
Abstract It is well recognized that sea surface temperature (SST) plays a dominant
role in the formation and intensification of tropical cyclones. A number of obser-
vational/empirical studies were conducted at different basins to investigate the
influence of SST on the intensification of tropical cyclones and in turn, modification
in SST by the cyclone itself. Although a few modeling studies confirmed the sensi-
tivity of model simulation/forecast to SST, it is not well quantified, particularly for
Bay of Bengal cyclones. The present study is designed to quantify the sensitivity of
SST on mesoscale simulation of an explosively deepening storm over the Bay of
Bengal, i.e., Orissa super cyclone (1999). Three numerical experiments are con-
ducted with climatological SST, NCEP (National Center for Environmental Pre-
diction) skin temperature as SST, and observed SST (satellite derived) toward 5-day
simulation of the storm using mesoscale model MM5. At model initial state, NCEP
skin temperature and observed SST over the Bay of Bengal are 1–2�C warmer than
climatological SST, but cooler by nearly 1�C along the coastline. Observed SST
shows a number of warm patches in the Bay of Bengal compared with NCEP skin
temperature. The simulation results indicate that the sea surface temperature has a
significant impact on model-simulated track and intensity of the cyclonic storm. The
track and intensity of the storm is better simulated with the use of satellite-observed
SST.
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1 Introduction

The Bay of Bengal is a potentially energetic region for the development of cyclonic
storms (Gray 1968). At an average 3–4 tropical cyclones, 2–3 of severe intensity hit
the east coast of India in a year. These storms, in particular, post-monsoon storms,
are devastating (De Angelis 1976). As far as the death toll is concerned, the Indian
region is one of the worst affected parts of the world and is mainly due to densely
populated coastal regions, shallow bathymetry, and the almost funnel shape of the
coastline.

It is well recognized that the ocean provides the necessary energy for the for-
mation (genesis) and intensification (maintenance of deep convection) of tropical
cyclones (Palmen 1948; Riehl 1979; Miller 1958; Malkus and Riehl 1960). A number
of empirical studies (Brand 1971; Namias 1973; Gray 1975) suggested that tropical
cyclones form over relatively warm ocean and tend to follow tracks along areas of
warm water and weaken when moved over cooler water (Fisher 1958). A number of
observational and modeling studies (Miller 1958; DeMaria and Kaplan 1994; Cione
and Uhlhorn 2003; Ooyama 1969; Rosenthal 1971; Shay et al. 2000; Bosart et al.
2000) established the relationship between changes in tropical cyclone intensity and
changes in sea surface temperature (SST). Although these findings are significant, it
is still difficult to quantify the extent to which changes in SST have an impact on
changes in tropical cyclone intensity, and this can be done only through controlled
numerical experiments.

In the present study, the authors tried to provide an estimation of the impact of
sea surface temperature changes/gradient on mesoscale simulation of the Orissa
super cyclone, which was the most intense storm of the century in the Bay of Bengal.
The next section provides findings of some important observational and empirical
studies. In subsequent sections, the mesoscale model used in the present study is
briefly described, the numerical experiments conducted and the data used are dis-
cussed, the results obtained, observational facts, and related discussions are pre-
sented, and the conclusions drawn from the study are provided.

2 Important observational studies

Merrill (1987) examined the relationship between the intensity of tropical cyclones
(hurricanes) in the Atlantic Ocean and climatological sea surface temperature
(SST). The study was based on observations from a sample of 12 hurricane seasons.
It clearly pointed out that intense storms occur over warm SST regions although it is
not a sufficient condition for the intensification of these storms. This finding was later
confirmed for tropical cyclones over other basins as well (Evans 1991). DeMaria and
Kaplan (1994) investigated the nature of the intensification of Atlantic cyclones
occurring over a span of 30 years and established an empirical relationship between
storm intensity and climatological SST. The study once again clarified that occur-
rence of cyclonic storms is much less with SST < 26�C, even if other atmospheric
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conditions are favorable. The most important finding from this study is that the SST
and its gradient have the greatest influence on intensity of the storm when it varies
within the range 26–29�C. With SST > 29�C, the SST gradient seems to have rela-
tively less impact on the intensification of cyclonic storms. Orlanski (1998) made an
attempt to relate the trajectory followed by the hurricanes with the prevailing SST
and concluded that cyclonic storms always have the tendency to reach the warm
ocean surface.

3 Model description

The community mesoscale model (fifth generation) MM5 developed at Pennsylvania
State University (PSU)/National Center for Atmospheric Research (NCAR) is used
in the present study. This is a non-hydrostatic primitive equation mesoscale model
with pressure perturbation p¢, three velocity components (u, v, w), temperature T
and specific humidity q as the main prognostic variables. Model equations are
written in surface pressure weighted flux form in the terrain following sigma co-
ordinates and solved in an Arakawa B grid. The leapfrog time integration scheme
together with the time splitting technique is used for integrating the model.

The most useful feature about this modeling system is its flexibility in terms of
many options that are user-specified. Setting these parameters to appropriate values,
the model can be used for a wide range of weather and climate applications. The
model has already shown its skill in the simulation of severe Bay of Bengal cyclones
(Mandal et al. 2004; Mohanty et al. 2004) and also those in other basins (Karyam-
pudi et al. 1998; Liu et al. 1997, 1999; Braun and Tao 2000).

A detailed description of the model is available in Dudhia (1993) and Grell et al.
(1995). The overview of the model used in this study is shown in Table 1.

Table 1 Overview of the mesoscale model fifth generation (MM5) model used in the present study.
PBL planetary boundary layer, NCAR National Center for Atmospheric Research, NCEP National
Centre for Environmental Prediction, MRF medium range forecast

Dynamics Non-hydrostatic

Model domain 10�S–30�N, 60�E–110�E
Horizontal grid distance 30 km
Integration time step 45 s
Map projection Mercator
Horizontal grid system Arakawa B-grid
Vertical co-ordinates Terrain-following sigma co-ordinates, 23 sigma levels

(seven within boundary layer)
Time integration scheme Leapfrog scheme (with time split technique)
Spatial differencing scheme Second order centered
Lateral boundary condition Relaxation
Top boundary condition Rigid lid
Radiation parameterization NCAR CCM2 radiation scheme
Surface layer parameterization Multi-layer soil model
Cumulus parameterization Grell
PBL parameterization NCEP MRF
Microphysics Hsie’s warm rain scheme
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4 Experimental design and data used

The super cyclone that crossed the Orissa coast on 29 October 1999 was the most
intense storm of the century in the Bay of Bengal. The initial vortex of the storm was
observed over the gulf of Thailand at 00:00 UTC (Universal Coordinated Time) on
24 October 1999 and is believed to be a remnant of the tropical cyclone
‘‘TS992EVE’’ over the South China Sea. Moving westward across the Malaysian
Peninsula, it emerged in the north Andaman Sea as a well-marked low-pressure area
at 00:00 UTC on 25 October. Moving in a west of northwesterly direction it had
intensified into a cyclonic storm by 03:00 UTC on 26 October and into a severe
cyclonic storm by 03:00 UTC on 27 October. Moving in the same direction, it further
intensified into a super cyclonic storm by 18:00 UTC on 28 October. The storm
crossed the Orissa coast close to the south of Paradip around 05:30 UTC on
29 October. Figure 1 shows the satellite picture of the storm at the time of landfall as
obtained from METEOSAT-5. After landfall, the storm was found to lay centered
around 20.5�N/86.0�E by 06:00 UTC on 29 October (close to Bhubaneswar). It
remained almost stationary at this location for nearly 42 hours and caused excep-
tionally heavy rainfall over Orissa during 29–31 October 1999.

The mesoscale model MM5 described in the previous section was used to simulate
the Orissa super cyclone to investigate the influence of SST in modulating the
intensity and track of the storm. The NCEP/NCAR reanalysis dataset (2.5� · 2.5�)
horizontal resolution) interpolated to model grids was used as initial and boundary
conditions for model integration. The model was initialized with 12 hours’ analysis

Fig. 1 Satellite picture of the storm as obtained from EUMETSAT METEOSAT at 05:30 UTC
(Universal Coordinated Time) on 29 October 1999, i.e., at the time of landfall
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nudging before the start of the actual forecast period at 00:00 UTC on 26 October
1999 and was integrated for 123 hours to produce a 5-day simulation of the storm. To
investigate the impact of SST and its gradient, three numerical experiments were
conducted with three types of SST data. All other meteorological and geophysical
parameters were kept unchanged in all these experiments and the SST was also kept
constant throughout the model integration period.

The model was first integrated with 1� · 1� resolution monthly mean climatological
SST from NCEP and this will be referred to as ‘‘CONTROL’’ simulation hereafter. In
the next experiment, the model was forced with SST derived from skin temperature in
an NCEP reanalysis dataset and will be referred to as ‘‘EXPERIMENT 1’’ in the
subsequent discussion. In the last experiment, the SST provided to the model was the
reanalysis prepared with NCEP skin temperature as background field and satellite-
derived (TRMM) SST observations (at 0.25� · 0.25� resolution). This methodology
has been employed as the observed SST data was missing in some areas and could not
be used directly. This final experiment will hereafter be referred to as ‘‘EXPERI-
MENT 2’’. The monthly mean climatological SST data used in the CONTROL
simulation was from NCEP and was prepared by combining measurements from
satellite-borne instruments and in situ ship and buoy platforms using the Optimum
Interpolation technique (Reynolds and Smith 1994). The climatological SST was
prepared for the period 1981–1997 (Reynolds and Smith 1995).

5 Results and discussions

The results obtained from the numerical experiments are presented with related
observational facts. The focus is on the intensity (in terms of sea level pressure, wind
strength, and precipitation) and track of the storm.

5.1 Influence on intensity

Figure 2 represents the SST field used in three model simulations CONTROL,
EXPERIMENT 1, and EXPERIMENT 2 along with the track of the storm obtained
from respective model simulations. This shows that in all three simulations, the
storm was initially over the same SST zone (301.5 < SST < 302). Figure 3 illustrates
the model simulated mean sea level pressure. In the first two experiments (CON-
TROL and EXPERIMENT 1), the storm moved over the same SST zone in the first
24 hours and intensified in a steady rate. In EXPERIMENT 2, the storm moved
over a positive SST gradient in the first 18 hours and over a negative SST gradient in
the next 6 hours. The model-simulated central pressure drop shows that the increase
in the rate of intensification of the storm was higher in the first 18 hours than in the
next 6 hours, although the pressure drop in the first 24 hours was the same in all
three simulations. Close examination of latent and net heat fluxes (Figs. 4, 5;
Table 3) also reflects a similar trend. The model-simulated PBL height (shown in
Fig. 6) was marginally more in EXPERIMENT 2 indicating a tendency toward
higher intensification in the coming hours. It can be mentioned here that the model-
simulated (in all three experiments) central sea level pressure (SLP) on day 1 (27
October 1999) was the same as the observed central SLP (998 hPa, Table 2),
although the initial strength of the storm (central SLP of 1,002 hPa) was not well
represented in the model’s initial condition derived from NCEP reanalysis.
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Fig. 2 Sea surface
temperature used in model
simulation valid at 00:00 UTC
on 26 October 1999 with the
model-simulated storm track
for a CONTROL, b
EXPERIMENT 1, and c
EXPERIMENT 2
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In the next 24 hours (between day 1 and day 2), the storm moved over a positive
SST gradient in all the three experiments, although the gradient (the figure does not
show this weak SST gradient as for the sake of uniformity the three SST fields were
plotted with the same contour interval) was weak in the climatological SST
(CONTROL simulation). This led to slightly more intensification of the storm
during this period in last two experiments (1 hPa in EXPERIMENT 1 and 2 hPa
in EXPERIMENT 2). This higher intensification of the storm is shown in the
model-simulated PBL height and heat fluxes as well (Table 3).

From day 2 to day 3, in all (three) model simulations, the storm moved over the
constant SST surface (no SST gradient), although the SST was marginally higher in
EXPERIMENT 1 and EXPERIMENT 2 compared with the climatological SST. On
day 3, the storm reached its peak intense stage with peak values of heat flux, wind
strength, and PBL height in all three experiments. This result corroborates the

Fig. 3 Model-simulated mean sea level pressure (MSLP, in hPa; all at 00:00 UTC) with contour
interval one valid on day 1, day 3, and day 4 for a–c CONTROL, d–f EXPERIMENT 1, and g–i
EXPERIMENT 2
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findings of Joly et al. (1999), whoi concluded that a tropical cyclone reaches its peak
intensity over the warmest SST. The storm was found to be most intense in the
EXPERIMENT 2 simulation with central SLP 967 hPa compared with 974 hPa in
EXPERIMENT 1 and 975 hPa in CONTROL simulations respectively. The high
intensification on day 3 is indicated by the higher PBL height and heat fluxes.

In the next 24 hours (i.e., between day 3 and day 4), the storm crossed the
coastline and hence started to dissipate in EXPERIMENT 1 and EXPERIMENT 2
simulations, whereas the CONTROL simulation showed dissipation of the storm
even before the landfall. This was due to its movement over a cooler SST region.

Fig. 4 Model-simulated latent heat flux (in W m–2; all at 00:00 UTC) valid on the initial day (26
October) and day 3 (29 October) for a, b CONTROL, c, d EXPERIMENT 1, and e,
f EXPERIMENT 2
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The pressure drop and strength of surface wind shown in Table 2 clearly indicate
that the intensity of the storm in three simulations varied in the range of 10–25% of
the intensity in the CONTROL simulation (in terms of pressure drop). This infers
that SST had a significant influence on modulating the intensity of the storm, par-
ticularly at the severely intense stage, and the intensification and dissipation of the
storm was better simulated with the observed SST (i.e., in EXPERIMENT 2). The
model simulations show higher variations (as much as 75%) in storm intensity on
day 4 and day 5, but this is probably due to a complex land–ocean–air interaction.

Fig. 5 Model-simulated net heat flux (in W m–2; all at 00:00 UTC) valid on the initial day (26
October) and day 3 (29 October) for a, b CONTROL, c, d EXPERIMENT 1, and e,
f EXPERIMENT 2
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As mentioned earlier, the storm caused heavy rainfall over Orissa during 29–31
October 1999. The isohyets drawn from the India Meteorological Department
(IMD) recorded station rainfall during these 3 days (day 3 to day 5) are shown in
Fig. 7. Model simulated 24 hours accumulated precipitation valid for these days from
CONTROL, EXPERIMENT 1, and EXPERIMENT 2 simulations is shown in
Fig. 8. The maximum rainfall over Orissa from model simulations and observations
are also provided in Table 4. For all 3 days, the model under-predicted 24 hours
accumulated precipitations. On day 3 and day 4, 24 hours accumulated precipitation

Fig. 6 Model-simulated PBL height (in meters; all at 00:00 UTC) valid on the initial day (26
October) and day 3 (29 October) for a, b CONTROL, c, d EXPERIMENT 1, and e,
f EXPERIMENT 2
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Table 2 Model-simulated and observed central pressure drop (hPa) and surface wind (10 m above
from surface) strength (m s–1) of the Orissa super cyclone

Time
(00:00
UTC)

Pressure drop Surface wind

Control Experiment
1

Experiment
2

Observed Control Experiment
1

Experiment
2

Observed

Day 1 11 11 11 10 18 18 18 45
Day 2 21 22 23 20 22 23 23 65
Day 3 35 36 42 98 31 32 33 140
Day 4 31 24 25 14 25 22 20 65
Day 5 19 14 11 12 18 15 14 18

UTC Universal Coordinated Time

Table 3 Model-simulated latent heat flux (W m–2), net heat flux (W m–2), and PBL height (m) of the Orissa super

cyclone

Time

(00:00

UTC)

Latent heat flux Net heat flux PBL height

Control Experiment

1

Experiment

2

Control Experiment

1

Experiment

2

Control Experiment

1

Experiment

2

Day 1 500 500 500 600 600 600 1,400 1,450 1,500

Day 2 600 650 700 700 750 800 2,000 2,100 2,200

Day 3 1,000 1,100 1,300 1,200 1,300 1,500 2,800 2,900 3,000

Day 4 900 800 700 1,200 900 700 2,300 1,900 1,900

Day 5 600 500 400 800 700 600 1,800 1,500 1,400

Fig. 7 Observed 24-h accumulated precipitation (in cm) valid at 03:00 UTC on a 29 October 1999, b
30 October 1999, and c) 31 October 1999
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over Orissa was better simulated in EXPERIMENT 2. On day 4, the model simu-
lation showed a maximum of 36 cm compared with 42.6 cm in the observation. On
day 5, the CONTROL experiment showed a maximum precipitation of 33 cm
compared with 34 cm in the observation. On this day, rainfall associated with the
storm was better simulated compared with the other two experiments. It should be

Fig. 8 Model-simulated 24-h accumulated precipitation (in cm) valid at 03:00 UTC on day 3 (29
October), day 4 (30 October), and day 5 (31 October) for a–c CONTROL, d–f EXPERIMENT 1,
and g–i EXPERIMENT 2

Table 4 Model-simulated and observed 24-h accumulated maximum precipitation (cm) of the storm
over Orissa

Time (03:00 UTC) Control Experiment 1 Experiment 2 Observed

Day 3 (29.10.99) 3 1 5 9.0
Day 4 (30.10.99) 29 31 34 42.6
Day 5 (31.10.99) 33 23 30 36.0
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mentioned here that climatological SST showed a warm surface temperature near
the coastline, which helped the storm to maintain the intense stage and thus resulted
in more rainfall.

5.2 Influence on track

The tracks of the storm obtained from all (three) model simulations and the
observed track obtained from IMD with the position of the storm every 24 hours are
presented in Fig. 9. The figure shows that the SST had a notable impact on the
movement of the storm as well as on the track errors (shown in Table 5) in three
simulations, which varied within the range of 10–50% from 1 day to the other. As

Fig. 9 Track of the storm during 26–31 October 1999, observed track obtained from the India
Meteorological Department (IMD), and the tracks obtained from CONTROL, EXPERIMENT 1,
and EXPERIMENT 2 simulations

Table 5 Displacement error (km) in track forecast in all experiments compared with the observed
track in the case of the Orissa super cyclone

Time (UTC) Control Experiment 1 Experiment 2

Day 1 213.72 228.14 234.81
Day 2 273.75 245.56 235.69
Day 3 188.79 221.69 282.01
Day 4 235.83 320.95 213.99
Day 5 298.53 275.90 236.34
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shown, the model-simulated tracks followed nearly the same trend and to the left of
the observed track of the storm. The maximum difference in track errors in the three
simulations occurred on day 3 with location of the storm in the last two simulations
(EXPERIMENT 1 and EXPERIMENT 2) to the left of that obtained from the
CONTROL simulation. This is probably due to the presence of the warm SST region
to the left of the track (Fig. 2b, c), which drags the storm toward it (Orlanski 1998).
The figure also shows that the track of the storm is relatively better simulated with
the use of satellite-derived SST.

6 Conclusions

In the light of the results and discussions presented in the previous section, the broad
conclusions drawn from this study can be put forward as follows.

The SST and its gradient have a significant impact on modulating intensity (as
reflected from the mean sea level pressure) of the storm, with the peak intensity of
the storm reached over the warmest SST. This finding corroborates that of Joly et al.
(1999).

Model simulation also shows that SST modulates the track of the storm as well
the storm, showing the tendency to move toward a warmer ocean surface, as men-
tioned by Orlanski (1998).

The track and intensity of the storm is relatively better simulated with the use of
satellite-observed SST to force the mesoscale model.

It should be mentioned here that along the track of the storm, the NCEP skin
temperature and observed SST are mostly over 29�C. According to DeMaria and
Kaplan (1994), SST has relatively less impact on the intensification and movement of
the storm when it is within this temperature range. This important aspect could not
be clarified in the present study, as it was a single-storm simulation.
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