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S U M M A R Y  

DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine 
host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated 
cholera bacteriophages. U.v. light-induced DNA damage in phages of different 
morphological and serological groups could be efficiently photoreactivated. Host cell 
reactivation of irradiated phages of different groups was different on the same 
indicator host. Phage ~b 149 was the most sensitive, and ~b 138 the most resistant to u.v. 
irradiation. While q~ 138 showed appreciable host cell reactivation, this was minimal for 
qH49. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages 
were not successful, although u.v.-induced filamentation of host cells was observed. 

INTRODUCTION 

Four distinct serological (Mukherjee, 1963) and morphological (Chatterjee et al., 1965) groups 
of phages that infect Vibrio cholerae cells have been described. Although these phages do not 
have much therapeutic value, they are extremely useful for taxonomic purposes. Phages 
belonging to group IV are of special interest, because of their routine use in the differentiation of 
classical vibrios from their biotype V. eliot (Mukherjee, 1978). 

Studies on repair of u.v.-induced DNA damage in bacteriophages have provided considerable 
insight into the types of DNA repair mechanisms operative in the host cells (Day, 1981; 
Bernstein, 1981). Recent studies on the repair of u.v.-induced DNA damage in V. cholerae cells 
have shown that most of the strains examined so far can efficiently monomerize the pyrimidine 
dimers by photoreactivation, although their ability to repair the DNA damage by dark-repair 
mechanisms is poor (Das et al., 1981). The universal host strain for cholera bacteriophages, 
strain 154 (Mukherjee, 1963), completely lacks the excision repair mechanism for u.v.-induced 
DNA damage. Furthermore, the ability of repair-proficient strains to repair DNA damage in 
the dark is related to the level of toxinogenicity of these organisms (Roy et al., 1982b). A 
radiation-sensitive mutant of the hypertoxinogenic strain 569B of classical V. cholerae has been 
shown to be phenotypically non-toxinogenic (Das & Das, 1983). 

To investigate the DNA repair mechanisms of V. cholerae cells in more detail, we have 
conducted studies on repair of u.v.-irradiated cholera phages using dark-repair-proficient and 
-deficient host cells. The results presented here show that u.v.-induced DNA damage in cholera 
phages can be host cell reactivated and photoreactivated. Attempts to demonstrate Weigle 
reactivation have not been successful. 

METHODS 
Bacterial andphage strains. Strains of V. cholerae used in this study are listed in Table 1. The wild-type strains 

were obtained from the Cholera Research Centre, Calcutta, India. The radiation-sensitive, non-toxinogenic 
mutant 569B s of the hypertoxinogenic strain 569B was isolated in this laboratory (Das & Das, 1983). The 
conditions for maintenance of these strains have been described previously (Roy et al., 1982 a). Cell cultures were 
stored at 28 °C on nutrient agar slants. 
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Table 1. V. cholerae strains 

Strain Genotype/phenotype* Other information Reference 

569B Prototroph, Tox ÷, HCR ÷, PR + Classical biotype, serotype Inaba Finkelstein (1973) 
154 Prototroph, HCR- ,  PR ÷ Classical biotype, serotype Ogawa Mukherjee (1978) 
569B s Prototroph, Tox-, HCR- ,  PR ÷ Radiation-sensitive mutant of  569B Das & Das (1983) 

* Tox +, Toxinogenic; HCR*, able to perform host cell reactivation; PR +, able to photoreactivate. 

Table 2. Cholera bacteriophages 

Infectivity 
Nature of* r 

Phage* Classification t infection Nucleic acid:~ V. cholerae V. eltor 

~b163 Group I Virulent DNA + + 
q~138 Group II Virulent Double-stranded DNA + + 
~b145 Group III Virulent DNA + + 
q~149 Group IV Virulent Double-stranded linear DNA,  + - 

mol. wt. 96 × 106 
* Mukherjee (1963). 
t Classification based on serological (Mukherjee, 1963) and morphological results (Chatterjee et al., 1965). 

A. Sengupta, P. Roy & J. Das, unpublished observations. 

One representative strain of each of the four groups of  cholera bacteriophages described in Table 2 was used in 
the present study. 

Growth media and buffer. The nutrient broth used contained 10 g Bactopeptone (Difco), 10 g Lab-Lemco powder 
(Oxoid) and 5 g NaCI dissolved in 1 litre distilled water; the pH was 7-8. Nutrient agar plates contained 1-5 ~ (w/v) 
Bactoagar (Difco) in nutrient broth. The soft agar for double-layer plating was 0-75 ~ (w/v) Bactoagar in nutrient 
broth. Cell and phage viabilities were assayed on nutrient agar plates as colony-forming units (c.f.u.) and plaque- 
forming units (p.f.u.) respectively. 

The holding buffer used was 50 mM-Tris-HC1 pH 7.5 containing 5 mM-MgC12. 
Preparation ofphage stock. Phages were seeded on lawns of host bacteria on nutrient agar plates and incubated at 

37 °C overnight to obtain confluent lysis as described previously (Balganesh & Das, 1979). Phages were eluted 
from the plates by adding about 5 ml of holding buffer and centrifuged (10000 g for 20 min) to remove cell debris. 
The supernatant was then centrifuged in a Sorvall A841 rotor at 35000 rev/min for 1 h using a Sorvall OTD 50 
ultracentrifuge. The phage pellet was resuspended in holding buffer. 

Irradiation conditions. For u.v. irradiation, phage suspensions (1 x 109 to 5 × 109 p.f.u./ml) in holding buffer 
were irradiated in an 80 mm diam. Petri dish at room temperature (28 °C) in the dark with constant agitation, 
using a 15 W Philips germicidal lamp emitting primarily at 254 nm at a dose rate of 1 J/m2/s. At  different doses, 
0.1 ml samples were removed and assayed for p.f.u. 

Photoreactivation (PR). Irradiated phages were mixed with host cells in soft agar and plated on nutrient agar. 
The plates were exposed to visible light (40 W fluorescent lamp at a distance of  12 to 13 cm). At different times 
during this irradiation, plates were removed and incubated in the dark. 

Host cell reactivation (HCR). This was demonstrated by assaying survival of  u.v.-irradiated phages using repair- 
proficient and -deficient indicator cells. 

Weigle reactivation (WR). Irradiated phages were mixed in holding buffer with either unirradiated cells or cells 
irradiated with different doses of u.v.; the multiplicity of  infection was about 0.05. Ten min was allowed for 
adsorption at room temperature and then the phages were titrated. 

RESULTS AND DISCUSSION 

Sensitivity of cholera phages to u.v. light 

One representative strain of each of the four groups of cholera phages was examined for its 
sensitivity to u.v. light. Survival as a function ofu.v, dose for all four phages when plated on the 
universal host strain 154 was exponential, indicating one-hit kinetics (Fig. 1). A comparison of 
the inactivation cross-sections showed that ~b 138 (inactivation cross-section 0.017 m2/J) was the 
most resistant; ~b 149 (inactivation cross-section 0.09 m2/J) and ~b 163 (data not shown) were the 
most sensitive to u.v. light. ~b145 (inactivation cross-section 0.07 m2/J) showed intermediate 
Sensitivity. q~149 and ~b163 could not be distinguished by their u.v. sensitivity. These latter two 
phages were checked for cross-contamination, and found to be pure from phage morphology, 
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Fig. 1. Survival ofu.v.-irradiated cholera bacteriophages using strain 154 as the indicator host. Phages 
q~149 (O), q~145 (Q) and q~138 (Zk) were irradiated as described in Methods. Each point in this graph 
represents an average from three to five experiments. 

serology and infectivity on V. eltor cells. Whereas q~163 can infect both classical vibrios and their 
biotype, 1I. eltor, q~149 cannot infect II. eltor cells. In subsequent experiments the repair of u.v.- 
induced DNA damage in irradiated ~138 and ~b149 was examined. 

HCR of u.v.-irradiated phages 

HCR is the repair of damage in phage DNA brought about by removal of pyrimidine dimers 
by the host cell excision repair mechanism and presumably does not involve any viral gene 
function (Day, 1981; Bernstein, 1981). The sensitivity of u.v.-irradiated phages therefore 
depends upon the genotype and phenotype of the host used for assay [it is possible to produce 
HCR-  phenocopies of HCR ÷ cells (Feiner & Hill, 1963; Das et al., 1977)]. 

To examine whether u.v.-irradiated ~b138 or ~b149 can be host cell-reactivated, they were 
irradiated with different doses of u.v. light and survival was assayed usifig excision-proficient 
cells of strain 569B and excision-deficient cells of strain 154 as indicator hosts. In some 
experiments, a radiation-sensitive mutant, 569Bs, of the strain 569B was used as host. The 
efficiencies of plating of ~b138 and q~149 on these indicator strains were almost identical. 

A two fold reactivation of u.v.-irradiated q~138 was observed when cells of strains 154 and 
569B were used (Fig. 2a). However, when 569B~ cells were use d for assay, the sensitivity of 
irradiated ~b 138 increased seven- to eightfold relative to that on cells of strains 154 or 569B (Fig. 
2 a). Although 569Bs and 154 cells both lack an excision repair mechanism, the former is also 
deficient in the growth medium-dependent dark recovery process (Das & Das, 1983) which, in 
Escherichia coli, involves recombination functions. It has been shown that even in the presence 
of a functional uvrA gene product only 15% of the infected cells can host cell-reactivate 
irradiated phages if the host recA gene is non-functional (Day, 1981). The enhanced sensitivity 
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Fig. 2. HostceUreactivationandphotoreactivationofu.v.-irradiated(a)phage$138onstrains 154(Z~, 
A), 569B (O, O) and 569B s (I-1) and (b) phage q~149 on strains 154 (Z~, A)  and 569B (O, Q) as hosts. At 
each u.v. dose two samples were removed. One was immediately plated to determine the u.v. survival 
curve (A, C), I-q) and the second sample was plated and exposed to visible light for 3 h, then incubated 
at 37 °C in the dark (A, O). 

of  i r radiated q~138 when assayed on cells of  strain 569Bs suggests a defect in the recombinat ion  
function of  the mutant  cells. 

Not  more than a 1.5-fold difference in u.v. sensitivity of  ~b149 was observed when cells of  
strains 154 and 569B were used to assay its survival (Fig. 2b). A n  identical  difference in 
sensitivity of u.v.- irradiated q~ 149 has recently been reported with cells of  strains 569B and 569Bs 
as hosts (Das & Das, 1983). The less efficient H C R  of u.v.- i r radiated q~149 compared  to that  of  
(~ 138 on the same indicator  hosts might  be due to the phage D N A  conformation.  I t  has recently 
been shown that  ~149 contains a l inear double-stranded D N A  having a mol. wt. of  96 x 106 
(140 kilobase pairs) which can be cleaved at a unique site by S1 nuclease. The Sl-sensi t ive site 
represents a nick in the D N A ;  it can be repaired by T4 D N A  ligase (A. Sengupta,  P. Roy & J. 
Das, unpublished observation). Whether  the presence of  the nick in ~b 149 D N A  has any effect 
on react ivat ion of  i r radiated phage is not clear. Interestingly, E. coli phage T5 D N A  also 
exhibits single-strand interruptions at several genetically defined loci and also can not  be host 
cell-reactivated (Abelson & Thomas,  1966; Chiang & Harm,  1976). 

H C R  of  u.v.- irradiated cholera phages was low compared to that  o fE .  coli phages. This is not  
surprising considering that  569B cells are not proficient in this mode of  repai r  (Das et aL, 1981, 
Roy et al., 1982b), although they can repair  u.v.-induced D N A  damage in the dark  more 
efficiently than other strains of  V. cholerae examined so far. 
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Fig. 3. Photoreactivation kinetics of u.v.-irradiated qH49 using cells of strains 569B (O) or 154 (z~) as 
indicator hosts. 
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PR of u.v.-irradiated cholera phages 

PR involves visible light-dependent enzymic monomerization of u.v.-induced pyrimidine 
dimers. Except for the T4 gene 32 product, which can monomerize thymidine dimers in the 
presence of visible light in vitro (H61~ne et al., 1976), photoreactivation of u.v.-irradiated 
bacteriophages utilizes the host cell photoreactivating enzyme (Dulbecco, 1949; Bowen, 1953; 
Weigle, 1953). To examine whether cholera phages can be photoreactivated, cells of strains 
569B or 154 were infected with irradiated ~ 138 or 4~149 and then were exposed to visible light as 
described in Methods. The results presented here show that u.v.-induced D N A  damage in both 
~b138 (Fig. 2a) and tk149 (Fig. 2b and 3) could be repaired by photoreactivation. Irradiated ~b138 
could also be photoreactivated when the dark-repair-deficient host 569Bs was used for assay 
(data not shown). The extent of reactivation of irradiated ~b149 by either host was almost 
identical (Fig. 2b and 3). However, in contrast to the approximately ninefold reactivation of 
u.v.-irradiated t~ 138 on 154 cells, a recovery of not more than fivefold was observed when cells of 
strain 569B were used to assay the phage survival (Fig. 2 a, b). Since the PR observed is the result 
of competition between dark- and light-repair processes acting on the same lesion, this host 
strain dependence of the extent of PR of irradiated q~138 might be due to HCR in cells of strain 
569B. 

WR of u.v.-irradiated cholera phages 

W R is observed as an increased survival of u.v.-irradiated phages when assayed on a host that 
has also been lightly irradiated with u.v. before the infection (Weigle, 1953). In contrast to the 
error-free nature of most repair mechanisms, WR is characterized as an error-prone process 
accompanied by mutation (Weigle, 1953; Radman, 1974) and involves a u.v.-induced repair 
system distinct from both the excision repair pathway responsible for HCR (Boyle & Setlow, 
1970) and PR by photoreactivating enzymes. It is also distinct from recombinational repair 
(Ganesan, 1975; Witkin, 1976). WR has been demonstrated even in u.v.-irradiated single- 
stranded DNA phages (Tessman & Ozaki, 1960; Bleichrodt & Verheij, 1974; Das et al., 1977). 

To find out whether this mode of repair is operative in V. cholerae cells, it was investigated 
using ~138 and ~149, by comparing the survival of u.v.-irradiated phages on unirradiated cells 
and on cells irradiated with u.v. prior to infection. Both 569B and 154 ceils were used and 
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possible reactivation was examined at several u.v. doses (up to 25 J/m 2) to the ceils. Under no 
circumstances could the irradiated phages (surviving fractions: qS138, approx. 6 x 10-4; q~149, 
approx. 10 -2) be repaired by WR. 

U.v.-induced filamentation of V. cholerae cells 

According to the 'SOS' hypothesis (Radman, 1974; Witkin, 1976), Weigle reactivation, 
prophage induction, u.v.-induced mutagenesis, filamentation during cell growth and various 
other post-irradiation phenomena are coordinated by inducible cellular repair processes. The 
absence of  WR of  u.v.-irradiated cholera phages led us to examine whether any other of  the so- 
called SOS functions could be demonstrated in V. cholerae cells. 

When cells of strain 569B were irradiated with a dose of 5 J/m 2 ofu.v, light (cell survival about 
50 ~ )  and allowed to grow in the growth medium for 50 min (about 1.5 generation times) at 37 °C 
in the dark, more than 8 0 ~  of the cells formed filaments. This effect was inhibited by adding 
5 btg/ml chloramphenicol after u.v. irradiation. Unirradiated ceils under identical conditions 
maintained their normal morphology. It may be relevant to mention that umuC mutants of  E. 
coli K 12, although unable to Weigle-reactivate u.v.-irradiated ~t phage, are nevertheless capable 
of  inducing other SOS functions (Kato & Shinoura, 1977; Hall & Mount, 1981). 

This investigation was supported by the Council of Scientific and Industrial Research and the Depar tment  of  
Science and Technology [Grant  No. 11 (35)/78-SE RC]. One of us (G.D.) is grateful to R. D. Birla Smarak Kosh  for 
granting a predoctoral research fellowship. We wish to thank members  of  the Depar tment  of  Biophysics for their 
help and encouragement.  
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