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In 1924 Bose introduced a counting rule for the states of a
gas of photons which explained Planck’s law for thermal
radiation at one stroke. Einstein not only recognised the
importance of this idea but immediately applied it to a more
conventional gas like helium. In this case, unlike that of
radiation, the number of particles is held fixed. He derived
the stunning conclusion that a finite fraction of the par-
ticles could settle in the lowest energy state even above
absolute zero. These ideas had to wait fourteen years for
their first application. Seventy years later they are being
used in atomic physics laboratories all over the world.

Everybody is talking about Bose–Einstein condensation. This
discovery made in 1924 seems to have exploded like a time bomb
seventy years later.  How did these two names come together?
S N Bose was a teacher of physics in Dacca, as far from the
mainstream as one could imagine. Einstein was, of course, the
giant who had already given the world special and general
relativity, the light quantum, Brownian motion.  The story is an
extraordinary one, and it has been told earlier in these pages
when the central figure was Bose [1]. Now let us look at it from
Einstein’s point of view.  He struggled for 20 years with the
concept of the light quantum and Planck’s radiation formula
[2]. Suddenly, a bolt from the blue arrived.  Someone he had
never heard of was proposing a new derivation of Planck’s
formula for the intensity of blackbody radiation. It made no
reference to waves whatsoever, being stated entirely in the
language of photons. Many times in the history of mathematics
and physics, such letters have been ignored. The idea is too
revolutionary and the author too unknown. Let us salute Einstein
for not taking that easy path. He read the paper, recognised its
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deep originality, translated it into German, wrote a covering
note on its importance and forwarded it for publication.

Superficially, the mathematical steps in Bose’s discussion of a
gas of photons resembled what Boltzmann had gone through
fifty years earlier, in the discussion of ordinary gases.  We
describe the basic idea here. Common observation shows that a
gas fills its container uniformly. In other words, the probability
distribution of the position of any particle in the gas is a constant
function within the container. A more difficult experiment is
needed if we want to find the probability distribution of  the x-
component of the velocity of the molecules (for example). This
is found to be the famous bell shaped curve known as the
Gaussian distribution. As a function of velocity it is e(–const × v2x)

and similarly for the y and z components. In terms of the energy
E of a state, this translates into a number of particles per state, n
proportional to e (–βE ). The science of statistical physics tries to
understand why these particular distributions, for the position
and for the velocity, are special. After all, nothing in the laws of
physics prevents all the molecules being on one side of the
container, at least for some time.  Likewise, nothing forbids a
situation where all the molecules have the same speed, half
going to the left and half to the right. Again, this situation could
occur at some time and change because of collisions.

Boltzmann took two approaches to the problem, both of them
deep and fruitful. One was to ask how any such initial state
would evolve with time. Clearly, not even Boltzmann could say
with certainty what the precise outcome of a huge number of
molecular collisions would be. So he made a guess about what
was the most probable number of collisions changing the veloci-
ties of the molecules in various ways.  This led to the famous
distribution law named after him and is sketched in Figure 1.
The probability of finding a molecule in a single state of a given
energy is proportional to an exponential function of the energy.
But this method of collisions is not the whole story. One can –
and Boltzmann did – look at the matter in a different way. Take
a coin tossed ten times. To say that five heads turned up is not a
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complete description, because we are not saying which of the
tosses were heads, this can happen in many1 ways. Similarly, to
say that a gas has a certain distribution of velocities is not a
complete description; this can happen in many ways. All one has
to do is to count the number of ways, and this tells us the state in
which the gas is most likely to be found.  Boltzmann was able to
show that the most probable behaviour of a gas, the one which
can occur in the largest number of ways, is to fill the container
uniformly, and have a gaussian distribution for each component
of the velocity vector.

With this background, we can state what was revolutionary in
the paper that Bose sent to Einstein. Treating the photons as a
gas, he used a counting rule different from Boltzmann’s. Again,
we give only the basic idea here. Take two different boxes, called
1 and 2, and two balls, called A and B. Let us look at all possible
states of the system. Clearly there are four of them, which we can
symbolically denote as A1 B1, A2 B2, A1 B2 and A2 B1. Bose’s
counting rule was equivalent to saying there were only three
states, with the last two viz. A1B2 and A2B1, counted as one.
This was as if someone had rubbed off the letters A and B
painted on the two balls. One says that in Bose’s way of counting,
the particles are indistinguishable.  We can see what effect this has
in our simple example. The two cases in which both the particles

Figure 1. The Boltzmann
distribution of particles
over energy states.

1 This can occur in 252 ways out
of a total 1024 possible out-
comes of ten tosses.
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are in the same state (A1 B1 and A2 B2) now get two thirds of the
weight, instead of half as in Boltzmann’s way of counting. This
result carries over in more general cases with many more boxes
and balls. The example given above shows that the Bose distri-
bution2   gives more weightage to situations in which many
particles occupy the same state. And this extra weightage was
able to explain the observed distribution of photons over fre-
quency in thermal radiation.

Einstein had an immediate additional deep insight into the
consequences of Bose’s counting rule. In the case of photons, the
total number of particles actually decreases as we decrease the
total energy of the system (equivalently, as we lower the tem-
perature). In fact, the total number of photons is proportional to
the cube of the absolute temperature.  Since their average energy
is proportional to the temperature, the total energy per unit
volume is proportional to the fourth power of the temperature.
However, if we apply Bose statistics to a gas of helium atoms in
a box, we must obviously keep the number of atoms fixed as the
temperature varies. So the precise formula for the number of
atoms in a state with energy E is different from what Bose used
in the case of photons. It looks very similar, but contains an
additional term denoted by  μ subtracted from the energy. The
formula reads 3

n=1/(1+exp(β(E–μ))).

Figure 2. The Bose–
Einstein distribution for a
gas at a high and at a low
temperature.

2 The new distribution law reads
n=1/(exp(βE )–1), β is inversely
proportional to the temperature
β=1/kBT  with kB=Boltzmann’s
constant.

3 One simple way of understand-
ing the origin of such a term is as
follows. Let us imagine a “reser-
voir” which contains a large num-
ber of helium atoms, all having
energy μ.  Connect the reservoir
to our box. Every time we move a
particle from the reservoir into
our box to a state of energy E, the
total energy of the system
changes by E–μ. The box alone
now behaves like a system with
a variable number of particles,
where the energy E is replaced
by E–μ .  Clearly μ ,  cannot be
greater than zero in this formula
since n  would become negative
for E < μ .
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This simple extra term has profound consequences. As the
temperature is lowered, more and more particles pile into the
lowest energy state. (For the gas of photons, they just disappear
from the system). At a low temperature, but one which is still  above
absolute zero, the answer for the number of particles in the lowest
state becomes infinite because μ approaches zero from below. A
lesser man might have concluded that something absurd was
happening and the whole counting rule had to be abandoned.
But Einstein realised that this infinite answer, though wrong,
held the key to what was really happening in the gas as it was
being cooled. He boldly said that one has to treat the lowest
energy state as a separate entity from all the other states. All
physical quantities would receive  separate contributions  from
the lowest state, called the ‘condensate’, and from all other
states. In a Boltzmann gas the contribution of any single state,
even the one of lowest energy, is negligible because there are so
many states which have nearby energies. But the Bose counting
rule tilts the balance in favour of a finite fraction of the particles
being in the lowest energy state, below the special value of the
temperature which Einstein had calculated. The values of den-
sity N and temperature T can be described as those which give
approximately one particle per thermal de Broglie wavelength
λT. For typical energy kBT, the corresponding momentum is
(2mkBT )1/2 and the wavelength λT  equals h/(2mkBT)1/2. The
number of particles in a volume λ3

T is N(h3/(2mkBT)3/2).  When
this exceeds 14.54, the condensation begins. This can be achieved
by raising N or lowering T.

One should remember that Einstein was not motivated by any
experimental fact regarding gases in his work. He was following
the basic principles of statistical physics to their logical, though
amazing, conclusion. He also had a deep conviction that Bose’s
counting rule was not just a trick to understand radiation but a
new general principle.  When Einstein wrote his paper, and for
more than a decade later, it did not appear that there was any
direct connection with known phenomena. Even fourteen years
later, in 1938, the eminent quantum and statistical physicist
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Fritz London could say that “In the course of time, the degen-
eracy of the Bose–Einstein gas has rather got the reputation of
having a purely imaginary existence”.  In the same paper that we
have quoted, London noted that at the density of liquid helium,
the temperature for Bose–Einstein condensation of an ideal gas
would be about three degrees above absolute zero.4  Liquid
helium shows new properties below 2.1 degrees Kelvin [3].
London boldly suggested that these new properties were a
consequence of Bose–Einstein condensation. He was fully aware
that liquid helium was very far from being an ideal gas. There is
a strong repulsive force between two atoms which came too close
to each other, and a weaker attractive force at larger distances.
Recent experiments,  sixty years after London,  show that his
guess regarding liquid helium was right. About ten per cent of
the atoms have zero momentum at absolute zero. (In an ideal gas
this would have been 100%.)

This subject took another turn in 1995, when experimenters in
the US were able to produce a Bose–Einstein condensate for
Rubidium atoms. In this case, the density was low enough that
Einstein’s original ideas, with small modifications, could be
applied [4]. This is now a very active field of experimental
physics.  Nowadays, a beam of atoms in the same quantum state
is called an ‘atom laser’ and various ingenious schemes for pro-
ducing and utilising such beams are being invented. This is
expected to give rise to extremely accurate measurements of
time and other physical quantities.

Statistical physics was certainly Einstein’s early love. He had
written papers on the statistical basis of thermodynamics even
before his relativity papers – unfortunately, they mainly redis-
covered what Gibbs had already just done. His discussions of
Brownian motion, of photons, of critical opalescence, are all
gems of statistical thinking. And his single paper on condensa-
tion in a gas obeying Bose statistics should be counted amongst
these gems. Anyone else who did just this work would have
acquired a towering reputation. But Einstein the statistical
physicist was ultimately eclipsed by Einstein the relativist.
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4 We should add that not all kinds
of identical particles obey Bose
statistics and show condensa-
tion. Electrons, for example, show
Fermi statistics and behave in a
completely different way at low
temperatures. The same is true
of  3He, the rarer isotope of he-
lium!


