Alignment and phylogenetic analysis of type II DNA topoisomerases

K MADHUSUDAN and V NAGARAJA*

Centre for Genetic Engineering, Indian Institute of Science, Bangalore 560 012, India

MS received 6 February 1996; revised 14 August 1996

Abstract. DNA topoisomerases have been evolved to solve the topological problems of DNA during replication, transcription, recombination and segregation. Discovery of several new enzymes and their characterization has necessitated this compilation. This analysis shows the distinct evolutionary relatedness of type II DNA topoisomerases. A striking feature is the absence of a contiguous stretch of about 160 amino acids in one of the subunits of prokaryotic type II enzymes, which might have important implications to their structure and function.

Keywords. Type II DNA topoisomerases; DNA gyrase; multiple alignment; phylogenetic trees.

1. Introduction

DNA topoisomerases catalyse topological interconversions: supercoiling-relaxation, catenation-decatenation and knotting-unknotting of DNA. These topological events occur during important cellular processes such as replication, transcription, recombination and chromosome segregation. Thus, the enzymes are essential for the cell survival, and hence are ubiquitous. The topoisomerases are classified into two distinct subclasses based on the mechanistics of the reaction (Wang 1985; Maxwell and Gellert 1986). The type I topoisomerases break one strand of DNA and pass the other stand through the nick created and change the linking number in steps of one. On the other hand, type II enzymes cleave both stands of DNA and pass the duplex through the 'DNA gate' resulting in the change of linking number in steps of two. All known topoisomerases form a transient covalent intermediate with DNA through a phosphotyrosine linkage and reseal after strand passage. Both prokaryotes and eukaryotes have been shown to possess multiple topoisomerases, possibly evolved to provide division of labour and in certain cases as backup strategies to take care of important cellular functions. The bacterium, Escherichia coli contains two type II topoisomerases bes ides two type I enzymes; the yeast, Saccharomyces cerevisiae has two type I activities (Wallis et al 1989), and in humans, two isozymes of topoisomerase II have been reported (Jenkins et al 1992). Amongst all type II topoisomerases, only DNA gyrase has the ability to introduce negative supercoils into DNA in an ATP driven reaction (Gellert et al 1976). The heteromeric enzyme has been the subject of extensive study (Reece and Maxwell 1991). The second bacterial type II enzyme, topoisomerase IV, has strong decatenation and weak relaxation activities. Both the bacterial type II topoisomerases have a similar architecture and also, share considerable sequence similarity.

^{*}Corresponding author (Fax, 91-80-3341683; E-mail, vraj@cge.iisc.ernet.in).

614 K Madhusudan and V Nagaraja

In this compilation, we have focused our attention on type II topoisomerases. This is due to the wealth of information available on these enzymes, their indispensability and the degree of conservation amongst the genes from variety of organisms. On the other hand, type I topoisomerases are less conserved and only few genes are characterized. Since an elaborate discussion of sequence conservation of topoisomerases has earlier been presented (Caron and Wang 1993), we have emphasized on the evolutionary relationship.

2. Sequence alignment and generation of evolutionary trees

The topoisomerase II genes have been characterized from several bacteria, yeast, protozoans and higher animals. Table 1 summarizes the source and the length of the derived polypeptides. The polypeptide sequences were aligned by MACAW ver 2.0.3 using BLOSSUM62 (Schuler *et al* 1991; Lawrence *et al* 1993). This software allows manual editing of the alignment. Also, the GyrB and GyrA polypeptide sequences were fused manually and aligned with eukaryotic type II topoisomerase using Multalin (Corpet 1988). The multiply aligned sequences were subjected to PHYLIP analysis (Felsenstein 1989). The distance matrix was generated by PROTDIST of PHYLIP employing Kimura-2 parameter. The output was then analysed by NEIGHBOR applying Neighbor-joining method. The UPGMA method was used for NEIGHBOR analysis of gyrase and eukaryotic topoisomerase II alignment. The unrooted trees were generated using DRAWGRAM and DRAWTREE.

3. Results and discussion

This compilation and alignment of type II topoisomerases is an attempt to compile complete sequences, identify subclasses and determine the extent of phylogenetic relationships. Sequence information on DNA gyrase and eukaryotic type II topoisomerase genes has been accumulating in the databank. These reports show conservation of amino acid sequence in gyrase and also its partial homology with eukaryotic type II topoisomerases. Hence, we have presented the alignment of all deduced polypeptide sequences of type II topoisomerases in figures 1 and 2. In order to avoid errors in alignment and phylogeny analyses, we have omitted partial sequences. The alignment of A subunits of gyrase and topoisomerase IV, given in figure 1A, shows the high sequence conservation predominantly in the amino terminal region. The DNA breakage-reunion site of subunit A has the sequence AAMRYTE common to all the members. The residue Tyr-122 of E. coli GyrA, present in this sequence gets covalently attached to DNA through phospodiester bond. On the other hand, the C-terminal region does not show such extensive conservation. The dot matrix analysis, however, showed repeated sequences within this region in all GyrA sequences (Madhusudan and Nagaraja 1995). The C-terminal 33 kDa domain of E. coli GyrA has been shown to bind DNA (Reece and Maxwell 1991).

The subunit B of bacterial type II topoisomerases shows identical patches of amino acids scattered through out the sequence. The N-terminal 43 kDa fragment of *E. coli* GyrB is known to retain ATPase activity, a characteristic of all type II topoisomerases. The crystal structure of this domain complexed with ADPNP has revealed the direct interaction between the protein and the cofactor (Wigely *et al* 1991). These contact

			SwissProt/	
Protein	Acronym	length	* EmBL Acc. no.	Reference
GyrA				
Escherichia coli	EcoA	875	P09097	Swanberg and Wang 1987
Klebsiella pneumoniae	KpnA	876	P14829	Dimri and Das 1990
Campylobacter jejuni	CajA	863	Q03470	Wang et al 1993
Rickettsia prowazekii	RprA	905	P41080	Wood and Waite 1994
Bacillus subtilis	BsuA	821	P05653	Moriya et al 1985
Staphylococcus aureus	SauA	889	P20831	Margerrison et al 1992
Streptomyces coelicolor	ScoA	864	P35885	Calcutt 1994
Haloferax Aa2.2	HalA	858	*X60178	Holmes and Dyall-Smith 1994
Mycobacterium tuberculosis	MtbA	838	*L27512	Takiff et al 1994
Mycobacterium smegmatis	MsmA	854	*X84077	Madhusudan and Nagaraja 1995
GyrB				
Escherichia coli	EcoB	803	P06982	Yamagishi et al 1986; Adachi et al 1987
Neisseria gonorrhoeae	NgoB	781	P22118	Stein et al 1991
Pseudomonas putida	PpuB	806	P13364	Parales and Harwood 1990
Bacillus subtilis	BsuB	638	P05652	Moriya et al 1985
Staphylococcus aureus	SauB	640	P20832	Margerrison et al 1992
Haloferax sps.	HalB	639	P21558	Holmes and Dyall-Smith 1991
Mycoplasma pneumoniae	MpnB	650	P22447	Colman et al 1990
Spiroplasma citri	SciB	640	P34031	
Streptomyces sphaeroides (novobiocin resistant)	SspBr	677	*Z17304	Thiara and Cundliffe 1993
Streptomyces sphaeroides (novobiocin sensitive)	SspBs	684	*Z17305	Thiara and Cundliffe 1993
Streptomyces coelicolor	ScoB	676	P35886	Calcutt 1994
Mycobacterium tuberculosis	MtbB	675	*X78888	Madhusudan et al 1994
Mycobacterium smegmatis	MsmB	675	*X84077	Madhusudan and Nagaraja 1995
ParC				
Escherichia coli	EcoC	752	P20082	Kato et al 1990
Salmonella typhimurium	StyC	752	P26973	Luttinger et al 1991
Staphycoccus aureus	SauE	800	*L25288	Ferrero et al 1994
ParE				
Escherichia coli	EcoE	630	P20083	Kato et al 1990
Salmonella typhimurium	StyE	630	P31598	Springer and Schmid 1991
Staphycoccus aureus	SauE	663	*L25288	Ferrero et al 1994
Eukaryotic topoisomerase II				
ASF Virus (BA71V)	Top2_AS	1192	O00942	Garcia-Beato et al 1992
ASF Virus (Malawi)	Top2_AF	1191	P34203	Baylis et al 1992
Crithidia fasciculata	Top2_CR	1239	P27570	Pasion et al 1992
Trypanosoma brucei	Top2_TR	1221	P12531	Strauss and Wang 1990
Trypanosoma cruzi	Top2_TY	1232	P30190	Fragoso and Goldberg 1992
Caenorhabditis elegans	Top2_CA	1198	P34534	Wilson et al 1994
Homo sapiens (A)	TopA_HU	1530	P11388	Tsai-Pflugfelder et al 1988
Homo sapiens (B)	TopB_HU	1626	QO2880	Jenkins et al 1992
Mus musculus (Mouse)	Top2_MO	1528	Q01320	Adachi et al 1992
Drosophila melanogaster	Top2_DR	1447	P15348	Wykoff et al 1989
Plasmodium falciparum	Top2_PL	1398	P41001	Ridley and Kilbey 1994
Saccharomyces cerevisiae	Top2_YE	1429	P06786	Giaever et al 1986
Schizosaccharomyces pombe	Top2_SC	1431	P08906	Uemura et al 1986

 Table 1. Polypeptide sequences of type II DNA topoisomerases.

142 142 1335 1335 1335 1335 1335 1335 1335 133	291 288 288 288 288 288 288 288 288 288 28	4418 4619 4627 4603 4603 46003 4003	5555 5555 5555 5555 5555 5555 5555 5555 5555
dt Lippege ALIBALEPVDIQQBQRSY IDVASYTVGAL PEVTGLÆVYIRRUYANYDSASSDRSIMESARSYAETHGINGT ITDLVBAQPAGLÆVPLVDGQRFGSFD-DPPAMRETTEALTFLAMEDA tid t Lippedge LURLEPVDIQQBQRSY IDVASYTVGAL PEVTGLÆVYIRRUYANTDSASSDRSIMESARYLEGARSTND-IDF STREVUNGGGRFGSFD-DPPAMRETTEALTFLAMEDA tid det Lippedge LURLEPVDIGDDQRGSFIDAASSVI UGAL PEVTGLÆVIRRUVANTDSOFSDRSIMESARYLENGARSTND-DF	REIDETY - DFI PNYDGRUGEPTU, PSRF PMLJANGSRCI AVGAATNIP PHJJGEJAEAVYA-LENYEAUGEDVE PFGLI VOTGOI EEDYYKTGRGSI ENGAVELIEEDSRGAFGI VITTEL PVYDNHADFI TSI AEDV REIDETY - DFI PNYDGRUGEPTU, PSRF PMLJANGSRCI AVGAATNI PHGJJGEJAEAVYA-MALENIN KATA FLEVEN FAGLI VGGGGGTEBYYKTGRGSI TWAAV-VEVEELOBRGAFGI VITTEL PVYDNHADFI TSI AEDV RDIDETY - DFI DNYDGREPTU, PSRF PMLJANGSSCI AVGAATNI PHGJJGEJI AGVALANEN FAGLI VGGGGGGGTEBYYKTGRGSI TWAAV-VEVEELOBRGAFGI VITTEL PVYDNHADFI TSI AEDV RDIDETY - DFI DNYDGREPTU, PSRF PMLJANGSGCI AVGAATNI PHGJJGEJI AGVALANEN FAGLI VGGGGGGTEBYYKTGRGSI TWAAV-VEVEELOBRGAFGI VITTEL PVYDNHADFI TSI ADVA RDIDETY - DFOGNYDDRAFGETU JAAGSGCI AVGAATNI PHGJJGEJI AGVALANEN FAGLI VGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RDGTLAG ISMIEDGSSDRVCL&TVTZ.KRAWAXYIWLYRY - TOLOFFELANGL FRYUDDUT VRFFF - YELKAMERAHIL KGLWALDALDDYTAL. TAASFYDTAL FAASFYDTAR - DGATCAG ISMIEDGSSDRVCL&TVTZ.KRAWAXYIWLYRY - TOLOFFELANGLALVOOFFFLALDOL FRYTFF - FELAKAMERAHIL KGLWALALDDYTAL TAASFYDTAR - DGATCAG ISMIEDGSSDRVCL&TVTZ.KRAWAXYIMLY. DGATCAG ISMIEDGSSDRVCL&TVTZ.KRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTYJMLYRAWAXYIMT. DGATCAG ISMIEDGSSDRVCL&TAASTANATASTYJMLYRAWAXYIMTAASTYJMLYRAWAXINATASTYJMLYRAWAXAALAND DGATCAG ISMIEDGSSDRVCL&TAASTANATASTYJMLYRAWAXYIMTAASTANATASTANATASTANATAASTANATATATASTANATASTANATASTANATAST	
Msmd Mtbd Scol Bsud Bsud Bsud Rpra Rpra Rpra Rpra StyC StyC StyC	MEMA Mtba Mtba Bsul Bsul Agud Sgud Sgud Sgud Sgud Sgud Sgud	MemA Mtba Mtba Bsud Bsud Bsud Bsud Ssud Ssud Ssud Ssud Ssud Ssud Ssud S	MEMA Mtba Mtba Scoa Bsua Bsua Bsua Bsua Bsua Bsua Rpia StyC StyC StyC

688 698 698 698 698 698 698 698 698 698	88888888888888888888888888888888888888	88888888888888888888888888888888888888
WHEFVESTHID/LLFFTYOGRVY BAAY KELPEA SETA BROWNALLAPOPERLAVY (215YEbap) V) a trng) VAKKI Edi Edin segi varial reyde lygev J craeddil I) ventrys ir f act- WHEFVESTHID/LLFFTYOGRVY BAAY KELPEA SERVENCE (11000) V variant and VAKKI Edi Edin segi varial i action food for yong leagedil 1) ventrys ir f f act- Distry VETTHID/LLFFTYOGRVY BAAY KELPEA SERVENCE (11000) V variant and VAKKI Edi Edin segi varial i action food for yong leagedil 1) ventrys ir f f act- DISTRY FINDILLFFTYOGRVY BAAY KELPEA SERVENCE (11000) VAKKI Edit Edit Edit Edit Edit (1001) VENTHID/LI KKAGGI II (11000) VAKKI EDIT EDIT ET MANY VI (11000) VAKKI EDIT EDIT EDIT EDIT EDIT EDIT EDIT EDI	 DEALR FRIGAT SCYCORRENEDDEL JAVYRE DY'LLIVAY SCYVER STORY SYDERWOOD TO YORK RSGLWALLYDDDEL AT YN 115 YGGY LEAL GY FROAT GRAYF LLAU YN 15 WYL AR ANN YN ARGYLLEAL CYFRAND YN YN SCYVEL AL AL CYFRAND YN YN ARGYLLEAL YN YN SGWYLLEAL CYFRAND YN YN ARGYLLEAL YN YN SGWYLLEAL TWRWYR GRYLLUAL TH AR YN YN ARGYLLEAL YN YN YN SGWYLLEAL TWRWYR GRYLLUAL TH AR YN YN YN YN TRAWN LLAU YN YN SGWYLLEAL YN YN	gronggrudgrikrghruckrymetizstviggs aeesgddmawdangsagron aeesgddmawdangsagron Verkreeddneeqeev
Mthu Mthu Scol Rock Rock Scol Rock Scol Rock Scol Rock	Manual Sectors Manual	A S S S S S S S S S S S S S S S S S S S

Figure 1A.

	48648488888888888888888888888888888888	4444 44444 44444 44444 44444 44444 44444
ad gena	ANY LACK INSTRUCT ON LINE ALL REMONDER FERTIONS FERTI	A A A A A A A A A A A A A A A A A A A
MSm5 MSm5 MCDB SSpB5 SSpB5 SSpB5 SSpB5 MpnB MpnB MpnB SsuB Ssub Fpu5 SSub SSUS SSUE	MSmb MSmb Scob Scob SspBs SspBs SspBs Bau Scib Fpub Fpub Scob Scos Ssub Ssub Ssub Ssub Ssub Ssub	MSRB MSRB MSRB SSPBS SSPBS SSPBS SSPBS SSPBS SSPBS MPNB MPNB MPNB MPNB MPNB SSC SC SC SC SC SC SC SC SC SC SC SC SC

ដល់ភាមិភ្លាល់សូសស្រុកសូសសូសសូស ភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិ	474449 474444 474444 4744444 4744444 47444444	66000000000000000000000000000000000000
<pre>cdipacture Constraints and account of the constant of the constraints of the constraint of the constraint of the constraints of the constrain</pre>	g g g g g g g g g g g g g g	A A LEN MORT LANNAGE LANNE LE RAMAN DE LE VERT LANNAGE LE TALANA MORT LANNE SECTION AND LEN MARKAN AND LE CARACTER AND LEN MARKAN AND LE CARACTER AND LEN MARKAN AND LEN MARKAN AND LE CARACTER AND LEN MARKAN AND LEN MARKAN AND LE CARACTER AND LEN MARKAN AND LEN
Kana Sector Sect	MEMB MEMB Scoll Memb Memb Memb Memb Memb Memb Memb Memb	Ashing a second and a second a

Figure 1B.

619

922 102 102 102 102 102 102 102 102 102 1	00000000000000000000000000000000000000	88899999999999999999999999999999999999	4407444050444409 0004448000117798 00020886001
^E meafeisdfkehakkismagainkuisgimutfededimalp ^E meafeisdfkehakkismagainkuisgimutfedinktronstructureproduction ^E meafeisdfkehakkismagainkuisgimutfedinkten ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeistatinalp- ^E meafeisdfkehakkismagainkuisgimutfaspikura ^E meafeistatinalp- ^E meafeistatinalpherenterenterenterenterenterenterenteren	CENDEREI PARHEOASLIARRDWVPENASCFELAGINIHRANDCINGUGLULAWISGMAILITTADGAGKVVOQINOFLDIIEPPTITEAPPYQELGYAELGAFEQADLSAWIYLARCCAATVG FCRNOEGEI PARHEOASLIARRDWVPENASCFELAGINIHRANDCINGGAGGALULAWISGGMAILITTADGAGKVVOQINOFLDIIEPPTITEAPPYQELGYAELGAFEQADLSAWIYLARCCAATVG FCRNOEGEI PARHEOASLIARRDWVPENASCFELAGINIHRANDCINGGAGGAGGALULAWISGGALULAWISGGALULAWISGGALUAWISGGAGGAGGAGGAGGAGGA BCREINGEGI PARHEOASLIARRDWVPENASCFELAGINIHRANDCIARGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	KGTT 11 YW NG FGFTGS VALAKAYTLISA PNST HITATIKAAK PYSLHPLQVAVVSKFKKEHVS1 INGVACVGBHYFLKRT INBAVIKKFQOTIK OKNRRT LADSCSMI FVI 10GS FQ1 EWFOGRKDELS1 LAVYFNIYS1 RGCTT1 DYNOR FGFTGS VALAKAYTLISA PNST HITATIKAAK PYSLHPLQVAVVSKFKKEHVS1 INGVACVGBHYFLKRT INBAVIKKFQOTIK OKNRRT FLOSSSMI FVI 10GS FQ1 ENFOGRKDELS1 LAVYFNIYS1 RGCTT1 DYNOR FGFTGS VALAKAYTLISA PNST HITATIKAAK PYSLHPLQVAVVSKFKKEHVS1 INGVACKTER OF TARKAKTER OF TARKAKT	PSSFJTMMT R31VD1LJQSJSKKDNHKQVDVKTR&rMGGRRAQDCHLIAMSGB8AJSLLPFGLTGKSNSS PSSPGCH1stG01MMACKVTN1TTDSGETimvzNBQL PSSFJTMMT R31VD1LJQSJSKKDNHKQVDVKTRA-MGGRKAQDCHLIAMSGB8AJSLLPFGLTGKSNSS PSSPGCH1stG01MMACKVTN1TTDSGETimvzNBQL PSSFJTMMT R31VD1LJQSJSKKDNHKQVDVXTRA-MGGRKAQDCHLIAMSGB8AJSLLPFGCH1stG01MMACKVTN1TTDSGETImvzNBQL PSSFJTMT R31VD1LJQSJSKKDNHKQVDVXTRA-MGGRKAQDCHLIAMSGB8AJSLLPFGCH1stG01MMACKVTN1TTDSGETImvzNBQL PSSFJTMT R31VD1LJQSJSKKDNHKQVDVXTRA-MGGRKAQDCHLIAMSGB8AJSLLPFGCH1stG1TVTAKTDSGETIMVzNBQL PSSFJTMT R31VD1LJQSJSKKDNHKQVDVXTRA-MGGRKAQDCHLIAMSGB8AJSLLPFGCH1SSRSS PSSFJTMT R31VD1LJQSJSKKDNHKQVDVXTRA-MGGRKAQDCHLIAMSGB8AJSLLPKR1LSKPSKRB1FGC1TJLFGSGSKALLATUSVTVFFLKGLMVRNBQL PV2thluty frva1 jetpt f dagt set i advjd sampt 1 a dimsmdq1 aa si hkeig TGRRJSSRSJ1TSSJSTTLJLPGSDSKRLLAVSSJC7VGFDKGGVFPLKGKLLNVR
10022 1002 1002 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10022 10000 100000000			10022001 10022001 10022001 10022101 10022101 10022101

648 641 653 653 653 653 653 653 668 668 668 668 668 668 668 668 668 66	790 1700 1700 1700 1700 1700 1700 1700 1	66666666666666666666666666666666666666	1089 1089 11113 1089 1087 1087 1089 1089 1089
TNIKULGE TOULGLEPERCHYRTOGERAKLANGG TUKGVOODLOGGGK HLGJLLAFHLAPOLITH-GEYKRLIF PLIAVYEKGRTAPVEFYEDEFDAAKKGFSLWHTWYYYKGLAAHDTHEVYEHFWEDAKRT SWIELSKULAT LIGUKEDSNETREERKG PLOGODDLOGGGK HLGJLAFHLAPOLITH-GEVKLIFT FILIAVYEKGRY VERFENDAKKGFSLWHTWYYYKGG FSTSKABFFKEDBAAKRT SKIELSKULAT LIGUKEDSNETREERKG PLOGODDLOGGGK HLGJLAFFHEPOLITH-GEVKLIFT FILIAVYEKGRY VERFENDAKKGFSLWHTWYYKGG FSTSKABFFKEDBAAKRT SKIELSKULAT LIGUKEDSNETREERKG PLOGODDLOGGGK HLGJLAFFHEPOLITH-GEVKLIFT FILIAVYEKGRY VERFENDAKKGFSLWHTWYYKGG FSTSKABFFKEDBAAKRT SKIELSKULAT LIGUKEDSNETREERKG PLOGODDLOGGK HLGJLAFFHEPOLITH-GEVKRLPTFFLUGGSFFDLLGAFFKBADVEGGFSTSKABTAFFKEDFUGGFSTSKEDSTSKED KGLAFFKLATTELGUKTESSKAFFEDSAFFFEDJUGFSTSKEDJUGGSFFJLLEFFFTTALEFFETFTAFFEGFEDKSFFFFARFENDAKKGFSLWHTKENGGFGSTSFFKEDSTSKEDSTSKED SKIELSKULAT LIGUKEDSNETRESKKETTAEFFETTAFFEJDUFFFGETTAFFEGFEDKSFFFARFENDAKKGFSTSKEDDAKFTFMADGFGA KEARFENNITTEVIGGFGGFGFGFGFGFGFGFGFGFGFGFGGFGFGGFGFG	fhiyfggeel ikrelctovp) ietot geihe	CKMAGSENT - FVOLASET KRYFFA EDSML PVVEDOQAA BEYYV PU-PLATHEYGANESD-MYTTWARUEDI LIA VAYVDKANFKHEL I IV ALIKA FAYVDKANFKHEL I IV ALIKA FAYVDKANFKHEL I IV ALIKA FAYVDKANFKHEL I IV ALIKA FAYVDKANFKHEL I VALAGAANESD-MYTTTFL PLA CKMAGSENT - FOLASET KRYFFA EDSML PVVEDOQAA BEYYV PU-PLATHEYGANESD-MYTTWARUEDI LIA TEST STATE FAX ULU FAST MERGEST MYTTFL FATALE CMMAGSENT - FOLASET KRYFFA EDSML PVVEDOQAA EEYYV PU-PLATHEYGANESD-MYTTWARUEDI LIA TEST STATE FAX ULU FAST MERGEST MYTFFA CMMAGSENT - FOLASET KRYFFA EDSML PVVEDOQAA EEYYV PU-PLATHEYGANESD-MYTTWARUEDI LIA TEST MAYDSKNEKKEL I VALAGAAT STATE FAST MERGEST MYTFFA CMMAGSENT - FOLASET KRYFFA EDSML PVVEDOQAA EEYYV PU-PLATHEYGANESD-MYTFFARAET STATE FAX ULU FAST MERGEST MYTFFA CMMAGSENT - FOLASET KRYFFARED MYTFFALLE FFOLANTIST MERGEST MYTFFALL FAST MERGEST MYTFFALLE FAX ULU FAST MERGEST MYTFFALLE CMMAARTT - FOLASET KRYFFARED MYTFFALLE FFOLANTIST MERGEST MYTFFALL FAST MERGEST MYTFFALLE FAX ULU FAST MERGEST MYTFFALLE CMMAARTT - FOLASET KRYFFARED MYTFFALLE FFOLANTIST MERGEST MYTFFALL FAST MERGEST MYTFFALLE FAX ULU FAST MERGET MYSFFALLE CMMAARTT - FOLASET KRYFFARED MYTFFALLE FYTHRELLOVEST MERGEN MYN HERLLOCE FAX ULU FAST FAST MERGEN MYSFFALLE CMMAARTT - FOLASET KRYFFARED MYTFFALLE FYTHRELLOVEST MERGEN MYN KERN LIGE FAST MURGEN MERGEN MYSFFALLE CMMAARTT - FOLAST MERGEN MERGEN MYSFFALLE FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALLE FAST MERGEN MYSFFAL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALLE FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALLE FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALLE FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALL FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALL FAST MERGEN MYSFFALL FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MYSFFALL FAST MERGEN MYSFFALL CMMAARTT - FOLAST MERGEN MERGEN MERGEN MYSFFALL FAST MERGEN MYSFFALL FAST MERGEN MYSFFALL FAST FAST MERGEN MYSFFALL FAST MERGEN MYSFFALL FAST FAST MERGEN MYSFFALL FAST MERGEN MYSFFALL FAST MERGEN MERGEN MYSFFALL FAST FAST MERGEN MY	VFTVATESTKSSNMMFTEELTDYSSSFTELJUKLKPNSLMRTVEEREEDDSTENFLALMSULMFVFKGGTIEFNSTYELLVML/PKRELYGRALMEHMVLKLRTHFFATURATVEREEDGKSRELL VFTVATESTKSSNMMFTEELTDYSSSFTELJUKLKPNSLMRTVEEREEDDSTENFLALMSULMFVFKGGTIEFNSTYELLVML/PKRELYGRALMEHMVLKLRTTERSOMSTEEDEKASRLLS VFTVATESTKSSNMMFTEELTDYSSSFTELJUKLKPNSLMRTVEEREEDDSTENFLALMSULMFKKGTIEFNSTYRERFDGLEPDLAGASRLTSPROMIDELERAULGELAL SLAStedvetabyelsephild i 10 vergent useecerd al of 1 y 10 vf podel L poda DLAPULOMHVERALDXKRRRTDGLEPDLAGASRTLSFOUNDER SLAStedvetabyelsephild i 10 vergent useecerd al of 1 y 100 vf podel L poda DLAPULOMHVERALDXKRRRTDGLEPDLAGASRTLSFOUNDER ERLORde ktp 1 1 dv
7002_A 7002_A 7002_C 7002_C 7002_C 7002_C 7002_F 7002_F 7002_F 7002_F	4001 2222 2222 22222 22222 22222 22222 22222		

661-8875228815	66613546333815 666135463338615	192 198 198 198 198 198 198 198 197 197 197 197 197 197 197 197 197 197	992 91 26 26 228 228 239 230 230 231 231 232 232 232 232 232 232 232 232
11 KGRYTOWFYH	11 Kkepeekkprekkenogolkeakid skakakkaddveevpracepre- 12 Kketninsbustessorsenssorverpracere 14 ketninstekkptiderndnneelngid, aldhynddin titpikktinvefseikink 14 ketninstekkptiderndnneelngid, aldhynddin titpikktinvefseikink 12 kovktinassergrysktinkvattif seddeddilpeikktiterktassorsensens 12 kanneelngid, alderndnneelngid, aldhyndin titpikktinvefseiti 12 kanneelngid, alderndnneelngid 10 10 10 10 10 10 10 10 10 10	INASDOSSYRPAKRAZGEDESSGGAKKAPKKRAVI ESDDDD1e i dedddddfnc	(Figure 1C).
ENEPPIJARILI LI SPERAS I EELAQIA LOGCTY YI LSI QARELJ JANT RIVEKI IKOMARLDKUDGU LOES PPCASWLEEL DAVEKA ENEPLAGSL ITPSEFAS I EELAQIA LOGCTY 112, SU QARELJ JANT RIVEKI IKOMARLDKUDGU LOES PPCASWLEEL DAVEKA 11AKINSTRV	A MASSYRYNICRYEEP EASKKPEDT VGALSSGOGTRNOKKLTGARGAKKKVVRETTRNSLIG LYV ef GAGI J TI DI I DF11 A MASSYRYNICRYEEP EASKKPEDT VGALSSGOGTRNOKKLTGARGAKKKVVRETTRNSLIG LYV ef GAGI J TI DI I DF11 gdv Fipbdgepve fi tee ai i know so ky so kepke ekkepke fi verkte fight i verkt fdannit dat pi ti ni i ni dennef gde faare fi trni in i kknot Nitt i sentvorm skrift i kadi in snei aldni i verkt fdannit dat pi ti ni i ni dennef greet kyvyrettypeprikgager dødggat kaskepke kepke fi vi verkte fabrin i dat pi ti ni i ni dennef greet kyvyrettypeprikgager dødggat kaskepke kepke fit verkt fdannit dat pi ti 1 for erst kyvit i ti ednit fit i dennef erst kepkeret kreeten pi ti skrift i bedi degel bit i fit kit i fit i kreiti fit i kreiti fit i kreiti fit i kreiti fit kreiti erst ver erst kyvit i ti ednit fit i dennef erst fit skreiti kreiti erst skreiti erst vid i skrift i ti bedi fit kreiti i tegel kreiti erst ver kvrift i ti ti tednit fit erst for for kreiti kreitier erst i skreit i skreit i skreit i ti bedi fit kreitier fit kreitier fit kreitier fit kreitier fit i kreitier of kreitier i skreit i skreit i ti skreit i ti skreit i ti skreit i skr	FLPLDAT P FKAXI I P KNTKXALKTQGSSMSYVDLESDVKDSVAS FGUPAND P PAET EQGKPSKKTAXTAX FGOSSVSTAGTOGO FLPLDAT P FKAXI I P KNTKXALKTQGSSMSYVDLESDVKDSVAS FGUPAND P PAET EQGKPSKKTAXTAX FGOSSVSTAGTOGO 11 a.g. 1 deyt defended i 1 pgsset pkast I neepedsdep 1 kr pt 1 r taaat vkt pi yvdgs fdsmdepemddd f 1 ydndedvddy desd- vk grepent fran stranske far stass vas vykk yvet 1 e 1 ddaf 1 addeeen gged s ffreed- 1 deyt de fear hdeddai pgr st rgt sst aas vykk yvet 1 e 1 ddaf 1 addeeen gged s ffreed- 1 deyt de fear hdeddai pgr st rgt sst aas vykk yvet 1 e 1 ddaf 1 addeeen gged s ffreed- 1 deyt de fear hdeddai pgr st rgt sst aas vykk yvet 1 e 1 bdaf 1 addeeen gged s for st ryst synts st rgt sst aas vyk sy rgt st rgt sst aas vyk st pertif ppErter TNPV pKKNTTVKTY NKSGSSTSTTGAKKAA V betreen for a fear hde de i pgr st rgt sst aas vykk st pek si hdk k sq fg n 1 f s fpr y 90 (K ED BASK P BSNSS FT SST ST FT SST ST FT SST ST ST ST ST ST ST ST SST S	
1002_46 1002_06 1002_06 1002_08 1002_98 1002_98 1002_98 1002_98 1002_98 1002_98	1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04 1002.04	TOP2_AS TOP2_AF TOP2_CA TOP2_CA TOP2_D8 TOP2_D8 TOP2_PL TOP2_T8 TOP2_T8 TOP2_T8 TOP2_T8	TOP2_AF TOP2_AF TOP2_CA TOP2_CA TOP2_DR TOP2_PL TOP2_PL TOP2_TR TOP2_TY TOP2_TY TOP2_VE TOP2_VE

Figure 1. Alignment of type II topoisomerases. (A) Subunit A of bacterial type II topoisomerases. The conserved tyrosine involved in DNA breakage-reunion reaction is marked by an asterisk (corresponding to E. coll sequence). (B) Subunit B of bacterial type II topoisomerases. The asterisks mark the residues involved in contacting the nucleotide cofactor. All the positions correspond to E. coll sequence. (C) Eukaryotic type II topoisomerases. The sequence in the upper case in contacting the nucleotide cofactor. All the positions correspond to E. coll sequence. (C) Eukaryotic type II topoisomerases. The sequence in the upper case represent the region with high conservation.

points, Tyr-5, Asn-46, Asp-73, Lys-103, Tyr-109, Gln-335 and Lys-337 are positionally conserved in all the members, except *Spiroplasma citri* wherein Lys-337 is replaced by Asn. The two important residues, Glu-42 and His-38 (Jackson and Maxwell 1994) implicated in ATPase activity of the subunit B of the *E. coli* enzyme are also present in all the other B sequences examined. A very significant difference is the absence of a long stretch of amino acids (158–163 amino acids) in GyrB proteins of Gram positive bacteria and *Mycoplasma* (figure 2B). The same stretch of amino acids is also absent in ParE sequences (B subunits of topoisomerase IV) of both Gram negative bacteria and *S. aureus*. It should also be noted here that gyrase and topoisomerase IV differ not only in their supercoiling ability but also in their potency of decatenation.

The subunits of bacterial type II topoisomerases were further analysed to understand the evolutionary relatedness. The unrooted trees are shown in figures 3 and 4. The ParC proteins share a branch with GyrA of higher bacteria (figure 3). The ParE proteins are located closer to GyrB polypeptides of Gram negative bacteria (figure 4) in spite of sharing a common character (the absence of a long stretch of amino acids) with Gram positive bacteria and *Mycoplasma* (figure 2B). The B subunit of bacterial type II topoisomerases shows a distinct feature. All the GyrB proteins of *Mycoplasma* and Gram positive bacteria form a monophyletic group while other GyrB polypeptides and ParE sequences diverge into another group (figure 3). In case of A subunits, no such clear separation could be observed (figure 3).

The eukaryotic type II topoisomerases also show primary conservation to some extent. Although the sequences have diverged, functionally significant domains (like

A	0 100 200 300 400 500 600 700 800 900 1000
MsmA	
MtbA	
ScoA	
BsuA	
HalA	
SauA	
RprA	
EcoA	
KpnA	
CajA	
SauC	
StyC	
EcoC	

В	0 100 200 300 400 500 600 700 1 1 1 1 1 1 1	800 900 L L
MsmB	□ (muti itanitamita)(= tatt)====() (if itati itati	
MtbB		
ScoB		
SspBs		0 # 1 HQ D
SspBr		8 1 1 1 1 1 1
BsuB		
HalB		
MpnB		
SciB		
SauB		
EcoB		
NgoB		
DouD		
Грав		
Etue		
Stye		
Saue	■ Lighterstrucker and an and and	
с	0 200 400 600 800 1000 1200 1400 1600	3
TOP2_AS		
TOP2_AF		
TOP2_CA		
TOP2_CR		
TOP2_DR		Color map
TOP2_MO		100
TOP2_PL		
TOP2_SC		67
TOP2_TR		
TOP2_TY		37
TOP2_YE		
TOPA_HU		

Figures 3 and 4. Evolutionary relationship among bacterial topoisomerase II subunits. Unrooted phylogenetic trees produced from the alignment of A subunits (**3**) in figure 1A and B subunits (**4**) in figure 1B, using DRAWTREE.

626 K Madhusudan and V Nagaraja

ATPase and DNA breakage-reunion regions) have retained the residues important for the activities. The crystal structure of 92 kDa domain of yeast DNA topoisomerase II at 2.7 Å has been reported recently (Berger *et al* 1996). Whereas the N-terminal 409 amino acids constitute ATPase domain that shares homology with bacterial DNA gyrase subunit B ATPase region, this domain has been implicated in DNA cleavage and strand passage reactions required for the topological interconversion (Berger and Wang 1996). This

Figure 5. Phylogenetic tree of type II topoisomerases. The bacterial type II topoisomerase subunits were fused prior to the alignment. The abbreviations correspond to those given in the table 1, with AB representing fused sequences.

domain contains GyrB and GyrA like sequences (Caron and Wang 1993). Also, this region shows high conservation among eukaryotic type II DNA topoisomerases (figures 1C and 2C). Beyond this region, the amino acid sequences of eukaryotic type II DNA topoisomerases display less conservation. The cluster analysis of all type II topoisomerases, presented in figure 5, shows the monophyletic separation of bacterial sequences from the distinct diphyletic groups of eukaryotic enzymes.

Acknowledgements

We thank Shamala Prasad and Bindu D Paul for the assistance and C D Nager (Freidrich Miescher Institute, Basel) for introducing to MACAW. The sequence analysis was carried out at Bioinformatics Centre, Indian Institute of Science. The infrastructural facility was provided by Department of Biotechnology, New Delhi. KM is a recipient of Council of Scientifics and Industrial Research, New Delhi Senior Research Fellowship.

References

- Adachi N, Miyaike M, Ikeda H and Kikuchi A 1992 Characterization of cDNA encoding the mouse DNA topoisomerase II that can complement the budding yeast top2 mutation; *Nucleic Acids Res.* **20** 5297–5303
- Adachi T, Mizuuchi M, Robinson E A, Apella E, O'Dea M H, Gellert M and Mizuuchi K 1987 DNA sequence of the *E. coli gyrB* gene: application of a new sequencing strategy; *Nucleic Acids Res.* **15** 771–784
- Baylis S A, Dixon L K, Vydelingum S and Smith G L 1992 African Swine Fever virus encodes a gene with extensive homology to type II topoisomerase; *J. Mol. Biol.* **228** 1003–1010
- Berger J M, Gamblin S J, Harrison S C and Wang J C 1996 Structure and mechanism of DNA topoisomerase II; *Nature (London)* **379** 225–232
- Berger J M and Wang J C 1996 Recent developments in DNA topoisomerase 11 structure and mechanism; *Curr. Op. Structural Biol.* **6** 84–90
- Calcutt M J 1994 Improved shuttle vector for *Haloferax volcanii* including a dual-resistance plasmid; *Gene* **146** 117–121
- Caron P R and Wang J C 1993 DNA topoisomerases as target of therapeutics: A structural overview; in *Molecular biology of DNA topoisomerases* (Proceedings of International Symposium on DNA Topoisomerases in Chemotherapy, Nagoya, Japan) (Nov. 18–20, 1991) (New York: CRC press) pp 1–21
- Colman S D, Hu P C and Bott K F 1990 Mycoplasma pneumoniae DNA gyrase genes; Mol. Microbiol. 4 1129–1134
- Corpet J 1988 Multiple sequence alignment with heirarchical clustering; Nucleic Acids Res. 16 10881-10890
- Dimri G P and Das H 1990 Cloning and sequence analysis of gyrA gene of *Kiebsiella pneumoniae*; *Nucleic Acids Res.* **18** 151–156
- Felsenstein J 1989 PHYLIP-phylogeny inference package (version 3.2); Cladistics 5 164-166
- Ferrero L, Cameron B, Manse B, Lagneaux D, Crouzet Famechon A and Blanche F 1994 Cloning and primary structure analysis of *Staphylococcus aureus* DNA topoisomerase IV: a primary target of fluoroquinolones; *Mol. Microbiol.* **13** 641–653
- Fragoso S P and Goldenberg S 1992 Cloning and characterization of the gene encoding *Trypanosoma cruzi* DNA topoisomerase II; *Mol. Biochem. Parasitol.* **55** 127–134
- Garcia-Beato R, Freije J M, Lopez-Otin C, Blasco R, Vinuela E and Salas M L 1992 A gene homologous to topoisomerase 11 in African swine fever virus; *Virology* **188** 938–947
- Gellert M, Mizuuchi K, O'Dea M H and Nash H 1976 DNA gyrase: an enzyme that introduces superhelical turns into DNA; *Proc. Natl. Acad. Sci. USA* **73** 3872–3875
- Giaever F, Lynn R, Goto T and Wang J C 1986 The complete nucleotide sequence of the structural gene TOP2 of yeast DNA topoisomerase II; *J. Biol. Chem.* **261** 12448–12454

- Holmes M L and Dyall-Smith M L 1991 Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria; *J. Bacteriol.* **173** 642–648
- Holmes M L and Dyall-Smith M L 1994 Gene organization in the *duaA-gyrA* region of the *Streptomyces* coelicolor chromosome; *Gene* 146 117–121
- Jackson A P and Maxwell A 1994 Identifying the catalytic residue of the ATPase reaction of DNA gyrase; *Proc. Natl. Acad. Sci. USA* **90** 11232–11236
- Jenkins J R, Ayton P, Jones T, Davies S L, Simmons D L, Harris A L, Sheer D and Hickson I D 1992 Isolation of eDNA clones encoding the β isozyme of human DNA topoisomerase II and localization of the gene to chromosome; *Nucleic Acids Res.* **20** 5587–5592
- Kato J-I, Nishimura Y, Immure R, Niki H Iraga S and Suzuki H 1990 New topoisomerase essential for chromosome segregation in *E. coli*; *Cell* **63** 393–404
- Lawrence C E, Altschul S F, Boguski M S, Liu J S, Neuwald A F and Wootton J C 1993 Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment; *Science* **62** 208–214
- Luttinger A L, Springer A L and Schmid M B 1991 A cluster of genes that affects nucleoid segregation in Salmonella typhimurium; New Biol. **3** 687–697
- Madhusudan K and Nagaraja V 1995 Mycobacterium smegmatis DNA gyrase: cloning and overexpression in Escherichia coli; Microbiology 140 3029-3037
- Madhusudan K, Ramesh V and Nagaraja V 1994 Molecular cloning of gyrA and gyrB genes of Mycobacterium tuberculosis: analysis of nucleotide sequence; Biochem. Mol. Biol. Int. 33 651–660
- Margerrison E E C, Hopewell R and Fisher L M 1992 Nucleotide sequence of the *Staphylococcus aureus* gyrB-gyrA Locus encoding the DNA gyrase A and B proteins; *J. Bacteriol.* **174** 1596–1603
- Maxwell A and Gellert M 1986 Mechanistic aspects of DNA topoisomerses; Adv. Prot. Chem. 38 69-107
- Moriya S, Ogasawara N and Yoshikawa H 1985 Structure and function of the region of the replication origin of the *Bacillus subtilis* chromosome. III: nucleotide sequence of some 10,000 base pairs in the origin region; *Nucleic Acids Res.* 13 2251–2265
- Parales R E and Harwood C S 1990 Nucleotide sequence of the gyrB gene of Pseudomonas putida; Nucleic Acids Res. 18 5880
- Pasion S G, Hines J C, Aebersold R and Ray D S 1992 Molecular cloning arid expression of the genes encoding kinetoplast-associated type II topoisomerase of *Crithidia fasciculata*; Mol. Biochem. Parasitol. 50 57–68
- Reece R J and Maxwell A 1991 DNA gyrase: structure and function; CRC Rev. Biochem. Mol. Biol. 26 335–375
- Ridley R G and Kilbey B J 1994 The gene encoding topoisomerase II from *Plasmodium falciparum*; *Nucleic Acids Res.* 22 2547–2551
- Schuler G D, Altshul S F and Lipman D J 1991 A workbench for multiple alignment construction and analysis; *Proteins* **9** 180–190
- Springer A L and Schmid M B 1991 Molecular characterization of *Salmonella typhimurium parE* gene; *Nucleic Acids Res.* **21** 1805–1809
- Stein D C, Danaher R J and Cook T M 1991 Characterization of *gyrB* mutation responsible for low-level Nalidixic acid resistance in *Neisseria gonorrhoeae; Antimicrob Agents Chemother.* **35** 622–626
- Strauss P R and Wang J C 1990 The TOP2 gene of *Trypanosoma brucei*: a single copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II; *Mol. Biochem. Parasitol.* 38 141–150
- Swanberg S L and Wang J C 1987 Cloning and sequencing of the Escherichia coli gyrA gene coding for the A subunit of DNA gyrase; J. Mol. Biol. 197 729–736
- Takiff H E, Salazar L, Guerrero C, Philipp W, Huang W M, Kreisworth B, Cole S T, Jacobs W R Jr and Telenti A 1994 Cloning and nucleotide sequence of *Mycobacterium tuberculosis gyrA and gyrB* genes and detection of quinolone resistance mutations; *Antimicrob Agents Chemother.* **38** 773–780
- Thiara A S and Cundliffe E 1993 Expression and analysis of two gyrB genes from the novobiocin producer, Streptomyces sphaeroides; Mol. Microbiol. 8 495–506
- Tsai-Pflugfelder M, Liu L F, Liu A A, Tewey K M, Whang-Peng J, Knutsen T, Huebner K, Croce C M and Wang J C 1988 Cloning and sequencing of cDNA encoding human topoisomerase II and localisation of the gene to chromosome; *Proc. Natl. Acad. Sci. USA* **85** 7177–7181
- Uemura T, Morikawa K and Yanagida M 1986 The nucleotide sequence of the fission yeast DNA topoisomerase II gene: structural and functional relationships to other topoisomerases; *EMBO J.* 5 2355–2361
- Wallis J W, Chrebet G, Brodsky G, Rolfe M and Rothstein R 1989 A hyper-recombination mutation is *S. cerevisiae* identifies a novel eukaryotic topoisomerase; *Cell* **58** 409–419

Wang J C 1985 DNA topoisomerases; Annu. Rev. Biochem. 54 665-697

- Wang Y, Huang W M and Taylor D E 1993 Cloning and nucleotide sequence of the *Campylobacter jejuni* gyrA gene and characterization of quinolone resistance mutations; *Antimicrob Agents Chemother.* **37** 457–463
- Wigley D B, Davies G J, Dodson E J, Maxwell A and Dodson G 1991 Crystal structure of the N-terminal domain of the DNA gyrase B protein; *Nature (London)* **351** 624–629
- Wilson R, Ainscough R, Anderson K et al 1994 2.2 Mb of contiguous nucleotide from chromosome III of C. elegans; Nature (London) 368 32–38
- Wood D O and Waite R T 1994 Sequence analysis of the Ricketsia prowazekii gyrA gene; Gene 151 191-196
- Wykoff E, Natalie D, Nolan J M, Lee M and Hsieh T-S 1989 Structure of the *Drosophila* DNA topoisomerase II gene: nucleotide sequence and homology among topoisomerases II; *J. Mol. Biol.* **205** 1–13
- Yamagishi J, Yoshida H, Yamayoshi M and Nakamura S 1986 Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli; Mol. Gen. Genet. 204 367–373

Corresponding editor: VIDYANAND NANJUNDIAH