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Abstract. A composite reaction is represented by a number of elementary reactions describing
its mechanisms. By a linear transformation, the chemical flow and flux can be changed and one
might obtain a new mechanism. The present report works out the selection rule to be imposed
on the transformation matrix if the two mechanisms are thermodynamically and/or,
kinetically indistinguishable (or equivalent). The net free energy change, entropy production,
Onsager symmetry, and the detailed balance condition are considered to be the invariants of
the transformation for thermodynamic equivalence. The selection rule has to be slightly

- modified for cyclic reactions. Two cyclic reactions with equivalent mechanisms are also worked
out. It is proposed that for biochemical systems predormninated by cyclic reactions, the selection
rule is more permissive, and occurrence of multiple mechanisms has a higher probability,
resulting in an enhancement of the fidelity of the net reaction in the presence of random
environmental ‘error variables’.
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1. Introduction

A composite reaction can generally be represented by a set of elementary reactions.
Each elementary reaction has a well-defined reaction velocity given by the law of mass-
action (Shear 1967). The reaction-velocity expresses a single chemical flow-vector, the .
corresponding affinity being the chemical driving force (Prigogine 1967; Nicolis and
Prigogine 1977). Often the mechanism of a composite reaction can be described by two
or more sets of flow-force descriptions each leading to the same rate of entropy
production (Prigogine 1967; Meixner 1942, 1943). These systems of elementary
reactions, known as equivalent systems (Prigogine 1967) are related to one another by
transformation matrices (Koenig et al 1961). However, such transformation matrices
cannot be arbitrary, since the Onsager symmetry must be retained in any transformed
descriptions (Coleman and Truesdell 1960). Koenig et al (1961) have demonstrated that
a linear transformation essentially changes the reaction mechanism without affecting
the overall kinetics. It is known that so long as the reactants, products and
intermediates of a given composite reaction remain unchanged, the standard free-
energy change does not depend on the mechanism of the reaction. Therefore, the
transformation of chemical fluxes and forces must be such that the original and the
transformed system give rise to an identical change in the standard free energy.
The present report describes that the mechanism independence of standard free-
energy change can serve as an additional restriction on the transformation matrix. It
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has been shown that for most composite reactions (including the reactions described by
Koenig et al 1961), the transformation matrix reduces to an identity matrix if this
invariance of standard free energy change is considered.

Looped reactions seem to have a special status in this regard. Particularly the loops,
which involve only isomerization reactions, are not associated with any change in the
standard free energy. For such reactions, therefore, the transformation of chemical
fluxes and flows seems to be more permissive. In other words, isomerization loops
might involve kinetically-and thermodynamically indistin guishable but mechanistically
distinguishable chemical pathways. In a biological system most of the macromolecules
are in states of dynamic conformational transitions. If a macromolecule can have four
conformational status, say A, B, C and D, then the following two series of transitions
are thermodynamically as well as kinetically indistinguishable. Now, if in mechanism
(R,a) the transition C =4 is affected due to any random or induced change, the
thermodynamic and kinetic behaviour of the four conformers would still be
unchanged. Qualitatively a multiple mechanism of a composite system increases the
fidelity of the same. In contrast to looped reactions, non-cyclic chemical pathways
generally lead to finite changes in standard free energy and hence the condition of
invariance of free-energy-changes in indistinguishable mechanisms may be expected to
be more restrictive for non-cyclic reactions than cyclic one.

AZ==sD)

N A -

B=—%C
{al {b)

2. Thermodynamic and kinetic indistinguishability of two reaction mechanisms

Any composite reaction C can be attributed to a particular mechanism (M,) = {E,}.
For example, the composite reaction,

A+B=C+D, (R2)
can have a mechanism expressible as '
AS=2C+X (Ey)
X+C=Y (E,), M)
Y+B=D (E3),

where E,, E, and E; are elementary reactions for which chemical affinity and reaction
velocity can be explicitly defined, and X and Yare intermediates which do not appear in
the overall reaction. Again, the composite reaction (R,) can be attributed to an
alternative mechanism,
A=C+Y (EY)
=C+X (E%) M,)
B+C+X==D (E}) '

which involves the same species as M,).
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Hence (M,) may be transformed into M, = {E,}, by considering the linear
transformations of macroscopic flows and forces as
V> =S|, 8
and,
|4"> =T|4), @)

where (4, V) and (A4’, V') are the affinity and velocity vectors in the reference and
transformed systems and S and T are the transformation matrices. Such linear
transformations are called “equivalent transformations” (Prigogine 1967) provided the
original and transformed systems are thermodynamically as well as kinetically
equivalent.
(i) Thermodynamic indistinguishability (1) of two chemical systems requires:

(a) identical rate of entropy production (E), i.e.

o= CA|V)y=<AV", \ 3

(b) preservation of Onsager symmetry relations (0), i.e. in near equilibrium region
the linear relations, -

IV/> = Lf|A1>’
and
|Vy=L|A>.
Satisfy
L =L" (4a)
L=L. (4b)
(c) invariance of net change in free energy (G), which means,
AG = AG/, " (5)

AG and AG' being net changes in free energy in reference and transformed systems.
Since two mechanisms lead to the same overall reaction, AG .., being independent of
path, must remain invariant. Hence (5) may be thought of as an exclusion principle for
transformation matrix S, such that the matrices not satisfying (G), i.e. (5), cannot
describe equivalent transformation processes.

(d) invariance of solutions of detailed-balance conditions (Onsager 1931) at
equilibrium (pB). Since the chemical system under consideration is assumed to be mass-
closed, it would eventually reach a unique equilibrium point (Shear 1968, Gray 1970) in
the limit of the ideal solution approximation (Nicolis and Prigogine 1977). Now two
reaction routes will be indistinguishable if they both yield the same values of
concentrations for each of the chemical species at equilibrium. Hence two sets of
detailed-balance conditions must have the same set of solutions for equilibrium
concentrations.

(ii) On the other hand, kinetic indistinguishability (k1) of two mechanisms requires
the time-evolution of the concentrations of reactants to be identical in both
mechanisms, i.e.

dC;/dt = (dC;/dt), 6)

where C; represents the concentration of the jth chemical species (j=1,2,...n,n
being the total number of species involved). In fact (x1) does not provide any additional
constraint on the transformation matrix. The validity of (E) is a sufficient condition for
the validity of (x1) provided chemical potential vectors are conserved. Chemical
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potential vector |1 ) being an explicit function of the activity coefficients only, remains
unaltered during the transformation. We shall denote the invariance of |z ) by (M),

which requires

1> = |1, | ™
where |y} and [p') are the chemical potential vectors in the reference and the
transformed systems.

3. Equivalent transformations in non-cyclic reactions
Coleman and Truesdell (1960) showed that if the transformation matrices S and 7°
defined in (1) and (2) satisfy the relation,

T=(S—1)z= (S’)_l, _ , ’ 8)

(E) and (0) [iie. (3) and (4)] are satisfied trivially. Such a choice, however, requires the
matrix § to be non-singular. The affinity vectors can be expressed as (Nicolis and
Prigogine 1977)

|4 = =v[u), | (92)
and,

47> = — v, | (9b)
where v = ||v;,|| and v = ||v}, || are stoichiometric co-efficient matrices (Boyd 1977;

Prigogine 1967) in the original and transformed descriptions respectively such that
p=1,2,.. . rbeing the number of linearly independent simultaneous reactions. At
this point, it should be mentioned that the present study deals only with those
transformations which preserve the total number (r) of elementary chemical pathways
in original and transformed descriptions. Since concentration evolution vector {C‘ ycan
be expressed as

€Y =v|V>.
From (1) and (6) the condition for (x1) is given by
vV = VIV =v'S|V),

or ‘

Vi=v(§1). (10)
It is now interesting to see that,

@) (E)-(0). (Ly)
Proof: (E) implies,

<A’|V’>=a=<A[V}. ﬂ ' (11

In near equilibrium region (Onsager 1931; Katchalsky and Curran 1967; ‘Nicolis and
Prigogine 1977), (11) yields

CA'[L[A") = CA|L|4>. (12)
From (2) and (12),

(AIT'L'T|A) = <A|L| 4,
or
(A[(T'LT)-(L)|4 = 0.
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For non-cyclic reaction A)s (p=1... r) are linearly independent. Hence
T'LT = L.

Thus in the transformation process defined by (1) and (2), L-matrix suffers a congruent
transformation which retains its symmetry (Margenau and Murphy 1966; Coleman
and Truesdell 1960). '
Hence,

(L=L)— (L =L".
Thus, (E) implies (O).
(i) (E)— (k1) | (L)
Proof: (E) requires,
AV = LAV
Using (9) and (7),
—uly |V = =<u| V)

Since y;'s are linearly independent,

VIV = vV,
or
) > =1[C- (13)
Equation (13) expresses nothing but (k1).
(iii) (x1)— (E)+(0) (Ls)
Proof: Equation (11) shows that (x1) implies
vV =y
Then
47> = =iy = =,
="— [Tk
= — STV |ud,
=+ (574> | | (14)
Comparing equation (14) with (2), it follows that
T=(S"1).

It has already been mentioned that the above relation [also expressed by (8)] implies
the validity of both (E) and (O ). Hence from the logical relations (L), (L,)and (L3),
one obtains the logical triangle,

J/

(o) A (La)
(Chem. Sci.) —4¢
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So far the investigators (Coleman and Truesdell 1960; K oenig et al 1961) considered the
validity of (E), (0) and (k1) as sufficient criteria of thermodynamic and kinetic
equivalence of two mechanisms, which may not be true, in general, since the validity of
(E), (0) and (k1) do not ensure the validity of (G) and (pg).

Equation (5) implies nothing but the invariance of the net equilibrium constant K
since

Keq = €Xp [ - (AG/RT)]

Using the law of mass-action, K,, can be expressed as

Keq = n Kp - pI=-[1 jgl (ng)vjp’ (15)

p=1

where K, is the equilibrium constant for pth elementary reaction. (1) yields for a given
set of initial conditions

(C59) = (C59), , (16)

where (C$%) and (C$) represents equilibrium values of C; in the original and the
transformed descriptions respectively. Then, from (5), (15) and (16), we get,

Z Z (vjip—Vj,)InC§9 =0,

ji=lp=1

‘which, together with (10), yields

5 Z[ — Y v, (8" l)pp]lnccq 0.
ji=lp=1 p =1

Since C§9 depends to some extent on the initial conditions two different descriptions
will yield identical changes in the net free energy irrespective of the initial conditions
imposed on the system provided

i Zr: Vip' [5pp’ —(8” l)p’p] = 0. 17

p=1lp' =1
Equation (17) provides a selection rule to the transformation matrix S for (G) to be
“satisfied.

Atequilibrium, the forward (v, ) and reverse (v, ) velocities are equal and the detailed
balance condition is given by (Gray 1970)

or,

kS H (C3Oyir =k, H (Csayvie, (18a)
j=1 j=1
where, (v,)*, k¥ and v f;’, are reaction velocities, kinetic constants and stoichiometric
coefﬁcxent of j th species in pth forward and backward reactions respectively in original
description. Similarly, using primed notations for transformed descriptions we gét the
detailed-balance conditions,

(Y TT (€590 = G5y [T (0 (18b)

i=1 i=1
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Equat@on (16) shows that (18a) and (18b) must have identical sets of solutions for C4.
Equations (18a) and (18b) can be written in the form ’

+

c k
Z Vie lnC?l = 1n“k—e: = 1nKp=

& - (18c)
and
n , (k + ); ,
j;lvjplnCE‘*=1n(k'l’;,),=anp. | (18d)
Equation (18), together with (pB), yields
n , K
Y (vjp—-vj,,)lnC§q=ln—ﬁ (19)

’
ji=1 Kp

where, K, =k /k, and v, = vj,—vj, have already been defined in (15) and (9)
respectively. Equations (19) and (10), together give,

Yy, [vjp-- Y v (S “1)p,p]1nC§‘1 = lng—’,’—. (20)
j=1 p=1 p

Equation (20) provides another set of selection rules comprising of r number of
simultaneous relations which must be satisfied by the transformation matrix S in order
to satisfy (pB). Hence, two mechanisms of any composite reaction can be said to be
indistinguishable, if the transformation matrix S in (1) satisfies simultaneously (3), (17)
and (20), i.e. the conditions (E) [and also (0) and (x1)], (G)and (pB) respectively. Any
transformation matrix satisfying only (E), (0) and (x1), may not represent indis-
tinguishable transformations as can easily be seen from the following illustration,

1 00 ... 0 —oy
0 1 0 PN 0 — 0
001 ... 0 —a3
s=l - - - - 1)
0 0 0 - 1 e a:,._ 1
000 ...0 1
satisfying (1), (2) and (8) where &g, . -~ - -« «,_, are arbitrary real constants.

The transformation equations for stoichiometric coefficients in two descriptions
then can be expressed as

inp = Vjp» (p =1, 2, e r_l)
r—1

Vi = V_,-, + Y AV
. =2 |
The selection rule given by (G), i (17) now implies

r—1' 5
Y av,=0(=1..-7 (22)
p=1

Equation (22) represents n number of simultaneous homogeneous linear equations

L — e
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(since j=1...n) for (r—1) number of variables (a,’s). Thus, for r < n, the only
possible solution for (22)isa, = 0,for = 1,2 ... (r—1),ie. S = I, an identity matrix.
So, for non-cyclic reactions i.e., for r < n, Koenig's transformation matrix (21
cannot provide two or more mechanisms which will be thermodynamically indis-
tinguishable for arbitrary set of initial conditions. However, for a specified set of initial
conditions, i.e. for a given set of equilibrium concentration, Koenig’s transformation
matrix given by (21) can transform a reaction mechanism thermodynamically and
kinetically equivalent provided selection rule given by (17) is satisfied, i.e.,

Y Y a,v,InCa=0. (23)
j=1p=1

It can be easily verified that transformation matrix S given by (21) will satisfy (pB), i.e.
(20), provided

KP=K;, (for =1...r=1), (24a)
and ‘
n r-1 K
> ¥ v, InCHl =In>r, (24b)
i=lp=1 Kr

But (23) implying (G) shows that left side of (24b) vanishes, so that we can write
K, =K,. (24¢)

- Itisto be noted that even these selection rules cannot be satisfied for r < 2, since (23)
takes the form '

a4, ) viiInC¥ =9, InK, =0,
i=
or (244)
“IAGI = 0- ) :

In general, the AG,, the free energy change associated with the first elementary
reaction, is non-zero and has a negative sign (Keizer 1975). Thus the (24d) implies
a; = 0, which indicates that Koenig’s transformation matrix fails to describe any other
equivalent mechanism for the example cited in their work, i.e. the synthesis of urea in
liver,

2NH; +CO, =(NH,),CO + H,0

4. Example of equivalent mechanisms for monomolecular looped reactions in
isolated systems

It is worth mentioning that the selection rule (17) imposed by invariance of free energy
change may be trivial for looped reactions in isolated systems. To illustrate this point
the reaction scheme R;(a) and (b) can be considered. As already mentioned in these
schemes, 4, B, C, D might be considered as four structurally interchangeable
conformations of a given macromolecule (or monomolecular isomers), original
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mechanism i$ expressed as (assuming isomerization reactions involved are elementary).

ks
=B
koy
ke
B=C
k-2
k3 \
A“"“"‘L""D or c="D (R,a)
ks
'“§$\§“3 b
p=t=—=C D=A
2 k_s
ks
=C
k-s
The reaction-velocities are given by
!V>=K\C>, (25)
where .
kl """k__l 0 0
0 k, k-, O :
K=10 0 ky k- {26}
k-4 0 0 ks
ks 0 k_s O
Vy=(1V2 Vs ViVs)s (27a)
and
|IC>=(AB C D). (27b)

K, sin (26) are kinetic constants for pth forward and backward reactions and A. B, C,
D in (27) are the concentrations of reactants.

The affinities 4,’s (p =1 ...5) are no longer independent since they satisfy the
conservation equations

A1+A2+A3+A4 "—"-0, i?ﬂm
A1+A2 = As. 1:231";
So, choosing A;, 4, and Aj as independent affinities Al, Aband Ah, we get,
|A"> = M|A>, (29
where,
1 00 00
M=1101000]. (30)
0 0100
Then, the rate of entropy production ¢ is given by
o= AV, 31
where,

‘VI>$N1V>, | (32)
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matrix N being given by
1 00 -1 1
N={010 -1 1 . (33)
001 -1 0 :

In near equilibrium region, the phenomenological velocity-affinity relation takes the
form (Katchalsky and Curran 1967)

|[V1y =L|A", (34)
L being the symmetric Onsager matrix for mechanism R, (a). If we now consider a linear

transformation of reaction rates and affinities as given by (1) and (2), where S and T are
such transformation matrices that ¥’ and A, represent the variable mechanism R, (b)

2

ky
A=B
K-y

|

or C := (R,b)

X

The rate of entropy production given by (31) and the symmetry of L-matrix in equation
(34) will be preserved if transformations (1) and (2) result in linear transformations of
indepedent flows and fluxes as

|(VY> =R|VTY, . (35a)
[ATY> = (RD)™1| 4!, ~ (35b)

where R is the transformation matrix for independent flows. For mechanism R,(b), the
reaction velocity vector can be expressed as,

[V'>=K'|C>, (36)
where
ky -k, 0 0
0 ky —k’, 0
K = 0 0 ky ki, (37)
-k_, 0 0 A
0 k' 0 k.,

where k’jc , are kinetic constants of pth forward and backward reactions in mechanism
R, (b).
At equilibrium, the detailed-balance conditions satisfied by the equilibrium concen-
trations A4y, By, C, and D, are given by
kiAo =k_yBy;  kyBy=k_,Co;  kiC, =k_3Dy;
k4,D0 = k..4_A0; k5‘40 =k_5C0. . . (38)
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For mechanism R, (a), and,
kiAo = k" Bo; k3 By = k'-3Co; k3Co = k" 3Do;
4Do = k"_4Ao; ksBy = k5D ‘ 39)

for mechanism R (b).
Elimination of Ay, B, etc from (38) and (39) will yield

ki = (ki/k-)k"; (40a)
fori= 1,2, 3 and 4, and,
ks = (koks/k_2k_3)k"_s (40b)
Then, from equations (24)-(27), (37) and (40), we can write
k' = Uk, 41)
where '
k_/k-y O 0 0 0
0 k'_,/k-, 0 0 0
U=1] 0 0 k'.3/k_5 O 0 (42)
0 0 0 k_4/k-o O
0 (ka/k-2k-3)k"s k_s/k_3 O 0
Now from equations (25)-(27), (33), (36) and (41), we get,
SK|C) = UK|C). (43)

Since in looped reactions all the concentrations of the reactants cannot evolve
independently (43) will be satisfied for arbitrary values of C;’s only if,

~ det|S-U| =0, (44)
which, together with (42) yields
det|S| = det|U| = 0. (45)

The transformation (34) results in a transformation in stoichiometric coefficient matrix
as given by (11), i.e. '

Vi) =Tv|u), (46)

where, the stoichiometric coefficient matrices in two mechanisms R, (a) and R;(b) are
respectively given by

-1 0 0 +1 -1
41 -1 0 0o o
Y=L 0 +1 —-1 0 +1 (47)

0 0 +1 -1 0
and,
1 0 0 +1 0
, | +1 -1 0 0 -1
=1 0 +1 -1 0 0 | (48)
0 0 +1 -1 +1
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so that v;, and v}, represent stoichiometric coefficient of jth species in pth reaction in
mechanism R, (a), R, (b) and chemical potential vector |u ) being given by

Ha
- Hp
= 4 49)
Hp

in either description. V _
Since all the concentrations 4, B, C and D are not independent, all K;’s no longer
remain independent. Hence, (46) will be satisfied if,

det|T*(vY —v| = 0. (50)
Transformed affinities 4,’s also satisfy conservation equations of the form
AT+ A5+ A5+ A4, =0, v (51a)
and
b+ Ay = A5, (51b)
Choosing A4,, A, and 45 as independent affinities we can write,
[(47) ) =M'|4"), (52)

where M is of identical form as M given by (30). Similarly, independent velocities ¥
will now be given by

(V)>=N1r"> ‘ (53)

where,
+1 0 0 -1 0
N'= ( 0 +1 0 —1 +1) (54)
0 0 +1 -1 +1

So that rate of entropy production is given by
o= ANV (53)

With the help of (31), (35) and (55), o can be easily shown to be invariant.
Equations (2), (29), (35b) and (52) altogether yield

MT|A) = (R)™'M|4), (56)
which will be satisfied if,

det|[MT—(R")"'M| = 0. ‘ (57
Similarly, (1), (32) (35a) and (52) give

RN|V) =N'S|V>, (58)
which will be satisfied provided '

det|RN—N'S|=0. . (59)

Thus, the elements of (5 x 5) matrices S or T, and (3 x 3) matrix R should satisfy only
four simultaneous homogeneous equations (45), (49), (57) and (59) which can always
give non-trivial solutions for Sj, (or Tjx) and R.g’s.
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Appa}rently it seems that R, (a) and R (b) cannot be kinetically equivalent since time
derivative of any particular species, for example, Ain R, (a) depends explicitly on C
while in R,(b), it does not. But, as long as, we are considering closed systems, thé
changes in concentrations are not absolutely. independent and an increase in C causing
changes in 4, B and D, will cause equal changes in A in both R, (a) and R, (b), since ]C >
remains invariant and the logical relation (L,) shows that

A ‘ Ry — A lRl(b)

for any particular set of values for (4, B, C, D) at any given instant.

5, Discussion

Present report emphasizes that for a given set of thermodynamic and kinetic
parameters multiple indistinguishable mechanisms can exist, though the conditions of
invariance of net change in free-energy and detailed-balance conditions restrict the
choice of such ‘equivalent’ mechanisms. It is interesting to note that if two mechanisms
are thermodynamically indistinguishable they will automatically be kinetically indis-
tinguishable. However, that the reverse may not be true, is apparent from the following
logical relations:

(E) + (0) + (DB) + (G) (11).

(k1) (E) + (O).
But

(x1) + (DB),
and, :

(x1) 4 (G),
Hence,

(k1) - (T1).
and

(11) = (E) ~ (x1).

For cyclic reactions the role played by (G) has to be modified. In unimolecular cyclic
reaction, for example, the free energy changes are zero in the original and transformed
descriptions. Thus, no additional selection rule can be obtained from the invariance of
net free energy change. The other logical statements are still applicable.

One of the intriguing results of the present analysis is that the existence of equivalent
transformations is more restrictive for non-cyclic reactions, compared to cyclic
reactions, for which the net free energy change is always zero. Hence, the probability of
existence of multiple indistinguishable mechanisms is higher for cyclic relative to non-
cyclic reactions. It should be emphasized here that biochemical pathways often involve
closed reaction cycles, for example, any autocatalytic reaction must involve closed loop
(Eigen 1971). Hence, the present observation appears significant considering that cyclic
reaction besides facilitating the self-organization process, might enhance the fidelity of
the system with respect to environmental perturbation.

This work was supported by csir, India. -
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