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Most students of physics are familiar with Newton's great triumph 

- explaining the motion of the moon around the Earth, and 

planets around the Sun. The basic laws of motion and the 

inverse square law of gravitation were sufficient to derive the 

three laws formulated by Kepler. These state (i) that planets 

move in ellipses, (ii) the speed along the orbit is such that equal 

areas are swept out by the planet - sun line in equal times and 

(iii) the square of the orbital period is proportional to the cube 

of the semi-major axis. Most  text books of mechanics stop at 

this point, more than three hundred years agoI This "Classroom" 

piece carries the story of celestial mechanics upto Poincar6's 

work, for students and teachers who want more. 

The  Problem of Small Perturbations 

Consider the moon's motion around the Earth. Surely the Sun, 

inspire of being much further away, must have some influence 

on it. The extra force on the moon due to the Sun is about half 

a per cent of that exerted by the Earth 1. In many branches of 

science, an error o fha l fa  per cent would be quite tolerable. But 

imagine what would happen if the half per cent effects on each 

successive orbit added up! This is what celestial mechanics call 

a 'secular' effect - one that builds up with time. In fact, there is 

such an effect, because the plane of the moon's orbit turns once 

in about eighteen years. (This is well known to all astrologers as 

the movement of Rahu and Ketu, the directions in which the 

moon's  orbital plane intersects the plane of the earth's orbit). 

But centuries of observation show that the distance from the 

Earth does not evolve significantly in fifty months nor does the 

eccentricity of the orbit. Clearly, the effects of such small extra 

forces, known as per tu rba t ions ,  have to be unders tood.  

Otherwise, even the stability of the solar system over the billions 

of years that it took life to develop on Earth is not explained. For 

example, the force which Jupiter exerts on the Earth is about one 

1 One warning, If the reader 

wants to checkthis, she should 
calculate the difference of the 

forces that the Sun exerts on 
Earth and moon. The average 

is responsible for pulling both 

in orbit around the Sun, and 

does not affect the relativemo- 

tion of moon and earth. 
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2 For example  5o~ s-2co J is very 

close to zero! 
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part in twenty five thousand of that which the Sun exerts. How 

are we sure that this weak-looking force would not have produced 

some strong effects acting over four billion orbits, the age of the 

solar system? 

A simple-minded first guess can be made, based on what we 

know about the harmonic oscillator (i.e simple pendulum with 

a small angle of swing). This has a natural frequency COn,tufa 1 

related to the period by T=2z/co. If it is pushed periodically at 

the same frequency, the oscillations become larger and larger, 

and this is called resonance (that is why this journal pushes your 

interest in science once a month!). If  the external push is at a sli- 

ghtly different frequency, then the amplitude builds up to a value 

which varies inversely with respect to the small difference in 

frequencies, i.e the amplitude is proportional to 1/(~x t- COna~ur,1). 

Resonances and their Consequences 

Now consider the Sun-Jupiter-Saturn system. The pull from 

Jupiter has a frequency of once every twelve years, while the 

frequency of Saturn is one rotation per thirty years. Far from 

resonance, so nothing to worry about? But wait. The force of 

Jupiter  on Saturn contains expressions like 1/1 r s -  rjl 2. 

Mathematically, this is not linear in the co-ordinates of Jupiter 

and Saturn. This means that if we assume motions at co s and coj 

for the two planets as the first approximation,  the next 

approximation produces forces proportional to higher powers of 

the two co-ordinates. For example, one might encounter terms 

like cosS(co/) cos2(COst). It comes as no surprise to learn that the 

founders of celestial mechanics, Laplace, Lagrange and others 

(why were so many of them French?) had to worry about higher 

order resonances, i.e differences between multiples of the frequen- 

cies of different planets, occurring in the denominators of  their 

mathematical expressions 2. Dividing by zero is bad. Dividing 

by something small is allowed but casts doubt on whether one's 

successive corrections are really getting smaller. 

The situation when Poincar6 entered the scene was thus as 

follows. There was an elaborate machinery for calculating the 
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positions of  planets for all time as a series, but  there was no 

guarantee that this series would converge, because of resonances. 

This was regarded as an outstanding problem, and a prize was 

instituted for the best solution 3. Poincar6's work did not give a 

final solution to the problem as stated. But the level of additional 

insight obtained was so great that the Swedish Academy had no 

hesitation in awarding the prize to him. Later, Poincar6 collected 

his contributions in the three volume treatise, 'Les Methodes 
NouveUes de Ia Mecanique Celeste' (New methods of Celestial 

Mechanics). In translation these extend to about a thousand 

pages 4. It is said that Poincar6 wrote rapidly, and did not believe 

in polishing his presentation repeatedly, since he would prefer 

to use that time to do more original work. But the book is full of 

new ideas which influenced the field for a long time thereafter. 

The  Complexity of  Two Dimensional  Mot ion 

The remarkable fact which Poincar6 discovered is that when a 

particle moves in two (or more) space dimensions, the motion 

can be much more complicated than the planetary orbits we are 

familiar with. The reason is that even after coming back to the 

same point in space (i.e same value of the co-ordinates, 

x andy),  the velocity can be in a completely different 

direction. An orbit of the three-body problem with 

this property is shown in Figure 1, and you can see 

that it is quite complicated. Of course, we can use the 

idea of energy conservation to fix the kinetic energy at 

the given point x and y, since we know the potential 

energy at that point. But kinetic energy only fixes the 

magnitude of the velocity, not its direction. Poincar~ 

tells us that we should now really be asking the opposite 

question. Why is it that in some cases, the motion in 

two space dimensions can be simple? One example is 

Newton's solution for planetary motion. For the 

inverse square force it is just an ellipse. Even for a 

force which is not inverse square, it is a precessing 
ellipse. Figure 2 shows that for such an orbit, at a 

given point the velocity only has one of two possible 

s To celebrate the 60th birthday 

of King Oskar II of Sweden, a 

pr ize was instituted for 
progress on this problem and 
Poincar~ won it in 1889. 

4 The translation with a detailed 

introduction was published by 

the AIP (American Institute of 

Physics) in 1993. 

Figure 1. Computer gener- 
ated orbit for a third light 
test  par t ic le  moving  
around two heavy masses 
which are themselves in 
circular orbit around each 
other. The plot is made in a 
rotating frame of reference. 
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Figure 2. A precessing or- 
bit for a particle moving 
under a general central 
force. Note that at any given 
point, the velocity vector 
takes only two values, with 
the same tangential com- 
ponent and radial compo- 
nents differing in sign. 
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The famous 

'Poincare section', 

or 'surfa(;e of 

section' of 

celestial 

mechanics is a 

mathematical trick 

(cleverer than the 

stroboscope) 

reducing the study 

of continuous 

motion to the study 

of 'maps' in lower 

dimensions. 

directions, which makes the motion much simpler than the 

most general possibility allowed by energy conservation, of 

Figure 1. The reason why these or-bits are simple is that there is 

a further restriction when the force acts towards the centre. This 

is the law of conservation of angular momentum, or equivalently 

Kepler's second law. This fixes the magnitude of the tangential 

component of the velocity at a given point (because that 

determines the rate at which the radius vector sweeps out area). 

Once the tangential component is fixed, and we also know the 

magnitude of the velocity, the radia! component can only take 

one of two values, pointing inwards and outwards, and that is 

exactly what Figure 2 shows us. 

Poinear6's Surface of Section 

Without giving details o fal l  of Poincar6's innovations, we can 

state the basic idea behind one of them, using an analogy. Quite 

often, an engineer needs to study a rapidly rotating piece of 

machinery. One trick used is to illuminate it with a 'strobe 

light', a lamp that emits flashes at a frequency which can be 

controlled. The continuous motion is now seen as a series of  still 

pictures. For example, if the frequency matches that of  the 

rotating wheel, it appears to be at rest, an illusion so convincing 
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that one should resist the temptation to put one's hand in! One 

sees this effect in a weaker form when a fan starts to speed up 

under a fluorescent (tube) light, or a car starts in a movie. The 

rotation can appear to be in a different direction, or stop briefly, 

etc. The famous 'Poincar6 section', or 'surface of section' of 

celestial mechanics is a mathematical trick (cleverer than the 

stroboscope) reducing the study of continuous motion to the 

study of 'maps' in lower dimensions. The map is a discrete 

transformation which maps the position and velocity to their 

values at a later time, when the particle has come 'back' (say to 

the x-axis). 

C o n c l u s i o n  

Using the properties of maps, Poincar6 was able to give a criterion 

for f inding periodic i.e. closed orbits even for systems as 

complicated as the three body problem. Further, he was able to 

set up the machinery to calculate when such an orbit would be 

stable. That is, if we started the particle with position and 

velocity very close to that which it has in the periodic orbit, 

would it stay close to that orbit? When such an orbit was 

unstable, he was able to show that the motion starting near it 

could be very complicated. In his own (translated) words .... 

"One will be struck by the complexity of this figure, which I 

shall not even attempt to draw. Nothing is more suitable for 

providing us with an idea of the complex nature of the three 

body problem, and of all the problems of dynamics in general". 

The potential of many of PoincarCs ideas was exploited only 

later, by Birkhoff, Kolmogorov, Arnold and others to build up 

the modern understanding of celestial mechanics. 5 And his 

qualitative picture of the motion was amply borne out when 

powerful computers were used to calculate orbits. He brought in 

n e w  disciplines of geometry, algebra, topology, etc. into dynamics 

which had earlier been regarded purely as a study of differential 

equations 6. Seeing connections between different kinds of 

mathematics was PoincarCs great strength. He pioneered the 

study of qualitative questions like the infinite time stability of 

the n-body problem. 

Box. Even PoincarC 

Was Not Perfect. 

PoincarCs prize winning 
essay on the n-body 
problem actually contained 
an error, pointed out by 
Phragmen, a Swedish 
mathematician! Correcting 
this error led Poincar6 to 
one of the basic ideas of 
modern chaos theory. This 
story is documented in the 
preface to the translation 
of Poincar6's treatise, 
referred to earlier. 

s See Govindan Rangaraian, 
Kolmogorov-Arnold-Moser 
Theorem, Resonance, Vol.3, 
No.4, p.43, "1998. 

6 For example, Lagrange was 
proud that his 'Mecanique 
Analytique' did not contain a 
single figure! 
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