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Abstract. We have recently drawn the attention of crystallographers to the maximuin entropy
method (MEM) of image reconstruction which has found application in radio astronomy and
geophysics. In this article, we review the theory of the MEM as applied to the crystallographic
phase problem and discuss points of similarity, and differences, with conventional techniques.
We then present a number of illustrative calculations in two and three dimensions on simulated
and real structures. These examples show that the MEM can be used for phase refinement from
partially known phases, say in macromolecular crystallography, and also for solving crystal
structures ab initio using only measured Fourier amplitudes. With improved algorithms the
method promises to become competitive with current techniques in crystal structure analysis.
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1. Introductien

In conventional x-ray crystal structure analysis one measures the intensities of Bragg
reflections of the crystal under study. The intensity Iy, corresponding to the reciprocal
vector H; is related to the complex Fourier structure factor Fy, by
- — 2
Iy, = Fy Fit, = |Fu %, (1)

where the structure factors Fy, and the electron density p(r) in the crystal unit cell are
related by a Fourier transform:

Fy, = | Fu,| exp (ipn,) = Jp(r) exp 2niH; - r)dV, 2
p(r) -1 Y Fy exp (—2ziH; 1) (3)
v, e

V, is the volume of the crystal unit cell. Thus, one experimentally measures only the
structure amplitudes |Fy j| whereas according to (2) and (3) one requires both
amplitudes as well as phases ¢y, to compute the electron density. This is the famous
phase problem of crystallography—one cannot solve the structure unless one has some
estimates of the phases. The magnitude of the problem has been brought out strikingly
by Ramachandran and Srinivasan (1970) who have given examples of how true phases,
coupled even with random amplitudes, can bring out the true crystal structure; on the
other hand, true amplitudes with random phases give no information at all.
Obviously one needs to put in some a priori information in addition to the measured
amplitudes if one is to obtain a solution. The most powerful input turns out to be the
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priog knowledge that the crystal consists of atoms so that the (positive) electron density
is strongly clumped in well separated peaks. Further, one generally knows in advance
the number and types of atoms present and also has limited stereochemical
information. Although a rigorous proof is lacking, all these extra constraints in practice
seem to ensure a unique solution to the phase problem, apart from trivial ambiguities
related to the choice of origin or enantiomorph. This solution is however not easy to
determine!

For small structures involving a few atoms, Patterson techniques work quite well.
Here one computes the Fourier transform of the intensities Iy, (= | Fy,|*). This map can
be shown to be the self-convolution of the electron density (e.g. Ramachandran and
Srinivasan 1970) and so each peak in it corresponds to an interatomic vector in the
original structure. If the peaks are well resolved, which can happen in small structures,
one “inverts” this information on interatomic bonds to solve the structure.

Even larger structures can be solved using the Patterson technique provided a few of
the atoms are significantly heavier (i.e. have more electrons) than the rest; one can
obtain the heavy atom positions from the Patterson map and solve the rest of the structure
by using the heavy atom derived phases for the structure factors. By far the most
challenging aspect of the phase problem in crystallography has been the solution of
large structures of nearly equal atoms. Here some very powerful techniques have been
developed over the years which go collectively under the name of direct methods (see
for example Ladd and Palmer 1980). In a pioneering paper Sayre (1952) mathematically
expressed the equality of atoms by the statement that the squared structure p(r) is very
similar to p(r) except for a “normalisation”. He showed that this immediately leads to
relations among the phases of certain sets of reflections—the famous triplet phase
relation. Later work has extended this approach to higher order relations and
probability distributions have been worked out for the values of sums of specific-groups
of phases (the so-called structure invariants and seminvariants). Coupled with
multisolution (Karle and Karle 1963, 1966; Germain et al 1971) methods (where one
selects a small set of primary reflections, systematically assigns various phase values to
these and in each case solves the phases of the other reflections using triplet and other
relations), it can be said that the direct methods, exemplified by the computer program
MULTAN and its descendants, are the most powerful techniques available today to solve
crystal structures. However, despite the enviable success that these techniques have had,
it is probably fair to say that the last word has by no means been said on the phase
problem. The search for newer approaches must go on as crystallographers attempt to
solve progressively larger structures.

A technique called the maximum entropy method (MEM ), which has been studied for
some time in other fields, has in the last year or two attracted some interest in
crystallography. Two of us (RN and RN) studied the MEM in the context of its application
in radio astronomical image processing and drew attention to its potential importance
in crystallography (Narayan and Nityananda 1981, 1982). In this article we briefly
review some of the work already reported in the field and then describe our more recent
results on simulated and real crystal structures in two and three dimensions. On the
basis of our present studies we believe that the MEM has a promising role to play in
crystallography and merits further investigation. Readers interested in the actual
results of this method applied to crystallography could proceed straightaway to §§5
and 6, although we hope that this will generate enough interest in the MEM to return to
the more theoretical sections.
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2. Maximum entropy method

Let us suppose, as is the case in many geophysical and radio astronomical applications,
that Fy is available both in amplitude and phase at some of the H; but is unknown at
the rest of the points. Setting the unknown Fy, to zero leads to a map with large
termination ripple as well as loss of resolution. In the MEM, the unknown Fy, are chosen
$0 as to maximise the “entropy” S given by

- f flpn)]1dV,, @

where fis some suitable real function of p(r). There is an unresolved debate going on in
the literature as to the most suitable form for f. One school of thought including the
originator of the MEM (Burg 1967; Ables 1972) favours the entropy

S, = f In[p(r)]dv,, &)
while others (Frieden 1972; Gull and Daneill 1978) prefer

S,=— J p(r)In[p(r)]dV,. (6)

The arguments in favour of one or the other form are usually based on information
theory or combinatorial probabilistic arguments, verging sometimes on the metaphysi-
cal. It has been claimed that the MEM produces as featureless a map as possible
consistent with the data (Ponsonby 1973) and that it is maximally non-committal with
regard to the unmeasured data (Ables 1972). In an interesting paper Komesaroff and
Lerche (1978) (see also Komesaroff et al 1981) showed that there is an intimate
connection in one-dimensional problems between the entropy S; and the positivity
constraint on p(r); however, this does not generalize very well to higher dimensions.
In contrast to the above approaches which seek to attribute a deep foundation to the
MEM, there has been another movement initiated by Hégbom (1978) and Subrahmanya
(1978, 1980) who suggested that the successes of the method are primarily due to the a
priori information built in, in particular the penalty against negative values. We have
extended this view-point (Nityananda and Narayan 1982; Narayan and Nityananda
1983) and carried out a detailed study of the MEmM focussing primarily on the
maximisation conditions that the reconstruction satisfies. By a simple geometrical
argument it was shown that any “entropy” function f which satisfies f” < 0and /" > 0
implicitly makes the a priori assumption that the map consists of isolated sharp features
separated by flat extended regions. The forms (5) and (6) as well as several others, e.g.
p''%, —1/p, etc., satisfy these conditions, and hence all these are suitable “entropies” to
generate satisfactory maps. In our view, the MEM is just a variational way of
incorporating our a priori information that the true map consists of peaks on a flat
background. The relevance of the MEM to crystallography then becomes obvious.
Regardless of the controversy over the foundations of the method, it is well known
that the MEM produces excellent reconstructions. Figure 1 shows a two-dimensional
simulation of a radio astronomical aperture synthesis reconstruction where the MEM
map is clearly far superior to the naive approach of setting unmeasured Fy, to zero.
Results such as this, coupled with our conviction that the a priori assumptions built into
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(»)

Figure 1. (a) Simulated “true” map p(x, y) ofa
radio astronomical source tn the sky. (b} Map
reconstructed using only “measured” Fourier data
F(h, k) corresponding to reciprocal vectors with
|h], |k| € 3. All the other F(h, k) have been set
equal to zero. (¢) Reconstruction from the same
data using the S, form of the MEM where the
unmeasured Fourier coefficients are optimized to
maximise the integral of — p In p. This reconstruc-
tion was obtained by setting the non-linearity
parameter R (defined in §3) to the value 100. Full
contours correspond to positive values, the suc-
cessive levels being at 001, 0-03, 0-05, 01, 0-2, 0-3,
05, 0-7 and 1. Negative contours, in dashed lines,
are at -001, -003 and -005. (From
Nityananda and Narayan 1982).

the MEMm are perfectly suited to crystallography, originally led us to propose that the
method could help solve the phase problem (Narayan and Nityananda 1981, 1982).

3. Maximum entropy for the phase problem

For the phase problem we write (4) in the form

1 .
S= J.f[VEIF“Il exp {i((p“J—ZnHj-r)}]dV,, )]

where, because p(r) is real, we have

Py, = —P-n,

@
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Let us define the Fourier coefficients Gy, as follows
b, = |Gy exp(i0y) = ff’[p(r)] exp (2miH; - r)dV,. ©)

Then, maximising the entropy S in (7) with respect to the unknown phases we obtain
(Narayan and Nityananda 1981, 1982)

o
a‘PH,

Equations (10) (thereare as many equations as the number of unknown phases) have to
be satisfied in order to maximise the “entropy”. Since |G, | and 8y are implicitly
functions of all the ¢, , these are a highly coupled system of nonlinear equanons which
will have to be solved numerically by an iterative procedure. However, we note that
oS/ iy, are the components of the gradient of S with respect to the unknown ¢y and
the calculation of |Gy| and 8y involves only Fourier transforms which can be very
efficiently carried out by means of the fast Fourier transform algorithm. Thus
gradient-type algorithms to maximise S (see § 4) are easily developed and these are not
likely to be very expensive in terms of computing time.

A crucial issue is the question of the uniqueness of the solution. Of course, for every
solution there is a whole family related to it by an origin shift and/or enantiomorph
reversal. However, apart from this trivial ambiguity, it is possible that there are several
distinct maxima representing physically different solutions. To see this let us write the
conditions for the vanishing of the gradient in (10) as

2 .
= 7|FH,| |Gyl sin (¢, ~0y) = 0. (10)

Oy, = Pu,+ Ny, (11

where the ny, are integers which have either of the two values 0 or 1. One can attempt to
solve (10) for each choice of the ny (though it is possible that for certain choices there
will be no solution at all). In addition, for each choice of the ny, there may be more than
one distinct solution. Presumably, the majority of such solutions correspond to saddle
points in the entropy and only a small fraction constitute true maxima. A function of n
phase-like variables can be easily seen to have at least one maximum, one minimum, and
n saddle points, using the arguments illustrated for n = 2 in the context of solid state
physics by Ziman (1972). In any case, it is clear that the phase problem introduces a rich
new dimension to maximum entropy. The existence of several local maxima (about
which we are convinced on the basis of our computer simulations) means that any
numerical technique is liable to be trapped in the wrong maximum. The saving grace is
that these subsidiary maxima generally display elements of the true structure and are
therefore still useful for the elucidation of the structure.

Even if there are multiple Mem solutions to the phase problem, it is crucial that the
true structure itself should be close to a solution—only then can we hope to get
something out of the method. At a general level, since the electron density distribution
ina crystal is always peaky with a flat baseline, it satisfies the a priori input built into the
MEM (§2) and hence is likely to be a solution. However, one can more rigorously
establish this for equal atom structures. Figure 2a schematically shows the electron
density p(x) (in one dimension) of a “structure” of equal symmetric well-resolved
atoms. Let us for convenience focus on the entropy S, where f(p) = In(p). Then

)= 1p, (12
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Figure 2. (a) Schematicelectron density p(x) of a one-dimensional structure with two equal
“atoms™; a constant “DC value” of 0-5 has been added. (b) Variation of 1/p(x), showing that it
is also a structure with two equal atoms; the atoms here are negative, have a different shape
from those in (2) and hang from a DC level of 2.

and its shape as a function of x for the true structure is shown in figure 2b. It is clear that

S [Pirue(®)] = K+ pirye(x) # S(x), (13)

where K is a constant, « represents a convolution and S(x) is a symmetric “shape”
function. Taking the Fourier transform of (13) we have for any non-origin H;

GH, = FH,SH!’ (14)

where Sy, , the H;th Fourier coefficient of S(x), is a real number (positive or negative).
Thus we automatically have

Oy, = @y, or Py, + 10, (15)

depending on the sign of S,,J. This is identical to the conditions written in (10) or (11)
and shows that equal atom structures are automatically solutions of the MEM. As a
further bonus, since the shape function S(x) is usually known, one has full information
on Sy, and hence one can, in principle, determine all the ny, in (11). This greatly reduces
the number of solutions to the problem. It is clear that the above considerations work
for all forms of the entropy and are dimension-independent.

In the case of non-equal atom (i.e. heavy atom) structures, there is a rather subtle
point involved. It will be noticed that both the entropies S; and S, ((5) and (6)) are
defined only for positive values of the argument. Hence, at any intermediate stage of
refinement, when one has a lot of spurious features in the map, including negative
excursions of the electron density, it is necessary to add a suitable constant C to p(r).
Any value of C larger than the greatest negative value of p(r) is enough to make the
problem well-defined. However, it is clear that the reconstructed solutions now have a

~non-trivial dependence on the value of C. Rather than look at C itself, in our work we
have found it useful to employ another parameter R given by

R =f"(Pasin+ C)f"(Pruax +C). (16)

We have borrowed this concept from our earlier work in radio astronomy (Nityananda
and Narayan 1982) where we showed that R is a measure of non-linearity. For the
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present purposes it is sufficient to note that large values of C imply small values of R
(however, R is always > 1) while the smallest permitted C (viz. — p;, ) gives R — 0. It is
also clear that as R — 1, f” is constant and f” a linear function of p. The phases 6y of Gy
in (9) are then just @, or ¢, + m and all maps satisfy the MeM conditions (11). Now, in
our experience, low values of R lead to a stable centrosymmetric solution even when the
true structure is non-centric. When R is increased, the symmetry is broken and one of
the two enantiomorphs grows at the expense of the other. This is most clearly seen in
the case of a structure with a single heavy atom, where the enantiomorphs are related by
a centre of symmetry at the heavy atom location (see figure 3a). As R is increased in
magnitude, the ghost peaks in the “wrong” enantiomorph become progressively weaker
(figure 3b). This suggests that MeM refinement on non-centric structures, particularly if
they have heavy atoms, should be carried out at high values of R, i.e. low values of C.
The role of the constant C vis a vis centric and non-centric structures is discussed in
terms of a simple illustrative example in the Appendix.

Although the MEM s a variational method, having its origins in information theory, it
turns out surprisingly to have certain features in common with more conventional
techniques. If we look at the Mem conditions (10) or equivalently (11), we see that the
phases 0 H, and ¢, are related. Since 0H,’ by (9), is a function of all the ¢y, through p(r),
we thus see that the phase relations (11) implicitly involve all the unknown phases. In
conventional crystallography Sayre (1952) introduced the concept of triplet phase
relations, where the phases of three suitably selected reflections are tied together. This

(@) -/ (b)

o Qe o °

Figure 3. (a) The true structure consists of 12 atoms shown by solid lines, with a heavy
atom located at the strongest peak. When the true phases are refined by the MEM using the
entropy form S, at R = 9, the final map has reasonably strong ghost peaks as shown by the
dashed lines. These peaks correspond to a spurious enantiomorph molecule sharing the same
heavy atom as the true structure. (b) When the refinement is carried out at R = 100, the ghost
peaks are very much weaker showing that the MEM breaks the symmetry more effectively. On
the other hand, if one used R < 9, one would obtain a completely centrosymmetric map even
though the structure amplitudes correspond to a non-centric structure.
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has since been extended to quartets, quintets etc., which are believed to be more
powerful, though also more difficult to implement (Ladd and Palmer 1980). Since the
MEM involves very high order phase relations which are relatively easy to implement
through Fourier transforms and the gradient method, there is a case for believing that
the method may be an improvement over current direct methods. One can look upon
the “non-linearity” parameter R as determining the extent to which different phases are
coupled by the mem condition, since they become decoupled in the R — 1 limit. Since R
can be controlled through the constant C, this may be considered an added advantage.

There has been interest in recent times in a technique called the maximum
determinant method (Lajzerowicz and Lajzerowicz 1966; Tsoucaris 1970, 1980) which
is based on the Karle-Hauptmann (1950) determinant and involves high order phase
relations. We have proved (Narayan and Nityananda 1982) that the maximum
determinant method is closely related to maximising the entropy S, (Britten and
Collins 1982 have also independently reached the same conclusion); this is therefore
another contact between conventional crystallography and the MEM.

4. Numerical algorithm

We have carried out a series of calculations on model “structures” in two and three
dimensions as well as on a few real structures in three dimensions. We have employed
the gradient approach to maximisation of S, using the expression (10) for the
components of the gradient. The alternative fixed-point approach which seeks to
directly achieve the conditions (11) could be faster when properly implemented.
However, fixed point schemes are often notoriously unstable; therefore this approach
seemed unsafe to us at this early stage of investigation when speed of convergence is of
secondary importance compared to the need to understand the properties of the
method. The gradient method on the other hand is very stable and guarantees that S
increases with each iteration.

All our studies have been in the lowest symmetry viz p1 (in 2D) and P1 (in 3D). This
was dictated by two considerations. Firstly, conventional methods work very well for
higher symmetry crystals, particularly when they are centric. It seemed that the MEM
could hope to make the greatest contribution in low symmetry non-centric structures.
Secondly, the gradient algorithm requires continuous variation of phases whereas
centric structures have only two values for each phase viz 0 or .

In our work with the gradient method, we often noticed that a single peak in the map
grew at the expense of the others, thus making it virtually impossible to interpret the
map. We have been able to suppress this tendency by maximising a modified form of
“entropy” viz

- f{f[cl +p®]+/[Cs - p0)]} 4, a7

where C, is a constant (> — p;,) which is adjusted to give the required value of R
(equation (16))and C, is a second constant set to have a value slightly greater than the
theoretical height of the heaviest atom (see figure 4). The constant C, ensures that any
peak which attains the expected height of an atom does not grow any further, thus
giving a chance for the other atoms to develop. The constant C, is regularly updated at
each cycle in order to maintain the value of the nonlinearity parameter R. In the early
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Figure 4. Schematic diagram showing the essentials of our modified entropy (17), which has
a variable “floor”, adjusted to maintain a preset value of R, and a fixed “roof”, set so as to
discourage any peak from growing beyond the theoretically expected height of an atom.

stages of ab initio structure determination, we usually start with totally random phases
for the reflections. The corresponding p(r) would have no distinct peaks and would
have relatively large negative excursions. At this stage C, will have a large value. As the
refinement proceeds, peaks will start developing and at the same time the ripple at the
bottom would get ironed out, resulting in smaller values for C,.

Each cycle of gradient refinement involves the following calculations. Using the
current phases ¢, we compute p(r) by means of a Fourier transform, compute the
function {f’[C,+p(r)]—/[C,—p(r)]} and calculate G, its Fourier transform.
Equations (10) then give the components of the gradient of ' Now we shift the ¢, by
small amounts proportional to the gradient components and compute the new gradient
at the shifted phases. We then calculate and apply the shift necessary in order to
minimise the magnitude of the gradient at the final point (one could also use the more
standard scheme of requiring the final gradient to be orthogonal to the starting one).
Thus, one cycle involves four Fourier transforms.

5. Two-dimensional simulations*

We have carried out a number of tests of the MEm on model two-dimensional
“structures” with typically 10-15 equal “atoms” in the unit cell. The electron density
was sampled on a 32 x 32 grid and correspondingly the structure factors ranged over
reciprocal indices going from — 15 to + 16 (— 16 being identified with + 16 because of
the translation symmetry in reciprocal space introduced by the discrete sampling in real
space).

Figure 5 shows the result of a typical refinement from partial phase information. The
structure factors of the model structure with 15 equal atoms were calculated and their
phases were given random errors, with a rectangular distribution, of rms 70°. The

* The results described here were presented at the XI1I National Seminar on Crystallography, Nagpur, India,
March 1982.
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Figure 5. (a) The true structure consists of 12 equal atoms at the vertices joined by the
straight lines. The map shown here is obtained by adding phase errors of rms 70° to all the
reflections. (b) Map obtained after refining the phases using the MEM.

corresponding electron density map is shown in figure 5a. The structure is still clearly
seen but there are many spurious low-level features in the map. Figure 5b shows the
remarkable improvement that can be achieved by means of MEM refinement. Here we
did 20 cycles of gradient refinement with the entropy S; modified as in (17), using R
= 10. The final rms phase error is only 21-7°. Actually, most of the improvement takes
place in the first few cycles. For instance, after 10 cycles, the rms is as low as 30-8°. From
a number of similar studies we find that the structure refines well from initial phase
errors of up to 70-75°. There are many situations, particularly in macromolecular
crystallography, where one can obtain limited phase information using techniques such
as isomorphous replacement and anomalous dispersion. There appears to be good
hope that the MEM can greatly help in phase refinement in such cases. Collins (1982) has
published some results on phase refinement on real protein data using the mem. While
there is some improvement, his results are not as impressive as those in figure 5. This
could be because of experimental errors in the structure amplitudes or, more probably,
because the atoms in his structure are not well resolved (the MEM, being peak-seeking, is
likely to work best with high resolution data).

The more difficult, and therefore more interesting problem is to solve a crystal
structure ab initio, starting from pure amplitudes and no phase information. We have
tried this in a number of two-dimensional simulations and figures 6-8 show some
typical results. In each case we started the refinement with totally random phases and
refined for 20 cycles with entropy S, at R = 10. Although the final map usually had a
few spurious peaks, invariably the structure could be identified, with at most one or two
atoms not seen. As a more objective test of the power of the method, we carried out a
few “blind tests” of the following kind. One of us (Narayan) generated a model and
produced a list of structure amplitudes along with stereochemical information on the
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Figure 6. The truestructure is the same as in figure 5. Random phases werc given to the true
structure amplitudes and refined using the MEM. Eleven out of 12 atoms can be fitted on peaks
in the refined map. The atom marked A is absent with no nearby peak. while the peak Sisa
strong spurious feature. This is a typical result obtained with the MEM in two-dimensional ab
initio structure analysis. Note the origin shift.

Figure 7. The true structure consists of 2 molecules, of 8 equal atoms each, with the
orientations and relative spacings shown. The MEM map obtained by refining random starting
phases reveals most of the structure except the absent atom A. There is one strong spurious
peak S.



352 Ramesh Narayan, Rajaram Nityananda and G V Vani

Figure 8. The true structure consists of 4 molecules, of 5 equal atoms each, in cm symmetry.
The MEM map, refined from random starting phases, without including the information on the
mirror, shows all the 10 independent atoms and has no strong spurious peaks.

“molecule”. Another (Vani), given a map with random phases, would refine them by
means of the MEmand try to interpret the resulting map. In all the three cases where this
was tried the structure was solved correctly—usually, one or two atoms did not appear
in the Mem map, but these could be easily located by standard Fourier techniques
(Ramachandran and Srinivasan 1970). Because we start from random phases in our
calculations, there is invariably an origin shift in the solution and in 50 %; of the cases
there would also be an enantiomorph reversal.

A point to be emphasized is that all our calculations were carried out in pl symmetry
which is considered the most difficult. Figure 8 shows an interesting case where the true
structure has cm symmetry but we did not use the information on the mirror during the
refinement. Thus, although this structure has only five independent atoms, we solved it
as if it was a 10-atom structure in cl symmetry. It is interesting that the mirror
symmetry comes to light during the structure solution, though not perfectly.

Another interesting feature is that in all our calculations we directly used the
structure amplitudes | Fy | without any modification. In the direct methods a crucial
prerequisite is “sharpening” of the data to obtain so-called E’s, corresponding to a
point atom structure. In our experience, the MEM works very well with F’s and, in fact,
does not refine so well when E’s are used.

6. Three-dimensional refinement—real structures

Encouraged by the results in two dimensions we have very recently embarked on three-
dimensional structure determination using the MEm. Due to memory limitations in the
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mini-computer (PDP 11/34) with which we worked, we used a 16 x 16 x 16 unit cell for
the electron density, corresponding to (h, k, I) ranging from —7 to + 8. Once again all
refinement was carried out in P1 symmetry using the gradient method. Whereas in two
dimensions the entropy S, appears to be marginally better than S, we find the opposite
to be true in three dimensions. Hence all the results described here correspond to the
entropy

Sy=-— J{ [Ci+ p(r)]In[C, + p(r)] + [C.- p(r)]in (C. —p(r)]}dv,. (18)

The constant C, was adjusted to maintain R = 10 while C, was taken to be slightly
greater than the theoretical height of the strongest atom. The refinement is typically
slower than in two dimensions, needing of the order of 50-100 cycles, though once
again most of the gain is achieved early on.

To begin with we generated a model structure with 15 equal atoms in P1 symmetry
and refined the phases using the MEM, starting from random values. The electron
density after 60 cycles of refinement was scanned for peaks and these were listed in
decreasing order of magnitude. The structure was very clearly identified from the peaks.
Among the first 15 peaks, 10 belonged to atoms in the structure and 5 were spurious.
Among the 10 correct peaks, 3 (viz peaks 2, 3, 4 in the order of ranking) were elongated
and had a second atom in the tail region. This is a problem we faced in all our three-
dimensional calculations—because of the lack of resolution (since we have only 16 grid
points along each axis), peaks sometimes merged and two atoms would be represented
by a single elongated peak. In such cases, usually one atom is close to the strongest
region of the peak and the other weakly present in the tail. Thus, in our simulated 15-
atom structure, the first 15 peaks accounted for 13 atoms and in fact the first 8 peaks
were all correct and contained 11 atoms. The final 2 atoms in the structure were at peaks
23 and 26. We feel that the performance of the MEM is very encouraging.

Emboldened by this we have tried to “solve” a few real structures using real
experimental data. Unfortunately, we could not find in the literature any suitable equal-
atom P1 structure whose data would fit within our 163 grid. As the next best thing, we
selected a few structures in P symmetry and refined them in P1 symmetry, ignoring the
centre of symmetry altogether.

Martuscelli (1969) has reported the crystal structure of octa-trans-2, trans-6-diene-1,
8-dioic acid which crystallizes in P1 symmetry with unit cell parameters a = 1200 A,
b=394A, c=T7T72A, a = 121-35°, B = 139-4°, y = 70-05°. He solved the structure
from about 500 observed reflections using model-fitting procedures based on the
Patterson maps. Because the cell parameter a is rather large, our calculations on this
structure were hampered by the extremely poor resolution (0-75 A) in this direction.
Also, we could include only reflections with k in the range — 7 to + 8 which reduced the
number of structure amplitudes we could use to 326. In spite of these limitations, the
structure refined quite easily from random phases. After 100 cycles of refinement, the
first 12 peaks in the map included all the 12 atoms of the structure. Peaks 7 and 9 were
spurious while peaks 1 and 2 included 2 atoms each. This is very gratifying since we had
very limited data and severe resolution problems.

Our next attempt on a much larger equal atom structure was not so spectacular
though still rather encouraging. Karle (1969) has reported the structure of a thymine-
thymine adduct (obtained from irradiated thymine). This is again in PT symmetry with
38 atoms in the unit cell (2 x 19 independent atoms);, a = 9-44 A b=8294A, ¢
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=757A, a=990°, f =91-5°, y = 89-8°. The data consisted of 1844 independent
reflections and the centrosymmetric structure was originally solved by obtaining the
structure factor signs using the symbolic addition procedure (Karle and Karle 1966).
We attempted to solve the 38 atoms of the structure in P1 symmetry with the MEM,
using 1370 reflections which fitted within our grid. After 100 cycles of refinement
starting from random phases, we found that, of the first 38 peaks, 18 were correct,
including 22 atoms (peaks 1, 6, 11 and 14 had two atoms each), while the first 80 peaks
had 25 correct peaks with 31 atoms; 7 atoms had no peaks at all in the map. Of the two
molecules, one was seen quite clearly while the other was rather weak. The refinement
has clearly not been too successful; on the other hand, we believe we could, if necessary,
have solved the structure from our map with a little patience if the structure were not
already known. Karle (1969) used 6 symbols for which a unique assignment of signs was
indicated by the symbolic addition method and the first 19 peaks of the resulting E-map
showed the 19 independent atoms in the structure—a truly remarkable performance.
However, considering that (i) we had to use less data, (i) we had poor resolution in the
electron density map, (iii) we refined 38 independent peaks, (iv) we worked in a non-
centric framework and (v) we have not really optimised our refinement procedure, we
feel our results using the MEM are quite good. We may point out that a structure with 38
atoms in P1 is not trivial even today and would probably have been considered quite
difficult a decade back.

As a final example we attempted a simple heavy atom structure. Dutta and Woolfson
(1969) solved the structure of tetraethyl diphosphine disulphide, which crystallizes in P1
symmetry, by direct methods from two projections using two symbols in each. The unit
cell has 12 atoms (6 independent atoms if one uses the P1 symmetry), of which 2 sulphur
and 2 phosphorus atoms are heavy, while the other 8 are (light) carbon atoms. The unit
cell parameters are a=898A, b=645A, c=615A, a=1130°, B =852°
y = 102-5°. Of the 864 reflections observed, we could accommodate only 760 within our
grid and the phases of these were refined as usual with the MEM. After 70 cycles of
refinement the first 12 peaks contained 10 atoms with 2 spurious peaks (8 and 10 in
ranking). The first 4 peaks were the 4 heavy atoms and the two atoms that were missing
were the weakest in the final solution, having heights only ~ 18 9/ of the sulphur atoms.
The success of the MEM with this structure is interesting as it shows that the method is
equally applicable to heavy atom structures (as indeed the direct methods also are,
although they were originally developed for equal or near-equal atom structures).

In the various structure determinations described above, there was nothing special
about the starting random phases which could have helped in the refinement. We have
tried different sets of random phases and usually obtained comparable results. Also,
although we refined for ~ 100 cycles in all the cases, most of the refinement is over
within the first 20 cycles and the later calculations only help to “sharpen” the peaks and
define then better. Finally, we should mention that, as in two dimensions, here again we
obtained much better results using the F’s rather than E’s.

7. Discussion and conclusions

The phase problem of crystallography is probably the most difficult and challenging
among the variety of Fourier inversion problems known in several fields. The success of
the MEM in other fields in different contexts is therefore no guarantee of success when
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applied to crystallography. Although we and a few others have been excited about the
prospects of the MEM in crystallography, there was until recently only limited reason for
optimism. Firstly, we (as well as Britten and Collins 1982) had shown that the MEM is
related to the maximum determinant method of crystallography; we had further argued
that the MEM phase relations (equations (10)) are higher order phase relations which are
likely to be more powerful than the lower order relations (triplets, quartets, etc.)
conventionally used and that equal atom structures satisfy the MEM relations. Secondly,
Collins (1982) had shown that phase refinement is feasible in macromolecular
crystallography, starting from approximately known phases.

We believe that the results presented in this paper greatly improve the case for trying
the MEM in crystal structure analysis. We have shown that the method works well in
small- and medium-sized real crystals and has the ability to locate a high percentage of
the atoms starting from random phases for the structure factors. It is worth stressing
once again that all our work has been in P1 symmetry, which is usually considered the
most difficult.

A comparison of MEM refinement (as we implement it) with conventional direct
methods shows two important differences.

(a) In the direct methods one works with E’s and solves for point atoms. On the
other hand, we find that the MEM works best with F’s. It is possible that this difference
arises because the MEM, apart from looking for peaks as do the direct methods, is also
concerned about the flatness of the baseline. Since an E-map is likely to have a lot of
ripple even with correct phases (due to data truncation and experimental errors), this
might be a possible explanation.

(b) In the direct methods, the multisolution approach is the rule where a small set of
primary reflections are systematically given various phases. One set then produces the
structure while the others are usually uninterpretable. In our tests so far we have found
that, regardless of the starting set of random phases, the structure usually comes up to
about the same level of interpretability. It is possible that we are still working with
structures that are too small and that the MEM also may need a multisolution approach
with larger structures. On the other hand, there is a distinct possibility that, because of
its higher order phase relations, the method is able to attract the solution towards the
correct structure from a wider range of starting phases.

Because of the above reasons we feel that the MEM is not just the direct methods in a
new disguise but is distinctly different. As such it merits further study in more
complicated situations. The ability to work with F’s rather than E’s might turn out to
be a big advantage since the method will be less susceptible to experimental errors. In
our view the following further questions now need urgent attention.

(a) Although the gradient method we have employed is useful for the sort of
preliminary studies we have made, the future probably belongs to fixed point schemes
(e.g. Sayre 1980) which directly seek to satisfy the MEM conditions (10). Not only would
the method then easily work for centrosymmetric strucutres, there is also the real
advantage that one can use one’s a priori information on the shapes of atoms through
the Su, in (14) to determine the ny, in (11). This information cannot be introduced into
the gradient algorithm.

(b) One needs sensitive figures of merit to measure the goodness of the refinement,
particularly if the MEM is to be combined with the multisolution approach.

(c) Techniques such as isomorphous replacement and anomalous dispersion are
employed to give added information in macromolecular phase refinement and these

L]
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could be put in variationally into the MEM. For instance, in isomorphous replacement,
one knows that the electron density distribution in a protein and its derivatives are
identical except at the locations of the replaced atoms where the differences are known.
So too, in the anomalous dispersion case, where the electron density becomes complex,
one has the powerful a priori information that the peaks in the imaginary part occur
only at the centres of the peaks in the real part. One technique to introduce these extra
constraints is to maximise the integral of f(Pderivative — Pprotein) @04 f (Preal — Pimaginary )
which is equivalent to introducing the a priori input that (pgerivative — Pprotein) has a flat
baseline with sharp well-resolved peaks and that (preal — Pimaginary) has no negative
peaks. These and other similar ideas deserve to be pursued, particularly since Collins
(1982) has obtained interesting results even with just the bare MEM.
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Appendix

We present here an illustrative example in one dimension bringing out the crucial role
played by the zero Fourier coefficient F,. We consider a periodic real function in one
dimension which is sampled at 4 points in the unit cell so that the function is completely
described by its values p_, po, 1, p2 (the origin has been taken at the second point).
The Fourier coefficients are also periodic. As the p’s are real, F, and F, are real and
F* =F, = |F,|exp (ip,) are the only structure factors with a continuously variable
phase; even here, if we eliminate physically identical solutions (related by an origin shift
or enantiomorph reversal), the range of ¢, from 0 to n/2 completely describes all
distinct solutions compatible with a given set of amplitudes F, |F,|, F,.
Consider the centric “structure” given by

Po=20,p_,=p =05p,=0, (A1)
whose Fourier transform gives
Fo =10, |F,| =075, ¢, =0° F, =05. (A2)
We investigate the variation of the entropy
2
5:(C, ¢;) = |In[C+p(¢,)]dx = Z In [C+Pj(‘P1)]a (A3)
i=-1

where p;(¢,) are calculated with the true amplitudes and the phase ¢, . Adding C to all
the p;is equivalent to replacing F,, by F,, + C. Figure 9 shows the variation of S, with ¢,
for different values of C. At high values of C, the maximum value of S, is seen to occur at
the correct phase, ¢, = 0. However, at low values of C the maximum shifts away from 0
and at C = 0-02, for instance, occurs at ¢, ~ 10°. Thus, at low values of C, the MEM
solution is non-centric even though the data correspond to a centric structure.
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Figure 9. Variation of entropy S, as a function Figure 10. Variation of entropy S, as a function
of phase ¢, for the centrosymmetric structure (41), of phase ¢, for the non-centrosymmetric structure
(A2) for various “DC offsets” C. Note that the (A4), (A5) for various “DC offsets” C. Note that the
maximum entropy solution at small C is non- maximum entropy solution at large C is centric
centric (@, # 0). (¢, =0).

Consider next the non-centric structure
p-1=0po=30,p, =10, p,=0, (Ad)
Fo =10, |F{| = 07906, ¢, = 18:43°, F, = 0'5. (AS)

The variation of the entropy S, for this case is shown in figure 10. At low values of C,
the maximum value of S, occurs close to the true phase e.g. for C = 0-05, we obtain ¢,
~ 18°. However, as C increases, the maximum shifts to lower values of ¢, until above a
critical value of C the maximum is at ¢, = 0, i.e. a centric structure. This tendency of a
non-centric structure to move towards a centric solution at high C (or low R) is also
discussed in §3 with a two-dimensional example.

The above results suggest that the value of C should be set by the user depending on
prior knowledge of the presence or absence of a centre of symmetry. We have found by
experience that very low values of C lead to slow convergence while very high values of
C can cause round-off errors in the calculations. In our work, with these two auxiliary
constraints in mind, we constantly update C at each cycle so as to maintain the non-
linearity parameter R at a value ~ 10. This has given good results with both centric and
non-centric structures.
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