STOCHASTIC COMPARISON OF TESTS
By R. R. BAHADUR

Indian Statistical Institute, Calcutia

1. Introduction. It is shown in [1], in a special case, that the study (as random
variables) of the levels attained when two alternative tests of the same hypothesis
are applied to given data affords a method of comparing the performances of the
tests in large samples. It is the object of the present paper to show that this
method, which may be called stochastic comparison, is quite generally applicable.
It is shown here, in particular, that in a given statistical context there is usually
a wide class of tests such that, if test 1 and test 2 are in the class, the asymptotic
efficiency of 1 relative to 2 is well defined and readily calculable. The argument
is stated and discussed in general terms in Sections 2, 3 and 4, and illustrative
examples are given in Section 5. The examples include comparison of the Wald-
Wolfowitz test and the Smirnov test for two samples, and of the Kruskal-Wallis
test and the F test for k samples.

2. Standard sequences. Consider an abstract sample space S of points s, and
suppose that s is distributed in S according to some one of a given set {Ps} of
probability measures Py , where 6 is an abstract parameter taking values in a set
Q. Let Qo be a subset of 2, and let H denote the hypothesis that 8 ¢ Qo .

Let » be an index that takes the values 1, 2, 3, - - - . For each n, let T, be a real
valued statistic defined on S. We shall say that {7} is a standard sequence (for
testing H) if the following three conditions are satisfied.

1. There exists a continuous probability distribution function F such that, for
each 6 & Qq,

(1) lim Po(T, < ) = F(z) forevery =z.

n-»0

II. There exists a constant a, 0 < a < «, such that
2
(2) log [1 — F()] = —‘%”[1 +o(1)] as z— w.

III. There exists a function b on @ — @, with 0 < b < «, such that, for
each e Q — Q,

3) lim P, (

n-—>00

%_b(o)l >x>=0 for every z > 0.

The following is a typical example of a standard sequence. Let S be the set
of all sequences s = (21, 2, - - - ad inf) with real coordinates z, , let Q be a set
of distribution functions 6(z) on the real line such that u(8) = [Z,xd6 = 0
and [, 2" d6 < o, and let Py denote the product measure 6 X 6 X --- on &S.
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Let H be the hypothesis that u = 0. For each n, let T', be the ¢ statistic based
on the first n co-ordinates of s. Then I is satisfied with

F = fz (27)F exp (—2%/2) da;

this F satisfies IT with @ = 1 (cf. para. 1 in Section 5); and III is satisfied with
b(8) = u(6)/a(6), where ¢* = [2, (z — p)’d6. In this example the index n
denotes the sample size, and n has essentially the same role in other examples.

Returning to the general case, suppose that {7’} is a standard sequence. Then
T, has the asymptotic distribution F if H obtains, but otherwise T, — o« in
probability. Consequently, large values of T, are significant when T', is regarded
as a test statistic for H. Accordingly, for any given s, we define 1 — F(T.(s))
to be the level attained by T, in the given case (n = 1,2, ---).

In general, 1 — F(T,(s)) is only an approximate level, i.e. for given n and s,
it does not equal the probability of 7', being as large or larger than T',(s) when
H obtains. However, the study of such levels seems legitimate and useful. In
numerous cases of interest, in practice only approximate levels are used; perhaps
because the exact null distribution of T, is not tabulated and too difficult to
compute, or because n is so large that it is believed unnecessary to refer to the
exact distribution, or even because the “‘exact level attained by T.” does not
exist, i.e. for the given n the distribution of T, varies with 6 as 6 varies over
Qo . Even in the cases where exact levels exist and are used (or at least in prin-
ciple could be used) for every n, one hopes that conclusions based on comparisons
of approximate levels would provide at least an indication of what to expect in
comparisons of exact levels. At present exact levels can be compared in only a
few cases, e.g. the cases discussed in [1], because sufficiently precise estimates of
the relevant tail probabilities are not available. This point is discussed further in
remarks 8 and 10 of Section 4.

Now let us regard the level attained by 7' in a given case as a random variable
defined on S. It is convenient to describe the behaviour of this random variable
as n — o in terms of K, , where

(4) K.(s) = —2log [1 — F(Tx(s))].
Then, for each 6 in Qo ,
(5) lim Po(K, <v) = Pr(xs <v) =1— e forevery v >0,

where x5 denotes a chi-square variable with 2 degrees of freedom. Again, with
0 for 6¢ Qo

(6) o(6) = )
alb(8)]* for 60eQ —

we have that, for any given 6 in Q,

(7) K.,/n = ¢+ e

where €,(s, ) — 0 in probability as n — .



278 R. R. BAHADUR

To prove the propositions just stated, first consider a 6 in Q, . Let y and z be
given constants, 0 < y < z < 1. Since F is a continuous distribution function,
there exist numbers @ and b such that F(a) = 2 — y, F(b) = 2 Let 4, =
{s:T, < @}, B, = {s:F(T,) <z2},and C, = {s:T, < b}. Then 4, < B, < C,
for every n, and hence z — y =< lim inf Py(B,) =< lim sup Ps(B.) < z by (1).
Since y and z are arbitrary, we have lim Ps(B,) = z for all zin (0, 1). (5) now
follows from (4), and it follows from (5) that (7) is satisfied with ¢ = 0.

Now consider a 6 in @ — Q. For any z, let f(z) be the 0(1) term on the right
side of (2), —1 = f £ . It then follows from (4) that K,/n is identical with
o(T5/n)[1 + f(T,)]. It is plain from this identity and (2), (3), and (6) that (7)
is satisfied, and this completes the proof.

In view of (7) we shall call ¢(8) the asymptotic slope of the tests based on
{T,.} (or simply the slope of {T,}) when 6 obtains.

The sequence {7',} will be said to be strongly consistent if condition IIT is satis-
fied with (3) replaced by )

(8) Py (lim T,./nt = b(6)) = 1,

and if (8) also holds with b = 0 for each 6 in Q. It is readily seen that if {7}
is strongly consistent the €, in (7) — 0 with probability one.

In concluding this section it may be worthwhile to note that the statistic K
is equivalent to T, in the following technical sense: (i) {K%} is a standard sequence,
(ii) for each 6 in Q, the slope of {K%} equals that of {7}, and (iii) for any given
n and s, the level attained by K2, equals the level attained by 7', . Since the level
attained by K%, is found by referring K% to the upper tail of a fixed distribution
independent of F, {K*} is (so to speak) a normalised version of {T,}. The nor-
malised version of {K%} is {K%} itself.

3. Comparison of standard sequences. Suppose now that
{T:tl)} = {Tfl): T2(1)7 o } and {Tg)} = {Tﬁz): T2(2)7 o }

are two standard sequences defined on 8, and let F*(z), a;, and b,(6) be the
functions and constants prescribed by conditions I, II, and III for sequence z,
(¢ = 1, 2). Consider an arbitrary but fixed 6 in @ — Q, and suppose that s is
distributed according to Py . It is argued in this section that

(9) e12(0) = c1(6)/ex(8)

then serves as the asymptotic efficiency of sequence 1 relative to sequence 2,
where ¢; = a;b? is the slope of sequence %, ¢ = 1, 2.

First consider the comparison of attained levels for a given sample size n. In
a given instance, i.e. for a given s in S, it would be fair to say that the test based
on T is less successful than that based on T3 if the level attained by TS ex-
ceeds the level attained by TP ie., if K < K, where the K, are defined by
(4), (¢, = 1, 2). Since { T’} and { TP} are standard sequences, it follows from
(7) and (9) that

(10) Kgl)/KE?) — @12
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in probability as n — . Consequently, with probability tending to one, TS is
less successful than T if ¢ < 1 and more successful if ¢ > 1. If ¢ = 1, the
two tests are equally successful up to terms of the order considered here.

To compare the sample sizes required to attain the same level, for each ¢ let

m?, ms?, -, m, -+ be a sequence of positive integers such that

(11) limm® = « (i =1,2).
For simplicity in notation, let K (s) be written as K®(n, s) and T (s) as
T (n, s). We may then say that m and m? are asymptotically equivalent

sample sizes for sequences 1 and 2 respectively if
(12) K®(m?, s)/K®(m, s) — 1

in probability as r — . In view of the argument of the preceding paragraph,
the defining condition (12) means that, with probability tending to 1 asr — o,
T®(m®) and T® (m;?) are equally successful test statistics up to terms of the
order considered here. Now, since (11) is satisfied, we can apply (7) to K“(n)
with 7 restricted to the sequence {m.”}, (z = 1, 2). This application shows that

m® and m® are asymptotically equivalent sample sizes if and only if

(13) lim {m$®/m"} = ¢1s.

e

It should perhaps be noted here that asymptotically equivalent sample sizes
always exist, e.g. m® = r and m® = the integral part of ro + 1.

Now let us consider the case when both the sequences being compared are
strongly consistent. It is plain that in this case (10) is valid as a pointwise limit
for almost all s in S. Similarly, (11) and (13) suffice for the validity of (12) as
a pointwise limit for almost all s, but in the present case a considerably stronger
interpretation of ¢ can also be given, as follows. For any positive real number v,
and for any sin S, let N;(v, s) denote ‘‘the sample size required in order that K .
attains the value ».”” N; is not well defined, but surely N; < N; < N{, where
N7 = the least n such that K}y = » and N7 = o if no such n exists, and
Nt = the least m such that K,” > v for alln = m, and N¥ = « if no such m
exists. Now define R™(v, s) = Nz/NT and R* (v, s) = N3/N7, with the conven-
tion that © /o« = 1 (say). Then, except for a set of points s of Ps measure zero,
we have
(14) imR™ = limR* = ¢1,.

00 V-0

To establish (14), choose and fix an s for which
(15) K /n — ¢ asn— o (7 =1,2).

Since the set of all such points s has probability one, it will suffice to establish
(14) for the chosen s. It is clear from (15) that 0 < K (¥ < o for all sufficiently
large n, and that K — o asn — ». Consequently, 1 £ Ny £ N¥ < o« for
all sufficiently large », and N7 — « asv — . We observe next that K“(N7) <
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v < K(N7 + 1), KP(NT — 1) £ v < K?(N?T) provided only that 2 <
N?¥ < . It follows from these relations by application of (15) that

(16) eNi/v—1, eNfv—1 (i1=1,2)
as v — . It follows from (16), as desired, that (14) is satisfied.

4, Discussion. The following remarks are by way of discussion of the preceding
two sections.

1. The notion of a standard sequence is by no means essential to stochastic
comparison. Suppose for example that {75’} satisfies condition I with F* and
condition III with b;, (¢ = 1 and 2), that F¥ = F® = F, and that the common
limiting distribution function F is strictly increasing. For each s and n, let L
be the level attained by TS’. Then L’ < L& if and only if T < TS,
(5,7 = 1, 2). It follows, exactly as in Section 3, that bi/b; serves as the asymp-
totic efficiency of sequence 1 relative to sequence 2. In particular, when a given
non-null 6 obtains, sequence 1 is asymptotically inferior to, or equivalent to, or
superior to sequence 2 according as b3(8) <, or =, or > b3(6).

This last criterion was suggested by Anderson and Goodman ([2], pp. 108-109)
in the context of chi-square and likelihood ratio tests of certain contingency
tables. Their suggestion seems to be the first explicit reference to stochastic com-
parison in the literature.

2. Suppose that in Sections 2 and 3 the index = is restricted to a subset of the
positive integers. It is easily seen that the various definitions and conclusions
remain valid in this case, except possibly for (14). However, the proof of (14)
goes through if the following condition is satisfied: with 53 < 72 < - the se-
quence of values of n, j,/j,41 — 1 as r — . This condition also ensures the
existence of asymptotically equivalent sample sizes in the sense of (13).

3. In the paragraph preceding (14) in Section 3, the random variables R~ and
R* are well defined even if neither of the two standard sequences is strongly con-
sistent. It would be interesting to know whether (14) holds in this case with the
almost everywhere limits replaced by limits in probability.

4. Suppose that it is desired to make an asymptotic comparison of two se-
quences of tests, which happen to be based on standard sequences of real valued
statistics. The verification that this last is the case, and the determination of the
respective asymptotic slopes, requires little knowledge of the exact distributions
of the individual members of each sequence of statistics. Consequently, the
method of this paper is much more readily applicable than comparisons based
explicitly on power functions (cf., e.g., [3], [4], [5], [6], [7]), since the latter com-
parisons necessarily require detailed knowledge of the exact distributions of in-
dividual statistics at least in the non-null case. This remark is supported by the
examples given in the following section.

5. Although stochastic comparison as formulated in Sections 2 and 3 makes no
reference to power function considerations, there is a formal connéection between
the asymptotic slope of a standard sequence and the asymptotic power of the
corresponding sequence of tests. This connection is discussed in the appendices
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to this paper. It is pointed out in Appendix 1 that ¢ can be regarded asthe asymp-
totic relative efficiency when the power is held fixed (or at least bounded away
from 0 and 1) and the resulting test sizes are compared. This fact (cf. also the
last sentence of remark 6 below) is stated here not so much as a justification of
stochastic comparison as a comment on the numerical value of ¢.

6. Suppose that Q is a metric space, and that @ — Q is dense in . Let {T5"}
and {T$} be standard sequences, and let ¢;,5(6) be defined by (9). Suppose that,
for each 6 in Qo , ¢1,2 has a limit as § — 6 through values in @ — Q,, and call
this limit \l/l 2 ( 00) .

Limiting efficiency functions such as ¢ have a special role in any asymptotic
theory of comparison, for the following reason: if the experimentation is under-
taken mainly for the purpose of testing H, large sample sizes will in practice
occur in the non-null case only if 6 is in the neighbourhood of some point in Q.
It is therefore of some interest that alternative methods of asymptotic compari-
son often lead to the same limiting efficiency function. In particular, as is shown
in Appendix 2, it is quite generally true that the limiting efficiency ¢ derived in
the preceding paragraph coincides with ‘Pitman’s efficiency function in cases
where Pitman’s theory is also applicable.

7. Given a parameter space @ of points 6 and a hypothesis H concerning the
value of 6, suppose that {T%"} is a standard sequence (for testing H) defined on
a sample space S of points s¥, ¢ = 1, 2. Let 8§ = 8 X 8® be the set of all
pairs s = (s®, s®), and for each 6 in © let Py be any probability measure on S
which is consistent with the marginal distributions of the 5'”. Then both sequences
{T,} are standard sequences defined on S, and the arguments of Section 3 apply
verbatim.

In other words, stochastic comparison can be applied even in cases where the
two sequences are not defined on the same sample space to begin with, e.g., if
S and 8® are the spaces of alternative experiments. It follows, in particular,
that if {T;i)} is a natural or optimum sequence on S then ¢, s is, in a sense, the
asymptotic efficiency of experiment 1 relative to that of experiment 2. This ap-
plication is discussed in more detail in [8]. In this application, the limiting
efficiency ¢, corresponds to the relative “amount of information per observa-
tion” in the theory of estimation.

8. The formulation of Section 2 can be generalised so as to include the case
when for each n the level attained by the statistic T, is defined in terms of a dis-
tribution function depending on n. One such generalisation is the following. Let
{T.} be a sequence of real valued statistics such that conditions I and III are
satisfied. For each n, let F,(x) be a distribution function, to be thought of as the
null distribution function of T, , such that the following condition IT* is satisfied:

IT*. (i) lim,e Fo(z) = F(x), and (ii) there exists a function f on (0, =)
into (0, ) such that, for any given sequence {u,} of positive constants u,
such that lim,_. {u%/n} = 2, where 0 < z < =, we have

2n log [1 — Fa(ua)] = —f(2)[1 + o(1)] asn — o,
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For each s and n, let L,(T,) = 1 — F.(T,), and let K, = —2 log L.(T,). It
can then be shown that (5) and (7) continue to hold, with ¢ defined by

0 for 6eQ

(6% O =) for se—

The proofs, though not entirely trivial, are omitted.

In the special case when F satisfies condition II, and F, = F for each n, IT*
is also satisfied with f(z) = az, and the formula (6*) reduces to (6).

Let us say that {T,} is a standard sequence in the strict sense if there exists a
sequence {F,} such that P(T, < z|8) = F.(z) for each n, z, and 6 in Q, and
such that I, IT* and III are satisfied by {7} and {F,}. In this case ¢(8) defined
by (6*) serves as the exact slope of the tests based on {T,}, and this can be com-
pared with other slopes (exact or otherwise) as in Section 3. It is clear, however,
that determination of the exact slope (assuming that"it exists) is as difficult in
concrete cases as exact analyses based on power function considerations.

9. Fori = 1 and 2, let {T%"} be a sequence satisfying I, IT, IT* and III. Sup-
pose ¢12 is the efficiency function derived in Section 3, and ;. the limiting
efficiency function derived from ¢,2 . Let o12 be the efficiency function obtained
by comparison of the exact slopes, and y1, the limiting efficiency function derived
from ¢1s. In the examples available at present where the conditions of this
paragraph are satisfied, ¢y, differs from o1 at every non-null 6, but Y1, = Yis
at every null 6y . (cf. example 1 in Section 5). It is not difficult to formulate
general sufficient conditions in order that ¢y, = y1s, but perhaps it would be
more useful to discover and study further examples of sequences which possess
exact slopes.

10. In the examples of stochastic comparison given in the following section,
the level attained by a statistic 7', is defined as in Section 2. As was stated in
Section 2, this procedure is generally inexact. It is therefore of some importance
to consider whether it is really useful to compute ¢(8) = ¢i(0)/ca(8), and to
study ¢ as a function of 6, unless it is known that ¢; and ¢, are the exact slopes
of the sequences being compared. A categorical answer to this question should
await the study of further examples, and of certain theoretical problems. The
author’s opinion at present is that conclusions based on an inexact ¢ are neces-
sarily tentative, but that such conclusions may well prove useful, especially in
cases (e.g. examples 2 and 3 in Section 5) where no exact methods of comparison
are available at present. Some of the issues involved here are mentioned in the
following paragraphs.

The formal content of this paper is essentially descriptive. Given a standard
sequence (or more generally, a sequence satisfying I, IT* and III) a description
of the asymptotic behaviour of the sequence is given in Section 2, and it is pointed
out in Section 3 that two such descriptions admit a direct and intuitively plausi-
ble comparison. Consequently, whether or not ¢; and ¢; are exact slopes, ¢ = ¢1/¢e
is an exact relative efficiency in the sense that it is based on an accurate descrip-
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tion of what happens in the limit when the prescribed methods of computing
levels are used.

If the prescribed methods of computing levels are inexact, the plausibility and
usefulness of the present descriptions is diminished by the following considera-
tions. The usual inexact methods (e.g. referring a contingency table chi-square
to the chi-square distribution) are not intended for computation of very low
probabilities. Consequently, if a non-null 8 obtains, and # is sufficiently large,
the chances are that the prescribed methods will be abandoned, or at least that
the levels computed thereby will not be taken seriously. A related consideration
is that the inexact slope ¢ of a statistic T, can scarcely be said to describe the
actual performance of T, , since ¢ incorporates computational errors of unknown
magnitude and direction. Consequently, if in a given case ¢(68) = ¢i/e; = % (say),
it cannot be concluded that TS is really twice as efficient as TS, or even that
T is really more efficient than T',”, when 6 obtains, There are examples showing
that this objection to the comparison of inexact slopes is not purely hypothetical,
i.e., that the values of an inexact ¢ can indeed be misleading (cf., e.g., the last
part of example 2 in Section 5).

There is, however, some reason to think that the numerical value of an inexact
¢ can be very misleading only if 8 is far from €, . In particular, the limiting effi-
ciency ¢ derived from an inexact ¢ often coincides with the limiting efficiency
functions derived by exact methods of comparison (cf. remarks 6 and 9). It is
perhaps fair to say that such value as a given method of asymptotic comparison
may have stems mainly from the limiting efficiency function obtainable by that
method. If so, the comparison of inexact slopes affords, or at least promises, a
very short cut to the main conclusions of exact analyses.

5. Examples. It is convenient to note at the outset of this section that the
following distribution functions F satisfy condition II of Section 2: F®(z) =
? e (21) 7} exp [—1£] dt, with @ = 1; F®(z) = P(xx < ), where x; denotesa
chi-square variable with k d.f. (1 £ k < ), also with a = 1; and F®(z) =
1 — 22 720 (=) exp [—2/%7], with a = 4.
That F® satisfies (2) with a = 1 follows from ([9], p. 166). To treat F®, let
m be a positive integer such that 2m = k. For any > 0 we then have

2[1 — FP(z)] = P(a > z) < P(xx > @)
=1—F?%%) £ P(xen>2) = P(Z<Sm—1)

where Z is a Poisson variable with mean 1z’. It follows from the result for F“)
and from a direct calculation, respectively, that the lower and upper bounds for
1 — F® are both of the form exp [—2z’(1 + 0(1))]; hence 1 — F® is also of
the same form, i.e. (2) is satisfied with @ = 1. The verification in the case of
F® is straightforward from the definition of F*.

In the examples of stochastic comparison that follow, every sequence { T}
introduced in a particular context is a standard sequence in that context, and
the asymptotic null distribution is either F®, or F® (forsomek = 1,2, ---),
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or F*® Except possibly for sequence 1 in example 3 and sequence 3 in example 5,

each {T,} is strongly consistent. Throughout the remainder of this section

G denotes the standardized normal distribution function, ie. G(z) =
% (2r) 7 exp [—£/2] dt.

ExampLE 1. Let § = (&1, 2, - - - ad inf), where the z, are independent random
variables with each x, distributed according to G([x — u]/c), where u and ¢ > 0
are entirely unknown. Let § = (u, o), and let H be the hypothesis that u = 0.

For each n = 1, 2, --- let U, = the number of positive z;’s in the set
{@y, 22, -+, xa}, and let TP = |2U, — n|/n. Foreachn = 2,3, - - let T
denote the ¢ statistic based on {21, #2, -+, z.}. Then for any 6 = (g, o) with
p # 0, the efficiency of sequence 1 relative to sequence 2 is

(17) e12(0) = [2G(A) — 17/A° .where A = /o

This efficiency function is different from the ones derived in [1] by comparison
of exact levels, and also from the one derived in [7] by comparison of power func-
tions. However, we have ¢, 2(¢) = lim,_o¢12(k, ¢) = 2/7 for every o, and the
same is true of the other efficiency functions cited. It should be noted that ¢, »
is a decreasing function of | A |.

Now suppose that ¢ is known and for each n let T be Kolmogorov’s statistic,
ie. T® = (n)}sup, | K.(z) — G(x/c) | where K, denotes the distribution func-
tion with masses 1/7 at each of the points z;, 22, - -+, and z, . It follows from
Kolmogorov’s theorem, and the Glivenko-Cantelli theorem, that the asymptotic
slope of {T} is 46°, where 8 = sup. | G(z — A) — G(z) |. It follows hence that

(18) v2(0) = [2G(8/2) — 11'/(4/2)"

Since we always have @15 = ¢1,2/035, it follows from (17) and (18) that
¢1,3(0) < 1, that ¢13(¢c) = 1for all ¢, and that ¢;,5—0as | A| — .

ExampLe 2. Let s = (21, 23, - - - ad inf) where the z, are independently dis-
tributed according to G(z/s), where o is entirely unknown. H is the hypothesis
o= 1.

Let 7" be Kolmogorov’s statistic based on {z;, 2, - -+ , .} and let T =
| (2>t 2h)? — (2n)}|. It is then found that ¢4, = lime.; 12(c) = 1/(we)
12/100, but the function ¢y, need not be given here.

Next, let T¢¥ be the sequence obtained by normalizing the best estimate of
o ie. T® = | (201 2i— n)/(2n)}|. We then have

(19) e3(0) = 4/(1 + o)

That ¢, isnot =1 is due entirely to the fact that the common asymptotic distri-
bution function for sequences 2 and 3 (i.e. F® with k = 1) does not provide the
exact levels attained for a given n.

ExampLe 3. Let Fi(z) and Fz(x) be probability distribution functions on the
real line, such that dF; = f,(z) da where f; is a continuous function of z, except

possibly at a finite number of points, (j = 1, 2). Let s = (z{x); x(%)) where

1 1 . 2 2, . .
Tl = (), z8°, - -+ ad inf) and zit) = (2, z$?, - - - ad inf) areindependent

II-
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sequences of 1ndependent random variables, with x5 distributed according to

F;, (n =1,2, 37 =1,2). Let 6 = (F,, F,) and let H be the hypothesis
that Fi(z) = Fz(.’l)).

Let k and ! be given positive integers with k¥ < I, and write p = k/I, ¢ =

1 — p. Assume henceforth in this example that n is restricted to the set I, 21,

3l, --- . For each n, let m; = my(n) = np and my = ma(n) = ng.
For eachn, let s, = (2", 2, -+, 2o ; o, 8, -+, x,(,fz)). Let U, denote

the statistic of Stevens and Wald and Wolfowitz [10] when the datum is s, , i.e.
U. = the total number of runs of superseripts 1 or 2 when the » elements of s,
are arranged in ascending order. It follows from the results given in [10] that,
for any 6, U,/n converges in probability to 2pq[l — v], where

fl(x) - fz(x)]z
(20) = o) [ PACETTAC RS

This form of the consistency theorem of Wald and Wolfowitz is due to Pitman
[3]. Now let T = [u(n) — U.,]/o(n) where p and o* are the mean and variance
of U when H obtains. It then follows by referring to the results in [10] for the
null case that { T’} is a standard sequence, and that its slope is
(21) a(0) =+
where v is given by (20).

Next, let T be the statistic of Smirnov, i.e.

T = (npg)! sup. | K. (z) — K (2) |,

where K¢’ is the distribution function with masses 1/m; at each of the points

P xf,f ) (j = 1, 2). It follows from the theorem of Smirnov and the
Glivenko- Cantelh theorem that the slope of {T} is
(22) c2(0) = 4pgd’, where § = sup | Fi(z) — Fa(z) |

Consequently, the efficiency of the Wald-Wolfowitz test relative to the Smirnov
test is

(23) 012(0) = v'/4pgs”.

It isseen from (20) and (23) that if (fi — f2)?/min {f; , f2} is integrable, ¢ — 0
as p — 0 or 1, i.e. the relative efficiency of sequence 1 is very small if the two
sample sizes m,; , m, are very different. It is also seen from (20) and (22) that if
F; and F; are both members of a sufficiently smooth parametric family of distri-
bution functions, and if F; is close to Fy, then ¢ will again be nearly zero, for vy
will then be of the order of magnitude of &°. This is the case, for example, if
(a) F1 = G(z), Fs = G(z — A), and |4| is small, or if (b) F, = G(z), F. =
G(x/7), and o is nearly 1.

We observe next that regularity conditions are essential to the arguments of
the preceding paragraph. Thus if (¢) fi = 1 on (0, 1) and O elsewhere, and f; =
fi(x — A), we have ¢ = 1/(4pq) for all A. A different irregular case is (d)
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fi=1on (0, 1) and O elsewhere, and f, = 1 4 sin (2xkz) on (0, 1) and 0 else-
where, where k is a positive integer. In this case 8 = 1/(xk) and ¢ = k. A(p),
where ) is a positive constant independent of k. By taking k sufficiently large we
see that sequence 1 can be much more efficient than sequence 2 even though F,
is close to Fi in the sense that & is small.

Suppose for a moment that in case (d) it is required to discriminate between
Fy and F, (with a given large k) on the basis of a single observation z. It is then
clear that discriminant functions such as z or |z| are practically useless (because
4 is small) and also that, in comparison to the optimum criterion of Neyman and
Pearson, z and |z| are very inefficient (because f»(x)/fi(z) is far from mono-
tonic in z or |z|). We shall show that ¢ can be very large only in the rather
extreme cases where both these conditions are satisfied. More precisely, it will be
shown that in general

(24) ¢12(0) = (1/4pg) min {£, (8+/28)"
where 8 is the L, distance between f; and f; (0 < 84 < 2), and ¢ is essentially

the least upper bound to the number of times that the graph of y = fa(z)/fi(x)
crosses any line y = const.. It follows from (24), in particular, that if p = ¢ = }
and f»/f1 is monotonic then necessarily ¢ < 1.

To establish (24), let § = (F1, F,) and p be given, with dF; = f; dz, and let
v be defined by (20). Defineg(z) = pfi(z)/pfi(z) + qfa(z) if fi(x) + fo(z) > 0
and g = p (say) otherwise. Let Fy = pF, + ¢F:. Then

f_:ngo= f_:pfldx = p.

Consequently

v = (p0) [ U — f/pfs + ol dFy

= (pq) f_: [(g — p)/pq)® dF,

(25) = f_: [(g — p)/pd)-g-dF,

= [: (fi = fz)'g-dx

= M1 T Me,

where p; = [2,, g dF; (j = 1, 2). It follows from (25), by a well known representa-
tion of the expected value of a random variable, that

(26) y = [ [G(y) — Gi(y)] dy,

where G;(y) = Pr.(g(z) < y|F;),j = 1. 2.
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Now let P; denote the probability measure on the Borel sets of the real line
corresponding to F;,j = 0, 1, 2. It is evident from (26) that

v = sup, {Ga(y) — Gi(y)} = supa{P(4) — Pi(4))}.

As is easily seen, sup, {P:(4) — Pi(A)} = 3[2c|fi — fo|dz = 154 . Hence
v < 84/2.

Next, for any interval I on the real line define ¢(I) as follows: ¢ = 0 if
Py(I) = 0orif P(I) = 1;¢ = 1if 0 < Po(I) < 1 but I is unbounded; and
¢ = 2 in the remaining case. It is then easily seen that Po(I) — Py(I) < ¢(I)-6
for all I, where § is given by (22). Now choose and fixa y, 0 < y < 1, and an
€ > 0. Let A = {z:g(x) < y}. Let n(y, ¢) be the infimum of ¢(I,) + ¢(I,) +
-+« + ¢(Ix) over all finite collections {I,, I;, --- , I} of disjoint intervals I,
such that with B = I + I, + --- 4 I, we have Py(4) — Py(A) < Py(B) —
Py(B) + e It is then clear that Po(A) — Pi(4) < n(y, €) -8 + e Since ¢ is arbi-
trary, we have that P,(4) — P1(4) = 9(y) -8, where n(y) = lime.o(y, €),
0 = 7(y) = «. Assuming that 5 is a measurable function function of y, it fol-
lows from the present definition of A and (26) that ¥ < &- [ 7(y) dy. In any
case, if £ is the essential supremum of #(y)(¢ < «) we have y < £-5. Thus
v < min {£-4, 64/2}, and (24) now follows from (23).

The argument of the preceding paragraph is valid without any restrictions on
fiand f> , but the final result is nontrivial (i.e. £ < «) only under certain condi-
tions. The reader may verify, in particular, that if there exists a set B with
Py(B) = 1such that g or —g is non-decreasing on B then ¢ < 1. More generally,
if for some k = 1, 2, - - - it is possible to find disjoint intervals I, - - - , I; such
that D Po(I,) = 1 and such that g is essentially monotonic on each I, then
E=k

In concluding this discussion of example 3, let us note that the numerical value
of v depends on F; and F; only through the error probabilities in the Neyman-
Pearson theory of testing F, against F, given z. This dependence can be made
explicit as follows. For any subset A of the real line let «(4) = Py(4) and
B(A) =1 — Py(A). « and B are then the errors of the first and second kind in
using A as the critical region. For any 2,0 < z < o, let 7(2) = a(4,) + 8(4.)
where 4, = {z:f2(x) = #fi(z)}. It follows from (26) by a straightforward calcu-
lation that

(27) v=[ 11— r@lre/ o + 07 .

It follows from the preceding paragraph that the slope of the Wald-Wolfowitz
test remains unchanged if each observation in the two samples is subjected to a
1 — 1 transformation before being supplied to the statistician. This transforma-
tion need not be continuous or monotonic—all that is required is that the distri-
butions of the transformed variable also satisfy the conditions stated at the
outset of this example.

ExAMPLE 4. Let s = (x&)) ; xfi,)) O x?;))) be k independent sequences
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xffo)) = (xfj), xéj’, -+ ad inf) of independent random variables z$ (m = 1,
2,-37=1,2,---, k). Let F(x) be a continuous distribution function such
that

0

(28) f_wxdF=o, f_:x2dF=1.

Let o > Oand py, ps, -~ -, m be constants and suppose that z$ is distributed
according to F([z — wl/e), (m = 1,2,--- ;7 =1,2,---, k). Here § =
(Fypi,pz, -+, u;0). Histhe hypothesis that uy = ps = +++ = .

Foreachn = k, k4 1, --- let mi(n), ---, my(n) be positive integers such
thatn = my 4+ my + --- + my . It is assumed that

(29) lim m;/n = p;, where 0 < p; <1(j=1,2,---,k).
Foreachn, let s, = (2", -+, 2% ; -+ ;2 -+ &), andlet T3 bethesquare
root of the statistic of Kruskal and Wallis ([11], Section 2). It then follows from

the results given in [11] that {T5"} is a standard sequence, with slope ¢; defined
as follows. Let

b= (= w)fe  aw= [ W+ 8 — F@IdF,

(30) .
B; = rzg; Pr ajr
forallr,sandj = 1,2, ---, k. Then
k
(31) () = 12(};1 p;ﬁ?).

Next, let T$ denote the square root of the usual analysis of variance statistic
based on s, . Then {T$} is also a standard sequence, and we have

k k
(32) pra = 12 @ p,ﬁ?) / (,-=1 pn?>,

where
k
(33) Yi = Z DAy forj =12 --- , k.
r=1
Suppose now that dF = f(x) dr, and that f is sufficiently regular so that

[2.[F(x + A) — F(2)]dF = AfZ, f(z)dF + A-o(1) as A — 0. It then
follows easily from (30), (32), and (33) that, for any 6, = (F;u, s, -+, u; o),

(34) h1a(®) = lim p12(0) = 12 [ [ :f dFT.

It is shown in [7] that ¢ is never less than .864. On the other hand, since | a,s | < 1,
we have |8;| = 1 and hence ¢ < 12/( 2 % pivl). Consequently ¢12 — 0 as
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9 becomes very

max; {|v;|} = =, ie. as the mean of at least one sequence x
different from the weighted mean of the others.

ExamriE 5. Let s = (v1, vz, --- ad inf) be a sequence of independent and
identically distributed random variables v, = (., y»), where z and y have a
bivariate normal distribution. H is the hypothesis p = 0, where p is the correla-
tion between x and y.

For each n, let r, denote the sample product moment correlation based on

$no= (01, 02, -, v,). Let T® = &{log [(1 + r.)/(1 — 7)]|, and T =
(n — 2)4|ri/1 — 2 . We then have
2 2
(35) o12(6) = (1__29_) I:log (l_‘ﬂ)]
4p 1—0p

It is easily seen that ¢z is a decreasing function of |p|, varying from 1 to 0.

Next, let a, = the median z value in s, , and b, =. the median y value in s, .
Let f1, = the number of pairs »; in s, with z; > @, y: > bn ; fen the number
with z; < a,, y: > b, , fs, the number with z; < a,, ¥; < b, ; and fs, the num-
ber with z; > a., y; < b, . Let T2 = the square root of the chi-square statistic
based on the 2 X 2 table of the four frequencies f. Then

(36) $s2 = (4/7)-(1 — p2)-[83‘;1’]2, and ys2(6) = 4/7° = 41/100.

’ . . .
Now let r, be Spearman’s coefficient of rank correlation based on s, , and let
U4 . . . .
. be the difference sign covariance, i.e.

Tn = Zl sgn (z; — x;)-sgn (y; — y;)/n(n — 1),

1,]=
Wl}ere sgn (z) = 41, 0, or —1 accordingly as z >, =, or < 0. Let T =
| 7 |/a’(n) and TP = | r |/e” (n) where o’ and ¢” are the standard deviations
of 7" and r” respectively when p = 0. We then have, by using formulae given in
[12],

wa0) = (92 (1 = ) [ 22T

(87) Ly -
_ 2y, 2y, sm p
¢s,2(0) = (9/7°)-(1 — p’) [ P ] .

It follows from (37) that Ys2(6) = ¥s2(f0) = 91/100. It also follows that
¢4,5 18 a decreasing function of | p |, varying from 1 to 4/9.

APPENDICES

The argument of this paper depends entirely on the practical principle that if
the null hypothesis does not obtain, and if in a given instance test statistic 1
attains the level L, while statistic 2 attains L., statistic 2 is superior in that
instance if and only if L, < L,. As might be expected, this principle is closely
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related to comparisons based on power function considerations. The connection
is discussed in the following appendices.

Appendix 1. It will be shown here that the asymptotic slope of a standard
sequence is a functional on the family of power functions associated with the
sequence of statistics (proposition 2), and that slopes are consistent with power
in the following sense: if the power of the test based on TS’ never exceeds that
of the corresponding test based on T'5”, then ¢; 2 < 1 (proposition 3). These con-
clusions are useful analytical tools in applications such as the one mentioned in
remark 7 of Section 4.

Consider a sample space S of points s, a set {Pe:6 £ Q} of alternative distribu-
tions on 8, and a hypothesis H:0 £ Qo . Let { T,} be a (not necessarily standard)
sequence of real valued statistics such that, for each 8 in Qo
(i) lim Po(T» < z) = F(z) for every z,

where F is a probability distribution function, and such that, for each §in @ — Q,
(ii) T, — o in probability.

For any given constant ¢, 0 < a < 1, and each 7, the size « test (of H) based
on T, is then defined to be the following procedure: reject H if and only if
1 — F(T,) = a. In general, this test is not literally of size «, i.e.

Py(1 — F(T,) S a) #a

for each 7 and each 6 in @y , but the present definition seems legitimate and useful
in view of the reasons stated in Section 2. For any 6 in @ and any n, let 1 —
Bn(a | 6) denote the power of the size a test based on T, when 0 obtains, i.e.
Bu(a| 0) = Po(F(Ts) <1 — a).

Now consider a fixed 6 in @ — Q5 and a fixed «. It is easily seen from (ii) that
B»— 0 asn — oo It can be shown in certain cases that in fact n™" log 8, — —r/2,
where r is a positive constant depending on 6 (and possibly also on «). In
such cases, if 7, and r, are the constants associated with two sequences {T'."} and
{TP}, r/rs is the asymptotic efficiency of sequence 1 relative to sequence 2 in
the following sense: r,/r» is the (limiting) ratio of sample sizes required to attain
an assigned (arbitrarily small) probability of an error of type two. This method
of comparison is due to Hodges and Lehmann [7]. A very similar method was
devised earlier by Chernoff [6]. The method is, however, quite difficult to apply
because precise estimates of 3, are required.

An alternative analysis which suggests itself is the dual of the preceding one,
i.e. to let 6 and B be fixed, say B.(as | 8) = Bo , where 0 < By < 1, and to study
the rate at which a, must then tend to zero. This approach was mentioned by
Cochran ([13], p. 323). It might appear at first sight that this second method
would be just as difficult as the first, but that is not the case. In the present
formulation, « and 8 are not really interchangeable. Indeed, in the definition of



STOCHASTIC COMPARISON OF TESTS 291

the power function, we have already exploited the lack of symmetry between
Q and @ — @y by replacing the set of null distribution functions

{Po(Tn < 2):0Q,n=1,2, -}

by the single distribution function F(z). It follows from proposition 2 below that
if {T,} is a standard sequence then n™" log a, — —¢/2, where ¢(8) is the slope
of {T.} as defined -in Section 2. Consequently, ¢ = c¢i/c; serves as the relative
efficiency of two standard sequences in this method of comparison.

A third method of comparison of power functions, due to Pitman [2], depends
essentially on fixing both « and 8, say 8.(« | 6,) = By, and studying the rate at
which 6, must then tend to some null value. It will be shown in Appendix 2,
under essentially the same general conditions as are usually required for applica-
tion of this method (ecf., e.g., [4]), that asymptotic efficiency in Pitman’s sense
coincides with ¢, the limit of ¢ as 6 tends to a null value.

We proceed to establish the connection between the slope of a standard se-
quence and the family of power functions associated with the sequence. In the
following propositions 1-4 we consider an arbitrary but fixed 6 in @ — Q.

ProrosiTioN 1. Suppose that {T,} is a standard sequence with slope c(8). For
any sequence {ay,} of values a, in (0, 1), let

(iii) v, = 2log (1/as).

Then

(iv) lim inf {v,/n} < ¢(60) implies lim inf {8,(a, | 6)} = O,
and

(v) lim sup {v./n} > ¢(6) implies lim sup {B.(ax | 8)} = 1.

Proor. Let K, be defined by (4). It then follows from the definition of 8, and
(iii) that
(Vl) ﬂn(an I 0) = PO(Kn < vn)o

As is shown in Section 2, K,/n — c in probability. It follows hence from (vi)
that (iv) and (v) are valid.

As an immediate consequence of proposition 1 we have

ProposiTiON 2. If

(vii) 0 < lim inf {B.(a. | 6)} < lim sup {B.(an | 0)} < 1,
then
(viii) lim {v./n} = ¢(8).

n-»0

It should be observed that there may exist no sequence {a,} such that (vii) is
satisfied. We shall then say that { T',} is degenerate at 6. Although degeneracy can
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scarcely occur in the applications, it is necessary to take it into account in the
general case.

Next, let {T"} and {T{’} be two standard sequences, and let 1 — B85 (a | 6)
denote the power function of the size « test based on T, ¢ = 1, 2. For each n,
let 5,(1,2] 60) = sup, [8:” (| 6) — B (| 6)]. It is easily seen (e.g. from (vi))
that 0 = 6 < 1. Let us say that {T(z)} dominates {T"} at 6 if
(ix) lim 5,(1,2]68) = 0.

PropositioN 3. If {T} dominates {T ) at 6, then ¢1,9(0) < 1

Proor. Suppose first that { 7'} is not degenerate. Let {a,} be a sequence such
that (vii) holds with 8 = 8®, and let v, be defined by (iii). Then c(8) =
lim (v,/n) by proposition 2. Since {T%} dominates {TS"}, we have

lim inf B (@, | 6) = lim inf 8 (a, | 6) > 0.

Hence ¢;(6) = lim inf (v./n) by (iv). Thus ¢1(8) = c2(9).

Suppose now that {T'.”} is degenerate at 8. Let ¢ be a non-negative random
variable with a continuous distribution function (e.g. a chi-square with 1 d.f.),
independent of s, and let {A\,}] be a sequence of positive constants with
lim, o A, = 0, (e.8. A\s = 1/n). Define T¥ = [K + M-t It is readily seen
that { T} is a standard sequence on the space S* of points (s, t), that ¢; = ¢,
and that B8 (a | 0) = Po(KP + M-t < v), wherev = 2log (1/c). Since A, -t > 0,
and since 8 (a | 8) = Po(KP < v), it follows that { T} dominates {7} and
hence also {T"}. For each n, the distribution of K + M-t is continuous when
6 obtains, so that {T%} is not degenerate. Hence ¢, < ¢;(=c¢,) by the preceding
paragraph. This completes the proof.

The following is a partial converse of proposition 3.

ProPOSITION 4. If @15 < 1, then { TP} dominates {T'5"}.

Proor. For any « we have

B (a] ) = Py(KP < v) by (vi)
= Py(K® <0, K <v) + Po(KP <0, K 2 v)
< Po(KP <) 4+ P(KP < KP)
BP(a| 8) + Po(KP < KP) by (vi).

Since K"/K® — ¢ in probability (cf. (10)), and since ¢ < 1, Po(Ky <
K) — 0asn — . It follows hence from (x), as desired, that (ix) is satisfied.

It follows from propositions 3 and 4 that ¢, < 1 if and only if sequence 2
dominates sequence 1 but sequence 1 does not dominate sequence 2. It also fol-
lows that ¢ = 1 if and only if (a) each sequence dominates the other, or (b)
neither sequence dominates the other. It can be shown by simple examples that
contingency (b) does occur, i.e. in the general case, domination induces only a
partial ordering of the class of all standard sequences.

(x)
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Appendix 2. In this appendix we discuss ¢, the limit of ¢ as 6 tends to a null
value, in a special context. Suppose that Q is an interval on the real line, and that
H:0 = 8, where 6 is a point in Q. Let {U,} be a sequence of statistics on S
such that the following conditions are satisfied for each 6 in Q. (A) p.(8) =
E[U, | 6] and 65(8) = Var (U.|6) exist, 0 < on < o; (B) Va(s, 0) =
[Un — un(8)]/0.(8) is asymptotically normally distributed with zero mean and
unit variance; (C) with A,(8) = [u.(0) — wa(60)]/0n(60), limy e A(0)/nt =
b(8)(say), where b == 0 for 8 #= 6, ; (D) [02(8)/0a(60)]/n* — 0 as n — oo ; and
(E) there exist an even positive integer k and a positive constant A such that
B = N-(0 — 60)* [1 + o(1)] as 6 — 6.

Suppose that {U} and {UP} are two sequences satisfying conditions (A)-
(E), and let AP (6), bi(6), k; , and \; be the corresponding parametric functions
and constants, ¢ = 1, 2. Define TS” = | V{(s, 6o) | It is then readily seen from
(A)—(D) that {T¢’} is a standard sequence with slope [bs( 0)1’. Hence ¢z =
[b1/b:). It now follows from (E) that

0 if ko > ke
(xi) Y12(6) = lim ¢12(8) =M/ if ki = ko
660 © ifhy < ks

It follows from (C) that we also have

(xii) Y12(00) = 0111;1 lim [A(0)/A% (6)T.
>0 n->0

The right side of (xii) is closely related to Pitman’s formula for the relative limit-
ing efficiency, and becomes identical with the latter under certain additional con-
ditions. Suppose, for example, that k;, = k; = 2, that AL is a continuously
differentiable function of 6, dAY’/d6 = AL’ (0) say, and that condition (C) is
satisfied uniformly in a neighbourhood of 6, by both sequences. In this case, by
first interchanging the order of the two limits in (xii), and then using the differ-
entiability conditions, we obtain

(xiii) Y12(06) = Lim [AS" (86) /A% (60)T'.

Suppose next that « and B are constants, 0 < a < 1 — Bo < 1, and {6,} is a
sequence in  such that

(xiv)  Hm[AS(0,)/A9(0)] = 1,  1mBY (x| 6s) = Bo, (1= 1,2).

It then follows from (xiii) and the first part of (xiv) that
(xv) Y12(60) = lim [A°(6.)/A7°(6)T"

Since the right side of (xv) is Pitman’s formula, we see from the second part of
(xiv) that ¢ is the asymptotic efficiency of sequence 1 relative to 2 in Pitman’s
sense. As far as calculation of ¥ is concerned, however, (xii), (xiii) or (xv) are
not required since ¢ is already given by (xi).
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Appendix 3. Under certain conditions the slope of a standard sequence {T,}
can be expressed as the limit, as n — «, of n™" times the expected ratio of the
. power of the test based on T, to its size, with the size chosen at random accord-
ing to a certain fixed distribution. This representation of a slope seems to be of
some interest, partly because slopes are considered in Sections 2 and 3 of the
paper without reference to testing at a preassigned level.

Suppose, for example, that T, is a sequence such that in the null case T, is
asymptotically normally distributed with zero mean and unit variance (condi-
tions I and II, with @ = 1), and that in the non-null case

T 2
(xvi limE[ d ——b] =0,
) n-»>0 '\/72

where b is the parametric function specified in Condition III. For any given u > 0,
consider the following test: reject H if and only if | T | = u. Let « be the (ap-
proximate) size and v, the power (y = 1 — 8) of this test, and let p, = 7./, i.e.

a) =2 [ S @, o) = PIT,| 2 ul0),
u T

Gt (u]6)
_ ¥alu
Pn(u | 0) = a(u) .
Let U be a random variable taking values in (0, « ) according to
M ® 1 3o
(xviii P(UZu =f 4 { — e dx}dt.
) Wsw=[ @[ o

We then have

(xix) o(6) = lim ~ Hlp(U | )]
for every non-null 6. It follows from (xix), in particular, that in the non-null case
K./E(ps) — 1 in probability.

To verify (xix), we note that ¢ = ab’ = b*, and that b® is the limit of n E(T?%),
by (xvi). Since E[T% | 0] = [7 P(T% = t| 6) dt, it follows that

(xx) e@) =lim [ P(ITu| 2 /7] 0) d.
n-»00 0

The desired conclusion follows from (xvii) and (xviii) by a change of variable
in the integral on the right side of (xx).

The formula for ¢ obtained above is perhaps the simplest one in a class of such
formulae. To obtain another member of the class, we note from (xvi) and b > 0
that b is the limit of n*E(| T, |). It follows hence that

(xxi) (@ = 21im 1 Bo,(v | o)),

n->0
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where V is distributed in (0, « ) according to
(xxii) P(V 2v) = f { f et dx} dt.
0 t
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