CHEMICAL PASSIVATION OF UNSTABLE FeO -A MÖSSBAUER STUDY*

J.J. SHROTRI, C.E. DESHPANDE, S.K. DATE and S.B. OGALE⁺ Physical Chemistry Division, National Chemical Laboratory Poona 411 008, INDIA

Highly unstable FeO is chemically passivated by incorporating Cr^{3+} ions by solid solution technique and forming $Fe_xO:Cr^{3+}$ single phase material. XRD, chemical analysis and Mossbauer spectroscopy are used for the characterization of the freshly prepared as well as samples aged in the desiccator for nearly three months. Optimum concentration range - 0.25 to 0.75 mole% - of Cr_2O_3 has been found to be necessary for stabilizing $Fe_xO:Cr^{3+}$. x is determined by chemical analysis. Mossbauer and XRD studies have confirmed the chemical passivation of unstable FeO.

I. INTRODUCTION

FeO has a rock-salt (NaCl) type structure with cation vacancies and proportional Fe³⁺ ions for electroneutrality of FeO i.e. $Fe^{2+}_{1-3x}Fe^{3+}_{2x}\square_xO$, x being governed by preparation conditions of the material /1/. However, this simple model seems unlikely for the following reasons: (i) High defect concentration and (ii) coulombic attraction between Fe³⁺ and the virtual negative charge on the cation vacancy,**g**. On the basis of neutron diffraction experiments, the basic defect unit of 4:1 cluster is proposed /2/ with four vacancies tetrahedrally coordinating one interestitial Fe ion; and that the larger clusters are formed from the aggregation of these units. Relation between the defect structure and the magnetic properties of Fe1-xO for a wide range of compositions is reported using neutron diffraction technique, by Akimitsu et al /3/. They have proposed a model consisting of ferromagnetic moments directed along <111> direction in each Koch-Cohen Cluster, arranged antiferro magnetically in the matrix. Greenwood and Howe /4/ have reviewed four such defect cluster models to explain the structure of $Fe_{1-x}O$ and its disproportionation to Fe and Fe_3O_{μ} by Mossbauer studies. Stabilized MnO and FeO have been prepared earlier in this laboratory following a novel and well-proven preparation route of incorporating other cations /5/ such as Zn^{2+} and Mn^{2+} respectively. This paper reports preparation of FeO:Cr³⁺ system following an identical route, its characterization via ⁵⁷Fe Mossbauer effect studes, XRD and chemical analysis.

^{*} NCL Communication No. 3905

⁺ Department of Physics, University of Poona, Poona 411 007, India

2. EXPERIMENTAL

Five compositions of FeO: Cr_2O_3 (Table 1) solid solutions are prepared by insitu decomposition of FeC_2O_4.2H_2O and Cr_2O_3 . Ferrous oxalate and chromium sesquioxide were mixed together in the required proportion for the compositions given in Table 1. The mixture was decomposed in a closed system reported elsewhere /5/ at 200°C in a flowing current of oxygen-free N₂ obtained by passing cylinder nitrogen gas through a column of reduced copper pellets heated at 200°C. Carbon monoxide, evolved during the decomposition, was disposed off completely by burning off to carbon dioxide. After the evolution of gases ceased, the powder was degassed at 800°C to remove traces of CO chemisorbed on the surface of FeO. The material was cooled to room temperature and the powder was pressed into pellets for calcining at 1100°C/24 hrs in static vacuum so as to form FeO: cr_2O_3 solid solutions. Same procedure was followed to prepare a sample of pure FeO without any Cr_2O_3 doping. Five solid solutions and the pure updoped FeO sample were characterized using XRD, chemical analysis and Mossbauer spectroscopy for comparative evaluation.

2.1 Characterization

X-ray diffraction patterns were obtained using Philips PW 1730 x-ray generator with CuK_{ex} radiation, for freshly prepared as well as samples aged for about three months. Standard analytical methods were followed for the estimation of the total iron and Fe²⁺ iron content in the solid solutions and pure Fe_xO sample which gave the value of x in all the Fe_xO:Cr³⁺ compositions. Mossbauer spectra were recorded with a conventional constant acceleration electro-mechanical drive coupled to ND 100 multichannel analyser operating in time mode. A 25mCi⁵⁷ Co:Rh source was used to record the spectra at room temperature. A metallic iron foil (25µm) was used to calibrate the spectrometer and all isomer shifts were measured with respect to that of metallic iron. All the hyperfine (hf) interaction parameters were computed using an iterative least square MOSFIT programme on ICL 1409S computer. Table 1 describes all the computed Mossbauer and cubic lattice parameters along with chemical analysis results.

3. RESULTS AND DISCUSSION

XRD pattern of pure FeO showed a multiphase consisting of FeO, Fe_3O_4 and metallic Fe, as expected, due to its disproportionation. Single phase of FeO for compositions 3 to 5 indicates miscibility of Cr_2O_3 in FeO in this range of compositions. This observation was reproducible even after a period of three months from the date of preparation of the solid solutions. However, XRD data of compositions 2 and 6 showed additional lines of Fe_3O_4 , Fe metal and $FeCr_2O_4$ besides those of FeO indicating multiphase compositions due to their unstability. This implies that there is an optimum concentration of Cr^{3+} ions needed to stabilize FeO. Lattice parameters of these compositions showed that (i) one with minimum concentration of Cr_2O_3 (0.25 mole %), a = 4.298 A, matches well with that reported earlier /6/ and

Table 1 Experimental data on Mossbauer, XRD and chemical analysis

S. No.	FeO:Cr ₂ O ₃ (C mole %	Cr ³⁺) x in Fe _x O	Cubic lattice parameter 'a'	S mm/sec w.r.t. Fe metal (± 0.0	∆ E mm/sec (± 0.02) 2)
1	100.00 : 0.00	0.861	multiphase	1.05	Broad-non-Lorentzian spectrum
2	99.90 : 0.10	0.894	multiphase	1.04	Broad non-Lorentzian spectrum
3	99.75 : 0.25	0.911	4.298	0.90	0.60
4	99.50 : 0.50	0.914	4.289	0.93	0.70
5	99 . 25 : 0.75	0.910	4.281	0.91	0.73
6	99.00 : 1.00	0.884	multiphase	0.90	Broad non-Lorentzian spectrum

(ii) there is a progressive decrease in 'a' with the increasing concentration of Cr^{3+} ions in the lattice. The decrease can be attributed to smaller ionic radius of Cr^{3+} (0.55A) than that of Fe²⁺ (0.76 A). Chemical analysis of the samples was done

immediately after preparation and on keeping the samples for about three months. The analysis clearly indicated that x in $Fe_x O_r Cr^{3+}$ remains unchanged for composition Nos 3 to 5 and decreases for remaining three. A slight assymetry is seen in Mossbauer spectra due to the presence of a small concentration, less than 2-3% of Fe^{3+} species. It is well-known that the presence of Fe^{3+} distorts the local site symmetry (even though the overall crystallographic phase is cubic) resulting in a small temperature dependent quadraupole splitting (ΔE). Unstable compositions (1 and 2) gave broad non-Lurentzian spectrum superimposed on magnetically split three sextets of Fe₃O₄ and metallic iron, while the stabilized Fe $_{\rm v}$ O:Cr³⁺ composition (3 to 5) gave Δ E ranging from 0.6 to 0.73 mm/sec, in good agreement with that reported by Johnson /7/. Isomer shift (8) values range from 0.90 to 1.05 mm/sec which confirm the presence of Fe²⁺ in all the compositions. The small \triangle E at RT can be attributed to the local distortion of the lattic due to Cr^{3+} ions incorporated in the lattice. The Mossbauer results of stabilized Fe_O:Cr³⁺ compositions are reproducible even after three months of the date of preparation confirming their stability. It could be explained on the model proposed for the stabilization of MnO with ZnO wherein we have observed by XPS studies that a mixed phase of ZnO/Mn2O3 formed on the surface protects the bulk MnO from its oxidation /8/. In case of FeO, we expect FeO/Cr2O2 phase on its surface resulting in the surface passivation and hindrance to the disproportionation of FeO.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge helpful discussions with Dr. A.P.B. Sinha, Head, Physical Chemistry Division. We thank Mr. P.P. Bakare, Miss B.A. Sayyed and Mr. J.S. Gujral for their assistance in recording Mossbauer and XRD spectra.

References

- /1/ Landolt-Bornstein, Magnetic oxides and related compounds, New Series, Group III ed. K.H. Hellwege and A.N. Hellwege, Vol. 12, Part b (Springer-Verlag, New York 1980) pp. 2-7 and references cited therein.
- /2/ P.D. Battle and A.K. Cheetham, J. Phys C: Solid State Phys. 12 (1979) 337.
- /3/ M. Akimitsu, T. Mizoguchi, J. Akimitsu and S. Kimura, J. Phys. Chem. Solids. <u>44</u> (1983) 497.
- N.N. Greenwood and A.T. Howe, Part I-III, J. Chem. Soc. Dalton Trans. 1(1972) 110, 116, 122;
 N.N. Greenwood in Perspectives in Mossbauer spectroscopy, ed. S.G. Cohen and M. Pasternak (Plenum Press, New York, 1973) p. 27.
- /5/ C.E. Deshpande and M.N.S. Murthy, Bull. Mater. Sci. 3 (1981) 261 and references cited therein.
- /6/ W.L. Roth, Acta Cryst. 13 (1960) 40.
- /7/ D.P. Johnson, Solid State Comms. 7 (1969) 1785.
- /8/ C.E. Deshpande, S. Badrinarayanan and S.K. Date, J. Mater. Sci. Lett. 4 (1985) 922.