an immediate consequence of Theorems 8.1 and 8.2.

CoroLLARY 8.1. {T',} is a sufficient and transitive sequence if and only if the
following conditions are satisfied.

(1) For each closed sampling rule {an}, V is a sufficient statistic for the measures
Qlan} on Z.

(ii) Corresponding to each closed sampling rule, there exists a closed sampling
rule based on { T} such that, for each p in P, the probability distribution of (n,y,) =
V (2) is the same under the two rules.

The preceding discussion is entirely in terms of an arbitrary sequence T,
Te, -+ of statistics on X3y , Xz , - - + respectively. The problem of determining
explicitly all sequences {T,..} which are sufficient and transitive is at present
unsolved even in the simplest cases. There is a related but more important
unsolved problem. Suppose that {Tx} is a necessary and sufficient sequence,
that is, T is a necessary and sufficient statistic for the measures {prn :p € P},
for m =1, 2, --- . The problem is to characterize frameworks (X, S), P in
which {Ts%} is transitive. It can be shown that a sufficient condition that {Tm}
be transitive is that x;, x;, - -+ be a sequence of independent chance variables
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for each p in P. This result is one of the few results concerning statistics which
are stated in this paper without proof, but which are not corollaries of the cor-
responding results for subfields. There is no difficulty, however, in constructing
a proof parallel to that of Theorem 11.5, which is the corresponding result for
subfields, given in the final section of the paper.

Now consider very briefly the case when the given sequence of experiments is
finite, say &, &, --- and & with &k > 1. Let Ty, T., --- and T} be statistics
on Xy, X, -+ and X , respectively. Sufficiency and transitivity can be
defined in this case in the obvious way, that is, {T,} is a sufficient sequence if
T is a sufficient statistic for the possible distributions of x(m) , form =1, .- k.
If the condition which appears in the previous definition is satisfied for each
m =1, -+, k — 1, {T.} is a transitive sequence. Then Theorem 8.1 and
Corollary 8.1 remain valid.

It turns out, however, that Theorem 8.2 as stated is not quite true in this
case; the condition of the theorem is satisfied if and only if {T.} is transitive
and T, is a sufficient statistic for m = 1, --- | k — 1. This not very interesting
difference between the finite and infinite cases is about the only one, so in the
sequel we shall for simplicity confine ourself to the infinite case. The finite case
can, for mathematical purposes, be regarded as a “special case’ of the infinite
one. A finite sequence of experiments and statistics can always be extended into
the infinite case in such a way that the sufficiency and/or transitivity of the
sequence of statistics is not destroyed by the extension. One such extension is:
given &, -+, &and Ty, - -+, Tk, for each m > k, let €., be the trivial experi-
ment for which z,, = 0, and let Tw(xs, -+, Tm) = Th(xs, -+, Tr).

In concluding this section, we recall that we have been discussing a sample
space (X, S), a set P of probability measures on S, a fixed naturally determined
sequence {r.} of statistics on X, with 7, a function of 7,41, and an arbitrary
sequence {U,} of statistics on X, with U,, = Tn7n a function of 7, . In the
final sections of the paper, we shall, in effect, replace each of these statistics by
the subfield of S induced by it. Therefore we shall discuss (X, S), P, a fixed
sequence {S™} of subfields of S with $™ < S"*¥, and an arbitrary sequence
{S§™} of subfields of S with S¢™ & S™. All definitions and results concerning
{S§™} can then be translated into corresponding definitions and results con-
cerning the sequence {T,} of the present section by applying Lemmas 3.1 and
3.2 to the following identifications, with m = 1,2, --. :

S = 771(S(m) = the subfield of S induced by 7. ;

S§™ = A (Tw(T,)) = the subfield of S induced by Uny = Tnrm .

9. Some examples. In each of the examples which follow, & , &, --- is a
sequence of binomial trials. The trials are independent and identical only in
Examples 9.1 and 9.2. In each example, z,, = 1 if the outcome of &, is “success”
and z,, = 0 if the outcome is “failure;” X (m is the set of all points (z1, - - - , Zw),
withz} = Qor1for¢ =1, -+, m; and Scm is the class of all subsets of X (m),
withm = 1,2, ---.
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The first three examples show that a given sequence {T',} of statistics may
be sufficient and transitive (Exam. 9.1), or transitive but not sufficient (Exam.
9.2), or sufficient but not transitive (Exam. 9.3).

ExampLE 9.1. Suppose that 21, 2, -+ - is a sequence of independent random
variables, with Pr {z,, = 1} = 6 for each m, where 0 is an entirely unknown
fraction. Let Th(x1, -+, Tm) = 21 + -+ 4+ 2. be the number of successes in

the first m trials. As is well known, {7} is a sufficient sequence. To show that
{T.} is transitive, consider arbitrary but fixed m and 6. Then, for each k = 0,

-, m + 1, the conditional probability of the event Tmy1 = k given xm is 8
if Thlxm) =k —1,is 1 — 8if Tw(xwm) = k, and is zero otherwise. It now
follows from the additivity of conditional probability that for any event B
depending only on T,.4;, the conditional probability of B given z(., depends
on the condition only through 7', . Since m and 6 are arbitrary, it follows that
{Tn} is transitive.

ExampLE 9.2. In the preceding example, let T, = m/2 (say) for each m.
Then {T,} is transitive but not sufficient. The verification is omitted.

ExampLE 9.3. Let x; , 22, - - - be a sequence of independent random variables,
with Pr {#; = 1} = % and Pr {z, = 1} = 0 form > 1. Let Ti(x) = % (say),
and let Tp(z1, -+, Tm) = (71, > mz) form > 1. Then {Tn} is a sufficient

sequence. To show that {T,.} is not transitive, let B be the event that z; = 1;
this is certainly an event depending only on the value of Ty = (x;, x2). The
conditional probability of B given z, is 0 or 1, accordingly as z; = 0 or 1, and is
clearly not a function of T’ , that is, not a constant. Hence {7',,} is not transitive.

The transitivity of {7} in Example 9.1 is an illustration of the general result
stated after Corollary 8.1, since {T',,} is a necessary and sufficient sequence in
that example. We shall now give examples to show that if z;, 22, -+ - is not an
independent sequence for each p in P, the necessary and sufficient sequence
may or may not be transitive (Examples 9.4 and 9.5 respectively).

ExampLE 9.4. Suppose that Pr {z; = 1} = 0 and Pr {z,, = z;} = 1 for all
m, where 0 is an entirely unknown fraction. Let Tn(21, « - - , Tm) = 21 for each
m. The sequence {T'.} is necessary, sufficient, and transitive. The verification is
omitted.

ExampLi 9.5. Suppose that Pr {x; = 1} = %, and, given x,, that z,, 23, -+ -
is a sequence of independent random variables with Pr {z,, = 1} = 6 or §,
accordingly as x; = 0 or 1, for each m = 2, 3, -- -, where 6 and & are entirely
unknown fractions. Let Ti(z;) = % and Tu(zy, -+- , Tm) = (21, D5 @) for
m > 1. Then {T,} is necessary and sufficient, but not transitive. The verifica-
tion is omitted. (Cf. Exam. 9.3.)

The last example shows that if a sequence {7} is sufficient but not transitive,
then it does not necessarily reduce a statistical decision problem. (Cf. also the
reference to this example in Sec. 1.)

ExaMpLE 9.6. Suppose that the experimental framework is that of Example
9.5, and it is required to estimate 6. Suppose that if in a given instance the
sample size is n and 0 is estimated by the value ¢, the statistician incurs a loss
L which is (¢t — 0)*if n < 2, 2¢ — 6)* if » = 2, and infinite if n > 2. For
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any estimation procedure u, let 7.(8, 8) denote the expected value of L in using
u. Regarded as a function of the unknown parameters 6 and 8, r,(6, 8) is called
the risk function of u [13].

Now let u be the following procedure: “Observe z; . If z; = 1, terminate the
experimentation and estimate 6 to be %; if x; = 0, observe z. also, terminate
the experimentation, and estimate  to be 1§ or 74, accordingly as z; = 0 or
1.” A simple computation shows that for all  and &

9.1) 74(8, 8) = Y64.

Let {T.} be the sequence of statistics considered in Example 9.5. Then
{T.} is a sufficient sequence. We shall show, however, that each of the follow-
ing statements is false:

(1) There exists a procedure » based on {7',} which is equivalent to u, that is,
for each 6 and §, the joint distribution of # and ¢ is the same under the two pro-
cedures (cf. Sec. 1).

(ii) There exists a » based on {1',} such that r,(6, §) = r.(6, 8) for all § and &.

(iii) There exists a » based on {7',,} which is minimax in the class of all estima-
tion procedures.

Since (i) evidently implies (ii), it will be sufficient to show that (ii) and (iii)
are false. Suppose to the contrary that one or both of the statements (ii) and
(iii) are true. It then follows immediately from (9.1) that there exists a » based
on {7} such that for all 8 and §

(9.2) (0, 8) = %a4.

(As a matter of fact, the minimax risk in this example is 964, so that u is a mini-
max procedure, but this property of u is irrelevant to the present argument.)
Examination of the loss function L and of the sequence {T'.} now shows that
this » must have the following structure: “Take no observations with proba-
bility «, and take two observations with probability 1 — «. If no observations
are taken, estimate 6 to be ¢ ; if z; and z, are observed, estimate 8 to be ¢, .”
Here « is a fixed constant, 0 < o = 1, and {, and ¢, are (possibly randomized)
functions of the observations available at the terminal stages n = 0 and n = 2,
respectively. To a user of », the stagesn = 0 and n = 1 are, of course, the same.
Then, using an obvious notation,

9.3) 7,6, 8) = aB[(lo — 6)°|6,8] + 2(1 — a)E[(t: — 6)*| 6, 8].

Define tf = 1ift; > 1; = 0if t;, < 0;and = £if 0 < ¢; < 1,fori = 0, 2.
Then, for any 6 with 0 < 8 =< 1,with probability one tF — 0’ = (t: — 6)* for
1 = 0, 2. Hence

(9.4) aE[(ts — 6)°| 6, 8] + 2(1 — a)E[(ts — 0)*]6,6] < %4

for all § and 8, by (9.2) and (9.3). Let u, be the expected value of ¢, and u, =
us(x1, @2) be the conditional expected value of 3 given (2, 2). It is clear that
these expected values exist finitely, and that they do not depend on 0 and §;
By Lemma 3.1 ¢f [3] we have
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(9.5) (wo — 0)' < E[(t5 — 6)*|6,8],  El(w — 0)’]6,3] < E[(tx — 6)*| 6, 9]
for all 9 and 6. Writing
(0, 0) = a, u2(0, 1) = b, uy(1, 0) = ¢, ug(1, 1) = d,
it follows from (9.4) and (9.5) that
9.6) a(u — 0)°
+ 0 —a)lla— 01 —0)+(b~—0%+ (-0 ~—25+ d— 6%
‘ = %a

for all 6 and 6. Letting (8, §) tend successively to (0, 0), (1, 0), (0, 1), and (1, 1)
in (9.6) shows that

aup + (1 — a) [a® + ¢'] £ %4
@) a(l —w) + (1 = o) [(1 = 1)+ (1 = ¢)'] £ %a
aus + (1 — o) [ + d'] = %a4
ol —w) + (1 =) [1 =0+ (1 - d)= %a
Adding the inequalities (9.7) and omitting terms in @ and b, we have
(08) 2ot + (1 — w4+ 1 —a)ld+ 1 -0 +d+(1-d]
Now, 3 £ 2 4+ (1 — 2)*for all real z. Hence (9.8) impliesa + (1 — &) = 1

94{6. This contradiction establishes the desired conclusion, namely that each of
the statements (i), (ii), and (iii) is false.

It should be observed that in Example 9.6 there does exist a » based on {7}
such that, for each 6 and 8, the marginal distributions of # and ¢ in using » are
identical with the marginal distributions in using u. This » is defined by “al =
landa) =1 (ie., a = 1), witht; = % while ty(x;, ) = Y4 if 2, = Oand z, = 0
but = %4 if z; = 0 and 2, = 1, and = % otherwise.” It would be interesting
to know the conditions (if any) under which this situation occurs in the general
case.

IA

IIA

e
=

10. Definitions in terms of subfields. Sequential decision functions. Let there
be given a set X of points x, a field S of subsets of X, a set P of probability

measures p on S, and an infinite sequence S®, S®, ... of subfields of S such
that .
(10.1) S o gt m=1,2 .

Throughout this section and the following one, X, S, P, and {S"} will remain
fixed. They will sometimes be referred to as ‘“the framework.” The framework
is to be thought of as follows: (X, S) is the sample space of points
& = (z, 2, -+ ) with z distributed according to some p in P, and S®, §®, ...
is the sequence of subfields of S induced by 71, 72, - -+ respectively, where
Tm(xly:r’?) e ) = (xly e )x'm)'
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An {S“™}-measurable sampling rule is a sequence {a.,} of functions of z

such that a, is S“-measurable and 0 < a., < 1 for m = 1,2, --- . Given an
{S™}-measurable rule {a.}, for'each m we write

a1(@) = ai(x), Bilx) = 1, m =1,
(10.2)

wn@) = L (1 = 0@ 0@,  6u@) = TL11 = 0@, m > 1

Then for each m
(10.3) am(:z:) = am(x)'ﬁm(x)x ﬁm(x) - am(x) = ﬁm+1(x)'

It also follows from (10.1) and (10.2) that e, and 8. are S“™-measurable func-
tions form = 1,2, - -+ . The rule {a.} is said to be closed if D} am(z) = 1 [S, Pl.
Since in any caseZ? an(r) = 1 for each z, it follows that {a,.} is closed if and

only if >.7 f an(x) dp = 1 for each p in P.
X

In the remainder of this section, we suppose to be given an infinite sequence
(D1, Dy), (D2, Dy), - - - of measurable spaces. The mth, (D, , D), is called the
mth terminal decision space. Each of the terminal decision spaces is assumed
to be of type (R, R).

An {S™}-measurable terminal decision rule is a sequence {b,} such that
bm = bm(Cm, z) is a decision function in the sense of Section 7 on (X, S™)
into (D , D.), that is, by, is an S -measurable function of z for each C,, & D,,
and a probability measure on D, for each z, for m = 1,2, ---. An {S"™}-
measurable decision function is a double sequence [{a.}, {bn}] where {a,} is an
{S“™}-measurable sampling rule and {b,} is an {S™}-measurable terminal
decision rule. For any {S‘™}-measurable decision function p = [{am}, {Bm}]
we write

(10.4) A:Cn | 1) = [ antz) bu(C, 2) dp.

Two decision functions x and » are said to be equivalent (cf. Sec. 1) if for each
m, each Cp, € D,, and each p € P, A p(m:Cp | p) = Ap(m:C, | »).
Let S, S&, - - - be an arbitrary sequence of subfields of S such that

(10.5) S < 8™, m=1,2 .

An {S{™}-measurable sampling rule, or terminal decision rule, or decision func-
tion is defined exactly as above with {S‘™} replaced by {S{™}. The relations
(10.5) imply that an {S§™}-measurable sampling rule (terminal decision rule)
[decision function] is also an {S“™ }-measurable sampling rule (terminal decision
rule) [decision function]. It is not assumed that S{™ C S§™* for each m. In
consequence, if {am} is an {S{™}-measurable sampling rule and {ad) and {85}
are the corresponding sequences defined by (10.2), then ag and 85, are S™-
measurable but not necessarily S¢™-measurable functions.

DerintrioN 10.1. {S§™} is a sufficient sequence if S§™
measures P on ™, m = 1,2, --- .

is sufficient for the
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™ is necessary for the

DeriniTioN 10.2. {S§™} is a necessary sequence if S
measures P on 8™, m = 1,2, --- .

TueoreMm 10.1. If {S§™} is a sufficient sequence, then corresponding to each
{S"™}-measurable decision function u = [{am}, {bm}] there exists an {S§™}-
measurable terminal decision rule {bo} such that v = [{an}, {bn}] is equivalent to u.

Proor. Given u = [{@n}, {bn}], it follows from Theorem 5.1 that for each m
there exists ¢m(Cwm , x) such that ¢, is a finite measure on D,, for each z and

an S{™-measurable function for each C,, , and such that
(10.6) om(Cm , 7) = Ep(an(@)-bn(Cm, 2) | ST) [S, p]
for each C,, ¢ D, and p ¢ P. For each m, C., and z define

(10.7) om(Cm , ) = {%’(CM > D)/ en(Dm , 2) fon(Dm,2) >0,
Tm(Cm) otherwise,
where 7, is an arbitrary probability measure on D,, . Then {bs} is an {S{™}-
measurable terminal decision rule. We shall show that » = [{a,}, {bm}] is equiva-
lent to the given u.

Choose and fix arbitrary m, C., ¢ D,, and p ¢ P. We have

Ap(m:Cn | ¥) = fx an(@) -B%(Cr , 7) dp by (10.4),

= f E (an(@) | S§™)-bp(Cm, z) dp by Lemmas 4.6 and 4.1,
x -

’ - fx om(Dn , @) bY(Con , 7) dp by (10.6) with C, = D,
= ‘/; &m(Cm , ) dp by (10.7),
- [x Ey(om(®) -bu(Cn , 2) | S™) dp by (10.6),
= /; (@) bp(Cr , x) dp. by Lemma 4.1,
= A (m:Ch | 1) by (10.4).

This completes the proof. .
DerinrrioN 10.3. {S{™} is a transitive sequence if for each m, each B ¢
S§™*V, and each p ¢ P

(10.8) Ey(xs(@) | 8™) = Ey(xa(x) | St™) [S, pl.

TrreoreM 10.2. If {S$™} is a sufficient and transitive sequence, then correspond-
ing to each {S§™ }-measurable decision function, there exists an equivalent {S§™}-
measurable decision function.

Proor. Let there be given an {S“}-measurable decision function p =

[{@m}, {bm}]. From the sufficiency of {S§{™} it follows by Theorem 10.1 that
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there exists an {S§™ }-measurable terminal decision rule {b} such that » =
[{ m)s {b }] is equivalent to u. It follows from the sufficiency and transitivity

of {S¢™}, by Theorem 11.4 of the following section, that there exists an {S§™}-
measurable sampling rule {an} such that for each m and peP,

Ey(an(@) | Si) = Ey(an(z) | SI) IS, pl.

Since {bm} is {S§™ }-measurable, it follows easily from (10.4) and the last stated
relations by means of Lemmas 4.1 and 4.6 that v, = [{am}, {bn}] is equivalent
to ». Hence » is equivalent to u. Since u is arbitrary, the theorem follows.

It will be shown next that if the framework satisfies a certain structural con-
dition, then the requirement that {S{™} be transitive can be omitted from the
hypothesis of Theorem 10.2.

DeriniTiON 10.4. The framework is regular if there exists a sequence S,
SP, .., say, of subfields of S, S®, . - respectively, such that {S{™} is
necessary, sufficient, and transitive.

A necessary and sufﬁcient sequence, if it exists, is essentially unique. Conse-
quently, the framework is regular if and only if there exist sequences which are
necessary and sufficient, and each such sequence is transitive.

TueoreM 10.3. Suppose that the framework is regular. If {S$™} is a sufficient
sequencé, then corresponding to each {S‘™}-measurable decision Junction, there
exists an equivalent { S§™ }-measurable decision function.

Proor. Let u be an {S*™}-measurable decision function, and let {S{™} be a
necessary, sufficient, and transitive sequence. It follows from Theorem 10.2 that
there exists an {S{™}-measurable decision function, say v4, which is equivalent
to u. Since {S{™} is necessary and {S{™} is sufficient, we have S{ < S{™
[S, P] for each m, and it follows from Lemma 7.1 that there exists an {S{™}-
measurable decision function » which is equivalent to »s«. Clearly, » is equivalent
to u. Since u is arbitrary, the theorem follows.

Remarks. (i) Apart from Theorem 10.3, the notion of regularity is of interest
because if the framework is regular, there exists a sufficient and transitive
sequence which is minimal not only in the class of sufficient and transitive
sequences but also in the class of sufficient sequences; consequently, it affords
the best possible reductions of the given decision problem by means of each of
the theorems of this section. This sequence is, of course, any necessary and
sufficient sequence.

(i) If {S§™} is sufficient but not transitive, and the framework is not regular,
then the conclusion of Theorems 10.2 and 10.3 is not necessarily valid. This is
shown by Example 9.6. Neither of these two theorems contains the other; there
are cases where Theorem 10.2 applies but not Theorem 10.3, and conversely
(cf. Sec. 9).

11. Characterizations of sufficiency and transitivity. Regularity.

{ (m)

TueoreM 11.1. {So™} is transitive if and only if for each m, A ¢ 8™, and

peP
(AL1)  Ey(xa(@) | S™P) = Ep(By(xal®) | SS™) | S5™*) IS, pl.
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The corresponding result for a sequence of statistics (see Sec. 8) is: *“{T',,}
is a transitive sequence if and only if for each m, each p, and each event A de-
pending only on x;, x;, -+ and ., the conditional probability of A given
Ym+1 equals the conditional expectation given ym..: of the conditional proba-
bility of A given y,, .”

Proor. Consider a fixed m and a fixed p in P. Let A be an S™-measurable
set and B an S§™"-measurable set. Then, by using Lemmas 4.1 and 4.6 we have

[ Bo6a@) 15 dp = [ xu@)x00) dp

(11.2)
= [ Bya@ | $§) dp,
[ Baxata) | 857 dp = jx By(xa(@) | 8§ Ep(xa(@) | S¢) dp
(11.3) - f By(xa() | S) dp
= [ BB,6u@ | S5) | $¢) dp.
Hence
(11.4) [ B 157 ap = [ B,6u) | 85) dp

if and only if

115 [ Bl | S dp = [ BuBxaa) | S5 | S570) dp.

Since the integrands in (11.4) are S™-measurable functions [cf. (10.5)], while
those in (11.5) are S§™™-measurable, it follows easily from the equivalence of
(11.4) and (11.5) that (10.8) holds for each B ¢ S{™*" if and only if (11.1) holds
for each 4 ¢ S™. Since in this argument m and p are arbitrary, Theorem 11.1
is proved.

If, in the argument following (11.3), we replace the last members of (11.2)
and (11.3) by the respective second members, we obtain instead of Theorem
11.1 the following intermediate result, pointed out to the author by L. J. Savage.

TueoreM 11.2. {S§™) is transitive if and only if for each m, A e S™, B¢
S™ and p e P

(11.6) ]I;XA(x)'XB(x) dp = fXEp(xA(x) | S6™) - By(xs(x) | Si™) dp.

It can be seen from the corresponding result for a sequence of statistics that
the condition that {7',.} be transitive is a weakening of the following condition:
“Given Ym , T(m and ym4 are conditionally independently distributed (p & P;
m=1,2 --.).”
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We record here for later reference the facts that if {S{™} is transitive, then
for each p ¢ P

(11.7) E,(g(z) | S™) = E,(g(z) | S§™) [S, p]
for every S{™*"-P-integrable function ¢, and
(11.8) Ey(fx) | S™*) = Ey(E,(f@) | S§™) | S§™) [8, p]

for every S -P-integrable f, form = 1,2 ... . This follows from Definition
10.3 and Theorem 11.1 by an obvious argument (cf. Theorem 5.1).

For each m, let P{™ be the set of all probability measures ¢ on S of the form
dq = g(x) dp, where p is a member of P and g is a nonnegative S§™*”-measurable
function. Since g = 1 is certainly S{™ " -measurable, it is clear that

(11.9) P ¢ P{™, m=12 .

TuroreM 11.3. {S§™} is sufficient and transitive if and only if S§™ is sufficient
for the measures P§™ on 8™, m = 1,2, --- .

A heuristic description of the corresponding result for a sequence of statistics
is: “{Tn} is a sufficient and transitive sequence if and only if, for each m, 7,
is a sufficient statistic for the set of conditional distributions (corresponding
to pin P and Ym1 in Y1) of T(my given ypmiy .’

Proor. Suppose first that {S§™} is sufficient and transitive. Consider a
fixed m, and let A be an S“-measurable set. By hypothesis and Theorem 5.1
there exists an S¢™-P-integrable function, f say, such that

(11.10) f@) = Ey(xa(x) | S§™) [S, p] for each p ¢ P.

Let ¢ be a member of P{™, say dg = g(z) dp, and let C be an S{™-measurable
set. Then

24n0) = [ xu@) xolo) dg,
- [ @ x@ 9@ dp,
= [ @ x@ Byo(@) | S dp,
= [ 4@ xo@) B, (ga) | S5 dp, by (11.7),
= [ @ Eao@) -4 | 67 a,
- /X By(xa(a) | S§™)By(xe() -g(e) | S§) dp,
= [ 1@) By e@) 962 | S dp, by (11.10),

- / 1) x0(@) -g(x) dp = f f(z) dg,
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(m)
0

using Lemmas 4.1 and 4.6. Hence, since C ¢ S and ¢ are arbitrary, and f is

S{™-measurable,

(11.11) f@) = Ey(xa@) | S§™) [S, q] for each g e P§™.

Since m and 4 & S™ are arbitrary, we conclude from (11.11) that the condition

in question is satisfied.

Suppose now that the condition is satisfied. It then follows immediately from
(11.9) that {S§™} is a sufficient sequence, and it remains to show that it is
transitive. Consider a fixed m and an S‘-measurable set 4, as before. By
hypothesis, there exists an S{™-measurable function, f say, such that (11.11)
holds. We observe that (11.9) and (11.11) imply (11.10). Now let p be a member
of P and B an S{"*"-measurable set with p(B) > 0, and let dg = cxs(z) dp,
where ¢ = 1/p(B). Then, using Lemmas 4.1 and 4.6,

c fx X4 (@) -xs() dp = fx xa(z) dg,
= [ Buxa@) | 8 da,
- fx (@) dg, by (11.11),
=c fx f(x) -xs(z) dp,
= ¢ [ 1) Eyu(o) | $) dp,

—¢ j; B, (xa(@) | S&)-Ep(xa(@) | S§) dp, by (11.10)

Since ¢ = 0, it follows that (11.6) holds. We have therefore shown that (11.6)
holds for each m, p ¢ P, A ¢ S™, and B ¢ S with p(B) > 0. Since (11.6)
certainly holds with both sides equal to zero if p(B) = 0, the condition of Theo-
rem 11.2 is satisfied, and hence {S{™} is transitive. This completes the proof of
Theorem 11.3.

THEOREM 11.4. {S$™} is sufficient and transitive if and only if corresponding to
each {S™ }-measurable sampling rule {an} there exists an {S{™}-measurable
sampling rule {am) such that

(11.12) Ep(an(@) | S™) = Ey(am(x) | Si™) [S, ]

for each m and each p in P.

The corresponding result for a sequence of statistics reads: “{T,} is a suf-
ficient and transitive sequence if and only if corresponding to each sampling
rule there exists a sampling rule based on {T.} such that, for each m and p,
the conditional probability of the event “n = m’ given y,, is the same for the
two rules.” :
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Proor. Suppose first that the condition is satisfied. Let k be a fixed positive

integer and A4 a fixed S*”-measurable set, and define a,, = 0 for m < k, = xa
form = k, and = 1 for m > k. Then by (10.2)
0, m < k,m>k+ 1,
(11.13) an(r) = <xa(x), m =k,
1 — xa(x), m =k + 1.

By hypothesis, there exists an {S§™}-measurable rule {ay} such that (11.12)

is satisfied. Since each am is a nonnegative function, it follows from (11.12) and
(11.13) that

(11.14) am(z) = 0, m<km>k+1[S, Pl
It follows from the definition (10.2) of {om)} and (11.14) that
(11.15) ar(x) = ax(z) [S, P.

Since ap is an S¢”-measurable function, it follows from (11.12) and (11.13),
both with m = k, and from (11.15) that

(11.16) E,(xa(x) | S&°) = ai(z) [S, p] for each p ¢ P.

We observe next that for each p in P

0

> f am(x) dp = Zf an(x) dp, by (11.12) and Lemma 4.1.
X 1 X

[ (i a,,.<x>> dap,

=1, by (11.13)

I

so that {am} is closed. It follows hence from (11.14) that

(11.17) app(x) = 1 — ai(z) [S, P.

It follows from (11.12) with m = k + 1, from (11.13) with m = k 4+ 1, and
from (11.15), (11.16), and (11.17) that for

(11.18)  E,(xa(z) | S&) = Ey(By(xa(x) | S°) | 8¢*) [S, p] each p ¢ P.

Since & and 4 ¢ S¥ are arbitrary, we conclude from (11.16) that {S§™} is a

sufficient sequence, and from (11.18) and Theorem 11.1 that {S§™} is transitive.
Now suppose that {S¢™} is sufficient and transitive, and let there be given an

{S‘™}-measurable rule {a,}. For each m, let fi(z) and f.(z) be nonnegative

S§™-measurable functions with 0 < fi < f., such that for each p in P

(11.19) fm(@) = Eplan(x) | SS™) [S, p]
(11.20) Fu(®) = Ey(Bnx) | SS™) 1S, pl.
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Since 0 £ am < Bn =< 1 by (10.2), the existence of the functions fi and f, is

assured by Theorem 5.1 and Lemma 4.3. Define form = 1,2, - --
(11.21) () = {fﬁ(w)/fm(x), Fulz) > 0,

1 (say), otherwise.

Then {an} is an {S§™}-measurable rule. We shall show that the definition
(11.19), (11.20), (11.21) of {am}, together with the transitivity of {S¢™}, im-
plies that (11.12) is satisfied by {aw} and the given {a.}. It will be shown inci-
dentally that

(11.22) Ey(8n(2) | S) = Ep(Bn(@) | ™) [S, p]

for each m and each p in P.

Consider the following propositions:

(1) (11.22) is satisfied for m = 1 and each p in P;

(ii) if (11.22) is satisfied for m and p then (11.12) is satisfied for the same
mand p, withm = 1,2, --- and p ¢ P;

(iti) if (11.12) and (11.22) are satisfied for m and p, then (11.12) and (11.22)
are satisfied for m + 1 and p, withm = 1,2, --- and p ¢ P.

Clearly, it will be sufficient to establish (i), (ii) and (iii). Since 8, = 1 = 8}
by (10.2), (i) is obviously valid, and it remains to establish (ii) and (iii). We
consider arbitrary but fixed m and p.

Suppose that (11.22) is satisfied for m and p. Then, except on an S-p-null set,

Ey(an(@) | Si™) = Ey(an(x)-Bu(x) | S§™) by (10.3),
= an(z)-E,(Bn(x) | S¢™) by Lemma 4.6,
= am() - Ep(Bn(x) | S5™) by (11.22),
= an(@) fn(2) by (11.20),
= fu(@) by (11.21),
= Ey(an(z) | S"™) by (11.19),

so that (11.12) holds. This establishes (ii).
Suppose now that (11.12) and (11.22) are satisfied for m and p. Then, except
on an S-p-null set,

Ep(Brni1(@) | ST™)

= E,(Bn(@) | ST™*) — Eplan(z) |S5") by (10.3),
= By(By(Bue) | S§™) | S7"*) — Ey(By(an(@) | S5) | ST")
by (11.8),

= Hy(By(Bu(@) | ) | S5"1) — By(Byplan(x) | ) [ $")

by (11.12), (11.22),
Ep(Bn(x) | S¢"*") — Eplam(x) | S5™) by (11.8),
E,(Bns1(zx) | S5 by (10.3).

Il
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Thus (11.22) is satisfied for m + 1 and p. It now follows from (ii) that (11.12)
is also satisfied for m + 1 and p, and (iii) is established. This completes the
proof of Theorem 11.4.

The preceding proof shows that Theorem 11.4 remains valid when all sampling
rules are understood to be closed. This, together with the remark following the
statement of the theorem, implies Theorem 8.2.

In the following, for any two subfields S; and S, , we denote by S; * S, the
field generated by the class of all sets 4; n 4, with 4; ¢ Sy and 4, ¢ S, . It is
easy to verify that S; # S, is the smallest field containing S; and S, .

Lemma 11.1. Let Sy, SY, S:, and S3 be subfields of S such that Si C S,
and S? is sufficient for the measures P on S;,7 = 1,2. If Ay e S1and 4, € S,
tmplies p(A1 n Ay) = p(AL)-p(Ay) for each p in P, then Si x S5 is sufficient
for the measures P on S; * S, .

The corresponding result for statistics is: “If x and y are the outcomes of
independent experiments, and 7'(x) is sufficient for the distributions of z while
U(y) is sufficient for the distributions of y, then V(z, y) = [T(z), U(y)] is suf-
ficient for the joint distributions of x and y.”” The proof of Lemma 11.1 consists
in verifying that the class of (S; * S;)-measurable sets A4, such that the con-
ditional probability function of 4 given S; * S; and p is the same for each p
in P, is a field. Then it is verified that this class contains all sets 4; n 4, with
A; e S;fori = 1, 2 and therefore coincides with S; * S; . We omit these verifica-
tions.

The next and final theorem of this section gives a sufficient condition for
regularity.

TueoreM 11.5. Suppose that (a) P is dominated on S™ (m = 1,2, ---),
and that there exists a sequence S*, S°, -+ - of subfields of S such that (b) S® =
S while S = 8™ « " form = 1,2, -, and (c) A ¢ 8™ and B ¢ S™
tmplies p(A nB) = p(4)-p(B), (peP;m = 1,2, ---). Then the framework is
regular.

Proor. It follows from (a) by the results of Section 6 that there exists a
necessary and sufficient sequence, say {S%”}. We have to show that {S¥} is
transitive (cf. Definition 10.4).

Consider a fixed m. Since S$” is sufficient for the measures P on S("'), and
S™* is trivially sufficient for the measures P on itself, it follows from (b) and
(c) by Lemma 11.1 that S§” % ™" is sufficient for the measures P on S™*,
Hence, 4

(11.23) SE < 8¢« S™H[S, P).

Now consider a fixed p in P. It follows from (¢) that for any B ¢ S™*' and
any field S{™ < S™ we have

(11.24) E,(xs(x) | 8§™) = p(B) S, pl.



SUFFICIENCY 461

Let C = A n B, with 4 ¢ S” and B ¢ S™*'. Then, except on an S-p-null set,
Ey(xe(@) | S™) = Bplxa(®) xs(x) | ™)

x4(%) Ep(xs(x) | S™) by Lemma 4.6,

x4(x)-p(B) by (11.24),

x4(@) - Ep(xa(x) | SE”) by (11.24),

= E,(xa(@) xs(z) | S¥) by Lemma, 4.6,

= Ep(xe(@) | ).

Thus the definition of C implies
(11.25) Ey(xe(@) | S™) = By(xe(@) | S2°) IS, pl.

Since, as is easily seen, the class of all sets C ¢ S for which (11.25) holds is a
field, we conclude that C ¢ S§” » S™ implies (11.25). It now follows from
(11.23) that C ¢ S¥*™ implies (11.25). Since m and p are arbitrary, {S{} is a
transitive sequence. This completes the proof.

The following is a statement of Theorem 11.5 in the terminology of Section 8:
“Suppose that, for each m, each of the possible distributions of z(n.) admits a
probability density function with respect to a fixed o-finite measure A¢my [con-
dition (a)], and that for each p in P, z;, x2, - -+ is a sequence of independent
chance variables [conditions (b) and (¢)]. Let Th, T2, --- be a sequence of
statistics on X (1) , X(2) , - - - respectively. If {T',,} is a sufficient sequence, then
for each m there exists a field Ty of subsets of the range of T, such that T,
is a measurable transformation of (X (m, Sm) into (Y., Ta), and such that
with each T regarded as this measurable transformation, the sequence {7} is,
in effect, necessary, sufficient and transitive.” We are unable to state the con-
clusion of the theorem entirely in terms of a sequence of statistics because the
exact relations between statistics and subfields are not known at present.

Any framework in which P consists of only one measure is regular. Conse-
quently, the condition of Theorem 11.5 is not necessary for regularity. On the
other hand, Example 9.5 shows that not every framework is regular.

12. Concluding Remark. It is instructive to verify in detail that the results
concerning statistics and measurable transformations which are described in-
formally in Sections 1, 8 and 11 do follow from the theorems concerning sub-
fields given in the formal exposition. ,
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