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The Importance of Being Ignorant

Using Entropy for Interpretation and Inference
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In many real life situations, we have to draw con-
clusions from data which are not complete and
have been affected by measurement errors. Such
problems have been addressed from the time of
Bayes and Laplace (late 1700’s) using concepts
which parallel Boltzmann’s use of entropy in ther-
mal physics. The idea is to assign probabilities
to different possible conclusions from a given set
of data. A critical — and sometimes controver-
sial — input is a ‘prior probability’, which repre-
sents our knowledge before any data are given or
taken! This body of ideas is introduced in this
article with simple examples.

From the earliest times, thinkers have recognised two
distinct ways of learning about the world we live in. Our
educational system gives prominence to the first one —
‘deduction’. The best example is of course Euclid’s con-
struction of geometry from a few innocent looking ax-
ioms. In the world of fiction, Sherlock Holmes claimed
to ‘deduce’ what had really happened in a crime from
a few clues. But in reality, what most of us (Sherlock
Holmes included) practise, should be called ‘induction’.
Logicians have given this name to drawing conclusions
from observations or experiments by a rather different
process. To start with, we have a large number of possi-
ble hypotheses to choose from. Observations and exper-
imental data are used to narrow down the possibilities.
The word ‘hypothesis’ is being used in a rather simple
sense here. For example, if we are trying to determine
the elliptical orbit of an asteroid, the ‘hypothesis’ is just
a set of numbers giving the plane of the orbit, the size
and shape and orientation of the ellipse in this plane,
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and where the asteroid sits on the ellipse at a given
time. We do not directly measure these numbers but
rather the angular position in the sky at different times,
as seen from the earth which is itself a moving platform.
The situation is illustrated in Figure 1.

Gauss faced precisely this problem of orbit determina-
tion in the year 1801. A few observations of Ceres, the
very first asteroid discovered, were available. He in-
vented the so called ‘method of least squares’ to choose
the best orbit consistent with the measurements avail-
able. We now explain how his method fits in with our
earlier general discussion. To simplify matters, we will
assume, as in Figure 1, that the two orbits, of earth and
asteroid, lie in a plane. We show in Figure 2 two kinds of
graphs. One, made up of individual points, gives the ob-
servations. The continuous curves, give the predictions
of different possible orbits (i.e., hypotheses).

Our first reaction is that it needs only four numbers to
specify the orbit in the plane. These could be the z and y
coordinates of the asteroid, and the z and y components
of its velocity, at a given time (January 1, 1801, for
example!). Four measurements ought to be enough, and
we should be able to deduce the orbit without guesswork.

Figure 1. The (unknown)
orbit of the asteroid is
shown by dashed lines. At
three differenttimest,,t,t,
observations give the three
directions (but not dis-
tances) of E,A, E, A, and
E A, Theearth'sorbitE E,
E, is assumed known.

Gauss invented
the so called
‘method of least
squares’ to choose
the best orbit
consistent with the
measurements
available.
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Figure 2. The points show
the actual observations.
The continuous curve A
shows what we might re-
gard as the best orbit. B is
another orbit at a greater
distance than A. The verti-
cal lines through the ob-
served points represent
errors of measurement.

Measurements are
never exact, and
the points would
not lie exactly on

the predicted curve
even if we knew

the orbit!

angle

time

But Gauss, although the prince of mathematicians, also
knew the real world better. Measurements are never
exact, and the points would not lie exactly on the pre-
dicted curve even if we knew the orbit! We can state this
in another way. For each measurement, we can draw a
vertical bar which represents the possible range in which
the true value (of the angle) could lie. Each point has
now become ‘fuzzy’ or ‘blurred’ in the vertical direction
(The measurement along the z-axis, viz time, is usu-
ally very accurate and we do not worry about its errors
here.)

Now we can readily see that there is a corresponding
fuzziness or uncertainty in the curve drawn though the
points. We have moved from deduction to induction.
Other names for this process are ‘inversion’ (going back
from the data to the hypothesis) and ‘statistical infer-
ence.’

Going back to Figure 2, why do we choose the curve
A rather than the curve B? An experimenter would say
that ‘the deviations of curve A from the measurements
are consistent with the error bars, while curve B lies well
outside the error bars.
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Now let us try and be more quantitative. Each error
bar is really not a line with sharp limits. Larger errors
are less probable, but not impossible. In fact, Gauss
himself, building on the work of de Moivre and Laplace,
proposed that the probability for the error to be z falls
off proportionally to exp (5—;’;) This is the bell shaped
graph sketched in Figure A. Boz 1 gives a few more
details about this remarkable, widespread distribution
which we all call gaussian. The basic message of Boz 1
is that the error is itself the sum of many smaller con-
tributions each of which may not have a gaussian dis-

Box 1. The Gaussian Distribution

A coin is tossed eight times. What is the most probable number of heads? Four of course. Why is eight
heads less probable than four? Because there is only one way to get eight heads, HHHHHHHH. But there
are 8C,=70 ways to get four heads, since we now have freedom to choose any four of the eight tosses to
show heads. The full table of numbers is

No. of heads 0 1 2 3 4 5 6 7 8
No. of cases 1 8 28 56 70 56 28

and they are plotted in Figure A

To get the probability, we have to divide by
256. We have also superposed a bell shaped
curve. This is how the probability for » heads

behaves when the number of tosses is very
large (of course, we have to relabel the axes if
we have 158 tosses instead of 8!). This is the
famous gaussian distribution. Its mathemati-

| cal form is
i (z — m)?
; ; P(z)=Aexp (—-—-—2—0-3——' .

A is a constant of proportionality.
.LJ'_Q jre A

>

x = m is the peak of the curve and also the average value of x. o2is a constant which is called ‘variance’.

It measures the average of the square of the deviation of x from m.
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But let us
remember that
least squares is
not sacred or
perfect. It is only
as good as the
assumptions that
went into it.

tribution. But the sum does approach this law in many
cases. We can think of the height of the gaussian as
measuring the number of ways that a given error could
be built up from the underlying individual contributions
(“errorlets’?). The logarithm of this number is, there-
fore, proportional to

2
log(exp (—m2a,-/2ori2)) = constant — 5’—2
g;

o?

; is the average of the square of z;. Why do we take
the logarithm? This is a convenient thing to do when we
want to multiply numbers! Come back to our original
problem of determining the best orbit ( Figure 2). When
we guess a given curve, A or B, we are automatically
attributing the deviations of the points from the curve
to experimental error. So we should be asking ourselves
— ‘What is the probability that the errors took the values
that we are suggesting?’ This probability is obtained by
multiplying gaussian functions for the individual errors
at each measured point. We now want to maximise the
joint probability, i.e., the product of probabilities. So
we maximise the logarithm, which is

log (Probability of errors) =

2
const + another const (—- Z x—’z) .
> 20]

In the simple case where all the o;s are equal, this means
we have to minimise the sum of the squares of all the
errors (because of the negative sign in front of it). This
is the famous method of least squares, and it is emi-
nently sensible. It prevents us from doing silly things
like drawing the theoretical graph well away from the
points. It ensures that errors have both signs. But let
us remember that least squares is not sacred or perfect.
It is only as good as the assumptions that went into it.
When the errors do not have a gaussian distribution, or
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when we have some physical limits which restrict our or- We should warn the reader
bit, we can, and must do better. Our example was really  'ha there are many other ap-
meant to introduce a broader framework for hypothesis  P'o9ches o stafisfical infer-

testing. -
of this article uses concepts

This broader framework came even before Gauss. It i oSS!0 entropy.

attributed to Bayes and Laplace, who worked in the late
1700’s.! The basic (‘Bayesic?’) idea is to use a simple
theorem of conditional probability due to Bayes (Boz 2).
We need it in the form.

ence. The Bayesean approach

Box 2. Bayes' Theorem for Conditional Probabilities

One way of understanding this theorem is via
Figure B in which points stand for events and

areas stand for probabilities.

The horizontally striped region A represents all 3

)

cases or trials in which some eventa occured. The

vertically striped region B similarly stands for all

instances of b. The intersection C of these two

regions is cross hatched and represents cases where

both a & b occured. We can now say —_—

Area of C = p(a,b) = joint probability of ¢ and b Figure B. Venn diagram illustrating

Area of 4 = p(a) = probability of a Bayes’ theorem.

Area of B = p(b) = probability of b

Conditional probability of @ given that b has occured = p(a |b)

area of C pla,b)

area of A pla)

Hence, p(a.b)=p(a | b) . p(a). Similarly, p(a,b) = p(b | a) p(b).
Ience, equating these two,
pbla)p@

p(b)

plalb) =

Since the left side is a function of a for fixed b, we can treat the denominator as a constant, as we have in

the main text.

RESONANCE | September 2001 W 13



GENERAL | ARTICLE

Probability of H
(given D) states
the goal of all
experimental
science, viz., we
are given data, and
we try to assign
probabilities to
different
hypotheses based
on this data.

Probability of H(given D) < Probability of D (given H)
multiplied by Probability of H (not given anything.)

Our choice of notation is deliberate. H stands for hy-
pothesis, D stands for data. The left hand side states the
goal of all experimental science, viz., we are given data,
and we try to assign probabilities to different hypothe-
ses based on this data. That is what the notation P(H]|
D) means. The right hand side of our equation tells us
how we are to achieve this goal. It has two factors. The
first one is the conditional probability P(D|H). In words,
given a hypothesis (orbit in our earlier example) what
is the probability that the given data could arise (e.g.,
angle measurements of the asteroid)? We have already
talked about this when we multiplied gaussian (proba-
bility) distributions for the errors at the various exper-
imental points. In general, if we know how to predict
with our hypothesis and we understand our experimen-
tal errors, we should have no difficulty with P (D|H).
(And if we don’t the first priority is to do so!). Our ear-
lier discussion stopped at P(D|H) — which statisticians
call the ‘likelihood function’ when regarded as a function
of H - for fixed D. Of course, it is an honest probability
distribution for D, when H is fixed.

But the rules of probability tell us that this is not enough.
We have to face up squarely to the second factor on the
right side P(H). This is the unconditional probability
that a particular hypothesis H is true. Since this has
nothing to do with the data, it is called the ‘prior’ dis-
tribution. Perhaps the philosophy of Kant shaped this
terminology. He believed that some things like space
and time had to be given to us ‘a priori’, right at the
beginning. We already had some kind of prior distribu-
tion in mind in our orbit problem. We only drew curves
like A or B which were based on Newton’s laws of mo-
tion and gravitation, and did not try others. Using P(H)
to reject what we know to be impossible even before the
observations are taken, is a good idea. But P(H) also as-
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signs different weights to two hypotheses which are both
possible to -start with. This seems like introducing the
experimenters prejudice into the interpretation of data!
Hot debates continue on this point. The ghost of the
prior has haunted Bayesian statistical inference from its
birth. Laplace himself coined a ‘principle of insufficient
reason’. It was a way of making the prior a constant
or flat function so as to be as even handed as possible.
This is similar in spirit to our accepting 1/2 and 1/6 as
the probabilities for coins and dice. But when we come
to a continuous variable ¢, going from zero to one, do we
say it has equal probabilities to be less than or greater
than -é—? There is a trap here pointed out by Laplace’s
countryman Bertrand. Why not apply the same (insuf-
ficient!) reasoning to g2, which goes from zero to one?
We would then conclude the g would be less than 0.707
with probability % Clearly one needs further input to
decide on a prior in cases like this.

So far, we have just touched the fringes of entropy con-
cept, when we looked at the logarithm of the number of
ways that a given error could occur. But we are now
prepared for the basic problem which faced Boltzmann
when he investigated the theory of gases in the latter
half of the nineteenth century. There is detailed discus-
sion in the article by Bhattacharjee in this issue, and
we only give the bare minimum needed for this story.
Boltzmann would take the total energy and total vol-
ume of a gas as given — these correspond to the data set
D. Let us think of the detailed position (z) and velocity
(v) information of all the molecules as our hypothesis
H. Boltzmann (and his great American contemporary,
Gibbs) divided the space of z and v into cells of equal
volume, measured by the product dzdv. Notice that he
singled out & rather than z3, v rather than v°. This prior
was based on his analysis of the dynamics of collisions
between molecules. The rest is history. He was able
to deduce Maxwell’s probability distribution law for the

-
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In modern
quantum language,
one can state
Boltzmann'’s prior
in a physically
appealing way.
Every single
energy level of the
whole system gets
equal probability to
start with.

2 Interestingly, this is a product of
three gaussiandistributions for v,,
v, V,

3 1f all the letters were equally
likely to occur, this number
would be =260,

molecular velocity components v, vy, v,. 2 Even better,
he was able to show how collisions would produce such
a distribution even if it was not present to start with.
These results were in full agreement with experiments,
both earlier and later. In modern quantum language,
one can state Boltzmann’s prior in a physically appeal-
ing way. Every single energy level of the whole system
gets equal probability to start with. While Boltzmann
chose the volume in z — v space based on classical colli-
sions, today we know that this is equivalent to counting
energy states in quantum theory.

We now move forward about half a century to 1948.
Stimulated by rapid advances in electronics, one of the
best telephone systems in the world was established in
the United States. Many of the new developments came
from the Bell Telephone Laboratories (Bell Labs for short)
and were published in the Bell System Technical Jour-
nal. Claude E Shannon, a young researcher at Bell,
contributed two papers on the Mathematical Theory of
Communication. His deep insight was to introduce a
quantitative measure of the amount of information be-
ing communicated. After all, this information is what
we really pay the telephone company for! If you receive
a message from someone in the English language, you
already know the approximate fraction of E’s, T’s, A’s,
etc. Let us say there are a hundred letters in a telegram.
There is a large number, W, of possible English mes-
sages with a hundred letters.®> You open the telegram
and find out which one of the W is your message. Shan-
non proposed that the information gained be measured
by S = log, W. The reason for taking the logarithm is
the same as earlier. Two successive telegrams (on unre-
lated subjects!) would correspond to W; x W; possible
messages. Shannon’s measure ensures that the informa-
tion (and perhaps your telegram bill!) is additive, i.e.,
S =logy, Wy + logo Wy = 51 + Ss.

This is related to Boltzmann’s entropy. He would call
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S a measure of your ignorance before you opened the
telegram, rather than your enlightenment after you open-
ed it. But it is sensible to take the two quantities as
equivalent.

Why choose 2 as the base of logarithms? The sim-
plest situations are when the message simply says which
of two (equiprobable) options was realised. When the
nurse steps out of the maternity ward and tells the anx-
ious father ‘Its a girl’, W=2, and S=1. This is called
one bit of information. Everyone-in this computer age
knows that ‘bit’ is short for ‘binary digit’, something
which takes 2 values, zero and one.

Shannon’s concept of information took the world by
storm. There was tremendous enthusiasm to apply it
to every field. An indignant journal editor even wrote
the following lines - “We will no longer consider papers
with titles like information theory, photosynthesis, and
religion”!

We have presented Shannon’s work in conjunction with
the ideas of Bayes and Boltzmann. This attempt at com-
plete synthesis actually came a few years after Shannon,
in the influential work of the physicist Edwin T Jaynes.
He and his followers have explored the application of
‘maximum entropy’ (as they call this approach) to a va-
riety of practical problems. Both Shannon and Jaynes

Figure 3. The photograph.

shows the effect of apply-
ing maximum entropy
deconvolution to a motion-
blurredpicture. Processing
by A Lehar and Maximum
Entropy Data Consultants
Ltd. for the UK Home Of-
fice. Our thanks to Steve
Gull and his colleagues at
the Mullard Radio As-
tronomy Observatories in
Cambridge who were in-
strumental in developing
maximum entropy methods

for such problems.
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died recently, living to see their ideas bear fruit over
nearly half a century.

Although we cannot give details here, inversion based
on maximum entropy methods is in wide use. A dra-
matic real life example (Figure 3) would be a blurred
photograph of a car. In this context, the blurred pho-
tograph stands for the data D, while the reconstructed
picture corresponds to H. After inversion, one is able to
read the number plate clearly! An example of removing
blurring in astronomy using prior information is given
in Figure 4.

We must of course remember that maximum entropy is
not a magic wand. The fact that we are able to read the
number plate means that the information in the data
(blurred photograph), plus the information in the prior,
were enough to recover what we were looking for. In
a given problem, there is usually a range of possible
priors which would be regarded as reasonable. Most
workers would regard results which are insensitive to
choices in this range as genuine. When results start
becoming sensitive to the prior, it is time to go out and
get more data or work on a different problem.
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