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Ax is the uncertainty in the x 

component of position and '~Px 
the uncertainty in the x 
component of the momentum 

of a particle. 

2 The angular brackets < > 
denote the quantum-mechani- 
cal average value. 
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The famous equation of quantum theory, 

AxApx >_ h/47r = h/2 

is of course Heisenberg's uncertainty principleS! But SchrS- 
dinger's subsequent refinement, described in this article, de- 
serves to be better known in the classroom. 

Let us recall the basic algebraic steps in the textbook 
proof. We consider the wave function (which has a free 
real parameter o 0 (5 + ic~)~b --- xr  + ia(-ihar =_ 
r The hat sign over x and p reminds us that they are 
operators. We have dropped the suffix x on the momentum 
p but from now on, we are only looking at its x-component. 
Even though we know nothing about r  except that  it is 
an allowed wave function, we can be sure that f r162 > 0. 
In terms of r  this reads 

/ r - iaib)(5 + iaD)r >_ (1) 0. 

Note the all important minus sign in the first bracket, 
coming from complex conjugation. The product of operators 
can be expanded and the result reads 2 

< 52 > + < ~2~2 > + i s  < (5~ - /55 )  > > 0. (2) 

The three terms are the averages of (i) the square of 
the coordinate, (ii) the square of the momentum, (iii) the 
"commutator" 515- t55. It was Heisenberg's insight in 1925 
that  this commutator equals ih which gave birth to quantum 
mechanics! We thus have a real quadratic expression in a 
which can never be negative. So the discriminant '(b 2 -4ac ) '  
of the quadratic is negative or zero. This gives, 

< 52 > <  152 > > h2/4. (3) 

Equation (3) looks like the uncertainty principle after 
taking the square root on both sides. But Heisenberg's Ax 
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is the  root mean  square deviation of x f rom its average, 
~. Similarly, we need p - / 5 .  But  no more  work is needed! 
The  only proper ty  used in deriving (3) was the  commuta t ion  
relat ion A B  - B A  = ih, and this is equally t rue  if we take 
A = ~? - ~, B = i5 - /5 .  In physical terms, we are choosing 
the  average x as the origin and the velocity of our  frame of 
reference to be the average velocity. 

So far so good. But  SchrSdinger's insight was tha t  we 
have even more  freedom in choosing A and B, keeping their 
c o m m u t a t o r  equal to  ih. For example, take B = 15 as before, 
bu t  A = 5 + ~15 wi th /3  a real parameter .  We still have the 
same commuta tor ,  so < A 2 > <  B 2 > - h 2 / 4  > 0. Note 
again tha t  the left hand  side is quadrat ic  in the  free param- 
eter  fl, and hence we can be sure the discr iminant  is zero 
or negative. This  condi t ion now gives (check it out!) the 
Schr6dinger form of the  uncer ta inty  relation 

515 +155 < 52 > <  152 > _ < 2 >2>  h2/4.  (4) 

Clearly, this is be t te r  than  Heisenberg's, since the square 
of the  (real!) average of (:~15 + 155)/2 can be moved to the 
r ight  hand  side of (4), which is therefore greater  than  the 
r ight  hand  side of (3). Notice tha t  there is no difficulty in 
measur ing  x and p from their average values. If we do so, 
equat ion (4) reads, 

+ Z 15A5 < A52 > <  A152 > - < 2 >2_> h2/4. (5) 

W h a t  does it all mean?  We now reveal what  fl is by 
pu t t i ng  it equal to t / m .  x + p t / m  is jus t  the  position at  a 
t ime t, assuming a free particle of mass m. We thus need to 
unde r s t and  how an uncer ta in ty  product  like A x A p  behaves 
under  free motion.  Let us first look at  a classical s i tuat ion 
in which we have a cloud of particles, occupying an elliptical 
region in x - p  space (also known as phase space). For sim- 
plicity, we have chosen the  mean  value of x and tha t  of p to 
be zero (see figure). At  a later time, the particles with posi- 
t ive p have moved to the  right and those with negative p to 
the  left. Our  ellipse is still an ellipse bu t  has got tilted, pre- 
serving its a r e a  3. Notice t ha t  the spread in p has remained 
the  same, but  the  spread in x has increased. The  Heisen- 
berg uncer ta inty  p roduc t  A x A p  would thus increase. But  

RESONANCE J February 1999 

3 This is in fact Liouville's 
theorem of classical mechanics 
about motion in phase space. 
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interestingly, the Schr6dinger version in (5) retains the same 
value at later times, being simply related to the square of the 
area of the ellipse, which is fixed. The increase in < A~? 2 > is 
compensated by the build up of the t e rm < (~:i5 + / ~ ) / 2  >2. 

This term was initially zero because of cancellation among 
the four quadrants. But after a time t, we see that the el- 
lipse preferentially fills the first and third quadrants. We say 
that  a correlation has built up between x and p. A statisti- 
cian would say that x and p are no longer independent. For 
example, it is clear from the figure that  the unconditional 
probability that  p is positive is half. But if x is given to 
be positive, the probability that  p is positive is greater than 
1/2! 

The reader who has not already noticed should be warned 
that after equation(5), the discussion is only meant to be 
plausible. Should one even be talking of phase space in quan- 
tum mechanics? Fortunately, many years after Heisenberg 
and SchrSdinger, Wigner found a correct way to use such 
phase space pictures in quantum theory. For free particles 
and harmonic oscillators, the time dependence of this phase 
space distribution invented by Wigner is correctly given by 
classical mechanics, even though the wave function obeys 
the SchrSdinger equation. For example, the spreading out 
of Ax which we inferred from our classical picture is a well- 
known phenomenon called 'wave-packet dispersion'. Inci- 
dentally, in classical theory it would have been sufficient to 
use the average < xp > to reveal this correlation between 
x and p. In quantum theory < 9715 > is not even real, but 
< ~?p + ~5~ > /2 is real and is the correct way to quantify 
correlation between x and p. The virtue of SchrSdinger's 
version (5) is that  it accounts for this correlation. In spe- 
cial cases like the free particle and the harmonic oscillator, 
the 'SchrSdinger uncertainty product'  even remains constant 
with time, whereas Heisenberg's does not. 

The glory of giving the uncertainty principle to the world 
belongs to Heisenberg. But we see that  SchrSdinger was able 
to see further, standing on his shoulders. These ideas were 
carried even further in the field of quantum optics, but that  
is another story. 

26 RESONANCE I February 1999 


