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THE first solution of the problem of finding the wall-interference of a wind
tunhnel of elliptic cross-section was given by Sanuki and Tani! The method
used in this investigation does not give a physical picture of the phenomenon
and does not appear to be very suitable for engineers, to handle. I. Lotz?
gave a general method for the correction of downwash in wind tunnels.
Using Lotz’s method of converting the elliptic boundary of the tunnel into
two parallel planes by the use of elliptic co-ordinates, Gavin and Hensel?
have worked out the upwash due to the walls of the M.I.T. Tunnel. This
method has got the advantage of representing the effect of the wall.as equiva-
lent to a system of images due to the tip vortices of the airfoil placed inside.
However, in getting the value of the velocity induced by the image vortices,
the series requires the values of these image positions in elliptic co-ordinates.
The method used in this paper avoids the exponential functions, by using a
different function for transforming the ellipse, and the image system is
obtained by using simple algebraic functions only.

Let the elhptlcal boundary be represented by the equatlon

"2 +7 5‘3 =1
in the Z-plane; then by using a transformanon function;
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the ellipse is .cdnvértéd into two concentric circles of radii r, and r, such that
a-+b, a—b a —

2 _ .
ry=——ji Iy =—5— and ¢ = — b Wheré a and b are the semi-major

t=

and semi-minor axes of the ellipse. “The entire space ms1de the ellipse is
now enclosed in the annular space between the two circles 7, and r, in the
t-plane. The major axis of the ellipse, which is chosen-as the real axis in
the Z-plane has got its corresponding points on the réal axis of the z-plane
where Z2 > 4c. For Z2= 4¢ the two values in the t-plane coincide and the
corresponding value is given by the equation

t = 4/¢c for Z =24/,
A} 81
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this particular value of Z gives the distance of the focus from the centre of the
ellipse. ~When Z2 <4c the corresponding values in the z-plane lie on a
circle of radius +/z. The ¢ values for this case are of the form, t = £ + iy
and the two values of r make an angle 4+ 6 with the real axis, where

tanOE

The picture of the elliptical boundary with the major axis as trans-
formed to the t-plane is shown in Fig. 1(b). If we consider the airfoil,
situated in the tunnel with its span along the major axis and symmetrical
about the centre, to be replaced by a lifting line with two tip vortices at the
end of the line situated at -4+ x, we can get the corresponding position of
these vortices in the t-plane. Three cases arise.

(i) x <24/c; (1) x =24/c; (i) x <240

In the first case, x has two values & and &, in the #-plane and a vortex
at x is now represented by two vortices in the same sense at £, and &,.

Using the laws of reflection in the circular boundary, we can get an
infinite series of images for each of these vortices at & and &, If we con-
sider the direction of rotation of the tip vortex to be positive and any
image having an opposite sense of rotation as negative then the image
positions for the vortices in the z-plane are given by following values.

- 31; (rlm-*;) —-31—1 ’—?;;f) +& (’1 ot (?)mz 1)

R AR e @
n=01,23,..........

These image positions can be transformed back to the Z-plane by the

inverse function Z =1t + 91 and we get the image system for the vortex

situated at x in the Z-plane. Fortunately the two systems corresponding to
- the two values need not be calculated as it can be shown that

Y 2 2 4 7
7 = 1 py+2 _I_Cfl"zgf ~7 1 ¥t clyn®
nl — & 72 7 T &y T 7 . oML B
& 1t Db & ot Fe®

This avoids the calculation with one of the values ¢, and &, and any one of
them can be neglected. The images all lie on the real axis and in the space
- outside the ellipse.

In the second case x is represented by a single point £ on the real axis
.of the z-plane but additional simplification occurs as for this particular value
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of £ =+/c

r12ﬂ+ 2 cs:s ’-22’3 r, 24 2 0312 ’-12”
Ver:? ' L2 Ve ro et 2
and we get half the number of images of each kind with double the strength
of the original vortex.
When x < 2+/¢, the vortex in the Z-plane has two positions in the z-plane
Pa/Ar — w2 —_—1 — 2
X+ ”’;46 —X" and t, = i ‘{240 X" and one is the

given by ¢, =

reflection of the other in the real axis. The angle subtended by these posi-

tions at the centre is + 6 and is given by the equation, tan 8=+ 1/"""'cx' —=.

All the images due to the vortices at #, and 7, lie on radial lines making an
angle + 6 with the real axis. It is interesting to note that the absolute
values of ¢, and ¢, are the same for all values of x < 24/c¢; only the value
of 6 changes in each case so that the radial distances of the images are the

same, the change being shown by the values of 6.

If we denote the image due to a vortex at either #; or f3 by 1, = 1/r, € 10

then in the Z-plane we get
L, =Xy + iy, =71, e -+ ;Ee*'e. 3)

”%
Expanding ¢ we get,
. c c\ ..

Z, =x, +iy, ==(r,, + ;;) cos 6 :t(r,, .._;;) sin 6

and Z, makes an angle ¢ in the Z-plane given by the relation

— Yn — r n2 —C S
tan ¢ =7 = & Zp_—tan 6. . | @
It will be seen from equation (4) that ¢ is different for different images in

the Z-plane though 6 is the same. As r,, increases in magnitude, ¢ approaches
the value of 6. "

The positions of the images in the three cases are represented .in Fig. 2.

The induced upward velocity « at any point can now be written down
.in the three cages as

1 1 1

I (1 . 1 _ N |
w«~271{—2( X3 —X X +X Xe—X Xpg+Xx

+x31—-x+x;:—x++~_)} » ©)




86 V. M. Ghatage

o

7.5k
28

+4-

3k

2p
2.9

- arh

»
[,

o
4

¥
A
osition where downwask Lactor 8o is reguired

0
N

"
R
x
a”

S

S
_4 N 3 i . ' g A
] 7 2 'é E °.;‘ € 7 -é 4
% = % position of f:]a. vor-f s
Fig. 3




Method of Ca[culaz‘ing the Wall Correction fbr EZZz'ptz'c Tunnels 87

where x;, X, . .. .x,, are the image points for the case x < 24/¢,i.e., the wing
tips outside the foci

~ 1 11 1
w“Z?z{mxl-—x*xl + x xz-x+x2 Fx +-+"}(6)

for the case x = 24/¢ or the tips at the foci. .

T Inl %P+ xT=2xxcosdy,  x® + x3+ 2x;x cos ¢,
Xq COS @y — X X COS g + X L '
+ Xg® + X% — 2x,x COS ¢, + Xs2 + x% + 2xyX COS ¢y T '}(7)
for x <24/¢, i.e., the wing tips inside the foci. Downward induced velocity
is taken as positive and so the negative sign indicates that the image system
induces an upwash in a closed tunnel. If we express the positions of the

images in terms of the semi-major axis of the tunnel and use the tunnel
constants to introduce the cross-sectional area of the tunnel, we get

T 1 1 1
‘”‘"m{”x;-—x"x' ¥ T =¥
1
| , +ﬁ¢ﬂ—~++ -}
In the case x =242
where X, :?; %' __.;_‘

If the expression within the brackets is denoted by 5 (5is —ve for closed
tunnel)

“’—2—& Traa® n 28;

where 8,= ;?; na =s the semispan of the lifting line, and S; = maa?

the tunnel area. Using the expression for the induced upwash angle ‘v"

in radians, where V is the velocity of the relative wind we get

) T'na s - ‘
- = where n represents the position of the tip vortex
(¥),, = 275, Yo P P d

and x represents the place where the upwash is calculated. The series for
8 converges rapidly and it is necessary to calculate only three or four terms

to get an accuracy of one per cent.

To get the upwash due to an airfoil of semispan s = na and having a
given lift distribution, the circulation along the semispan under the influ-
ence of the tunnel wall is broken into a number of components repre-
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. sented by lifting lines of suitable spans and appropriate strength of circula-
tion uniformly distributed. If I, represents the circulation at the centre
and T, at the tip of the mth component lifting line in any given case, then,

(v) Lo na EK,, " K, Somax

where . g T'f = K,, and —_-g— = K,. - _
For elliptic distribution of circulation it can be shown that
' Iy, C.S S
g’ : ®)

- where S is the wing area.

Substituting this value we get,

(3), - s ZKr K, - by | o

This variation of the upwash along the span of the.airfoil can now be plotted
and an average value obtained for any case to get a correction of the wall

influence o s
w — - - had ~ « oo
@L-EEGK,&SWL ‘ (1)
The average value of the wall correction factor A is then defined by"the

equation s
. : w
(v) = A S’; * CL'
Comparing this with equation (10), we have .
1 .
A = ZT(%Kr - K, - a(m;x)w

If a distribution other than elliptical is used, a comparison may be made by
assuming that both airfoils have the same aspect ratio and carry the same

total load. Under this condition equation (8) can be modified. with the
result that

Atz -AK,-am)a;

Using this method, the average correction factor is calculated for rectang’iﬂa_,r
airfoils for the tunnel of the Department of Aeronautical Engineering,
Indian Institute of Science, Bangalore. Fig. 3 gives the values of 8, for
different positions of the tip vortices at different places on the major. axis of
the tunnel, both expressed in' the non-dimensional form. The average
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values of A for rectangular airfoils are plotted in Fig. 4 which also gives ’ |
.the tunnel constants.
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