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Abstract. Mechanical and electronic imperfections can result into polarization leakage in individual antennas of a
radio interferometer. Such leakages manifest themselves as closure errors even in co-polar visibility measurements
of unpolarized sources. This paper describes and tests a method for the study of polarization leakage for radio
interferometric telescopes using only the nominally co-polar visibilities for unpolarized calibrators. Interpretation
of the resulting closure phases on the Poincaré sphere is presented. Since unpolarized sources are used, the actual
solutions for leakage parameters is subject to a degeneracy which is discussed. This however, does not affect the
correction of closure errors in our scheme.
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1. Introduction

The mutual coherence function (also called the visibil-
ity function) for an unresolved and unpolarized source,
measured by an interferometer array can be modeled as a
product of antenna based complex gains. These complex
gains can be derived from the measured visibility func-
tion using the standard algorithm, which we call antsol.
antsol forms the central engine of most amplitude and
phase calibration schemes used for radio interferometric
data. (The earliest published reference for an algorithm for
antsol of which we are aware is Thompson & D’Addario
(1982)).

Usually one measures the components of the incident
radiation along two orthogonal polarization states by us-
ing two separate feeds. The signals from the two feeds
travel through essentially independent paths till the cor-
relator. However, due to mechanical imperfections in the
feed or imperfections in the electronics, the two signals
can leak into each other at various points in the signal
chain.

At the correlator, signals from all the antennas are
multiplied with each other and the results averaged to
produce the visibilities. The signals of same polarization
are multiplied to produce the co-polar visibilities while the
signals of orthogonal polarizations are multiplied to pro-
duce the cross-polar visibilities. The co-polar and cross-

polar visibilities can be used to compute the full Stokes
visibility function. Antenna based instrumental polariza-
tion and polarization leakage can be derived from the full

Send offprint requests to: Sanjay Bhatnagar

Stokes coherence function for a source of known structure
(usually an unresolved source) (Hamaker et al. 1996; Sault
et al. 1996, henceforth HBS).

The correlator used for the Giant Metrewave Radio
Telescope (GMRT) by default computes the co-polar visi-
bilities using the Indian mode of the VLBA Multiplier and
Accumulator (MAC) chip. Here we describe a method,
which we call leaky antsol, for the computation of the
leakages using only the co-polar visibility function for an
unpolarized source. Following the notation used by HBS,
we label the two orthogonal polarizations by p and q to re-
mind us that the formulation is independent of the precise
orthogonal pair of polarization states chosen.

Sect. 2 describes the motivation which led to this anal-
ysis. For orientation, Sect. 3 starts with the problem of
solving for the usual complex antenna based gains and
sets up an iterative scheme for the solution. The problem
of simultaneously solving for the complex antenna gains
and leakages is then posed in Sect. 3.1 and a similar it-
erative scheme is set up. Sect. 3.2 presents the results of
the simulations done to test the scheme. Sect. 4.1 presents
some results using the GMRT at 150 MHz. Also, we were
fortunate to have the L-band feeds of one of the GMRT an-
tennas converted from linear to circular polarization. We
observed 3C147 in this mode where all baselines with this
special antenna measured the correlation between nomi-
nally linear and circular polarization. Results of this ex-
periment demonstrate that the leakage solutions are in-
deed giving information about the polarization proper-
ties of the feeds. These results and their interpretation on
the Poincaré sphere are presented in section 4.2. Sect. 5

http://arXiv.org/abs/astro-ph/0106348v1
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gives the interpretation of the leakage solutions and dis-
cusses closure errors due to polarization leakage using the
Poincaré sphere.

2. Motivation

Rogers (1983) pointed out in the context of the VLBA,
that the polarization leakage cause closure errors even in
nominally co-polar visibilities. Massi et al. (1997) have car-
ried out a detailed study of this effect for the telescopes of
the European VLBI Network (EVN). Our motivation in
this paper is that the current single sideband GMRT cor-
relator uses the so called Indian mode of the VLBA MAC
chips to produce only the co-polar visibilities. Also, the
planned Walsh switching has not yet been implemented
at the GMRT and in any case, would not eliminate leak-
age generated before the switching point. Tests done using
strong point source dominated fields show unaccounted
closure errors at a few percent level. The motivation be-
hind developing an algorithm to solve for gains and leak-
ages simultaneously, using only the co-polar visibilities was
to determine if the measured closure errors could be due
to polarization leakage in the system. Estimates of leak-
age can then be used in the primary calibration to remove
the effects of polarization leakage. This is where this paper
differs from the earlier work of HBS which is about the cal-
ibration using the full Stokes visibility function, needed for
observations of polarized sources. The polarization leak-
age in some of the EVN antennas corrupts the co-polar

visibilities at a level visible as a reduction in the dynamic
range of the maps (Massi & Aaron 1997a,b; Massi et al.
1998). Thus such a method can also be used in imaging
data from the EVN and other telescopes affected by such
closure errors.

Let gpi represent the complex gain for the p-
polarization channel of the ith antenna and αq

i repre-
sent the leakage of the q-polarization signal into the p-
polarization channel. The electric field measured by an-
tenna i can then be written as

Ep

i = gpi E
p

i,◦ + αq

iE
q

i,◦ (1)

where Ep

i,◦ and Eq

i,◦ are the responses of an ideal an-
tenna to the incident radiation in the p- and q-polarization
states respectively1. For an unpolarized source of radi-
ation, 〈Ep

i,◦E
q⋆
j,◦〉 = 0. The co-polar visibility for such a

source, measured by an interferometer using two anten-
nas denoted by the subscripts i and j, is given by

ρppij = gpi g
p

j
⋆
ρppij,◦ + αq

i α
q

j
⋆
ρqqij,◦ + ǫij

(2)

1 Note that Eq. 1 is equivalent to the Eq. 1 of Massi et al.
(1997), who use a different parameterization. Strictly speaking,
the ratio αq

i
/gp

i
is the correct measure of the leakage and this

is what has been plotted in Fig.3 below. This does not however
affect the computational scheme described here.

where ǫij is independent gaussian random baseline
based noise and ρppij,◦ = 〈Ep

i,◦E
p⋆
j,◦〉 and ρqqij,◦ = 〈Eq

i,◦E
q⋆
j,◦〉

are the two ideal co-polar visibilities. ǫij usually represents
the contribution to ρppij which cannot be separated into an-
tenna based quantities. ǫij therefore is a measure of the
intrinsic closure errors in the system and is usually small.

For an unpolarized point source 〈Ep

i,◦E
p⋆
j,◦〉 =

〈Eq

i,◦E
q⋆
j,◦〉 = ρppij,◦ = I/2 where I is the total flux density.

Writing Xpp
ij = ρppij /ρ

pp

ij,◦ we get

Xpp
ij = gpi g

p

j

⋆
+ αq

i α
q

j

⋆
+ ǫij (3)

where ǫij now refers to the baseline based noise in Xpp
ij .

Assuming αq

i s to be negligible, the usual antsol al-

gorithm estimates gpi s such that
∑

i,j

i6=j

∣

∣Xpp
ij − gpi g

p

j

⋆∣
∣

2
is

minimized (see section 3). Normally, Walsh switching
(Thompson et al. 1986) is used to eliminate the polar-
ization leakage due to cross-talk between the signal paths,
such that αq

i α
q

j

⋆ ≪ ǫij . However, αq

i s can also be finite
due to mechanical imperfections in the feed or the cross-

polar primary beam, which cannot be eliminated by Walsh
switching.

In the case of significant antenna based polarization
leakage (compared to

√
ǫij), the second term in Eq. 3 in-

volving αq

i s will combine with the closure noise ǫij . The
polarization leakage therefore manifests itself as increased
closure errors (see Sect. 5 for a geometric explanation on
the Poincaré sphere).

3. Algorithm and simulation

In the absence of any polarization leakage, gis can be es-
timated by minimizing

S =
∑

i,j

i6=j

∣

∣Xpp
ij − gpi g

p

j

⋆∣
∣

2
wpp

ij (4)

with respect to gis, where wpp

ij = 1/σ2
ij , σij being the

variance on the measurement of Xpp
ij .

In Eq. 2, if ρppij,◦ accurately represents the source struc-
ture, Xpp

ij will have no source structure dependent terms
and is purely a product of two antenna dependent com-
plex gains. For a resolved source, ρppij,◦ can be estimated
from the image of the source.

Evaluating ∂S
∂g

p

i
⋆ and equating it to zero2(Bhatnagar

1999), we get

gpi =

∑

j

j 6=i

Xpp
ij g

p

j w
pp

ij

∑

j

j 6=i

∣

∣gpj
∣

∣

2
wpp

ij

(5)

This can also be derived by equating the partial deriva-
tives of S with respect to real and imaginary parts of gpi

⋆
.

2 Complex derivatives can be evaluated by treating gp

i
and

gp

i

⋆ as independent variables (Palka 1990).
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Since the antenna dependent complex gains also ap-
pear on the right-hand side of Eq. 5, it has to be solved
iteratively starting with some initial guess for gjs or ini-
tializing them all to 1. Eq. 5 can be written in the iterative
form as:

gpi
,n

= gpi
,n−1

+ λ













gpi
,n−1 −

∑

j

j 6=i

Xpp
ij g

p

j

,n−1
wpp

ij

∑

j

j 6=i

∣

∣

∣
gpj

,n−1
∣

∣

∣

2

wpp

ij













(6)

where n is the iteration number and 0 < λ < 1.
Convergence would be defined by the constraint
|Sn − Sn−1| < β (the change in S from one iteration to an-
other) where, β is the tolerance limit and must be related
to the average value of ǫij . Eq. 6 forms the central engine
for the classical antsol algorithm used for primary cali-
bration of the visibilities and in self-calibration for imaging
purposes. This algorithm was suggested by Thompson &
D’Addario (1982).

3.1. The leaky antsol

In the presence of significant polarization leakage, Eq. 3
can be used to re-write Eq. 4 as

S =
∑

i,j

i6=j

∣

∣

∣
Xpp

ij − (gpi g
p

⋆

j + αq

i α
q

⋆

j )
∣

∣

∣

2

wpp

ij (7)

In this form, S is an estimator for the true closure
noise ǫij rather than the artificially increased closure noise
(αq

i α
q

j

⋆
+ ǫij) due to the presence of polarization leakage.

Equating the partial derivatives ∂S
∂g

p

i
⋆ , ∂S

∂α
q

i
⋆ to zero, we

get

gpi =

∑

j

j 6=i

Xpp
ij g

p

jw
pp

ij − αq

i

∑

j

j 6=i

αq

j

⋆
gpjw

pp

ij

∑

j

j 6=i

∣

∣gpj
∣

∣

2
wpp

ij

(8)

αq

i =

∑

j

j 6=i

Xpp
ij α

q

jw
pp

ij − gpi
∑

j

j 6=i

gpj
⋆
αq

jw
pp

ij

∑

j

j 6=i

∣

∣αq

j

∣

∣

2
wpp

ij

(9)

These non-linear equations can also be iteratively
solved.

Eq. 3, which expresses the observed visibilities on a
point source unpolarized calibrator in terms of the gains
and leakage coefficients of the antennas, would take the
same form if written in an arbitrary orthogonal basis. It is
clear that the g’s and the α’s will change when we change
the basis, so this means that the equations cannot have a
unique solution. This situation is familiar from ordinary

self-calibration, when only relative phases of antennas are
determinate, with one antenna acting as an arbitrary ref-
erence. For observations of unpolarized sources, we can
similarly say that any feed can be chosen as a reference
polarization, with zero leakage, and other feeds have gains
and leakages in the basis defined by this reference. Other
conventions may be more convenient, as discussed in the
appendix which discusses degeneracy in detail.

3.2. Results of the simulations

We simulated visibilities with varying fraction of polar-
ization leakage in the antennas to test the algorithm as
follows. The antenna based signal and leakage were con-
structed as gi = Rg and αi = f · Rα where Rg and
Rα were drawn from the same gaussian random popula-
tion. The visibility from two antennas i and j was then
constructed as Xij = gig

⋆
j + αiα

⋆
j + ǫij for 0 ≤ f < 0.1.

This is equivalent to a visibility of an unpolarized point
source of unit strength with a complex antenna based gain
gi and leakage αi of strength proportional to f . Eq. 6 was
then used to compute gi and residual χ2 computed as

χ2
a =

∑

ij

∣

∣

∣
1 − Xij

gig
⋆
j

∣

∣

∣

2

. The computed values of gpi were

then used to compute improved estimates for gpi by simul-
taneously solving for gpi and αq

i using the iterative forms
of Eq. 8 and 9. The derived values of gpi and αq

i matched
the true values to within the tolerance limit. A new χ2

was computed as χ2
l =

∑

ij

∣

∣

∣
1 − Xij

(gig
⋆
j
+αiα

⋆
j
)

∣

∣

∣

2

. The val-

ues of χ2
a and χ2

l as a function of f are plotted in Fig. 1.
The two curves become distinguishable when the leakage
is significantly greater than ǫij (for f greater than ∼ 1%).
After that, the value of χ2

l is consistently lower than χ2
a,

where the contribution of antenna based leakage has not
been removed. Also notice that χ2

l remains constant while
χ2

a quadratically increases as a function of f . This is due
to the fact that antsol treats the antenna based polariza-
tion leakage as closure errors resulting in an increased χ2

with increasing fractional leakage.

4. Real data

4.1. 150 MHz data

Engineering measurements for polarization isolation at
150 MHz for the GMRT show significant polarization leak-
age in the system. We therefore used leaky antsol to cal-
ibrate the data from the Galactic plane phase calibrator
1830-36 which is known to be less than 0.2% polarized at
1.4 GHz. The percentage polarization at 150 MHz is not
known, but it is expected to decrease further and it was
taken to be an unpolarized point source.

Fractional polarization leakage (|αq

i /g
p

i |) of up to 100%
was measured for most of the antennas, which is consis-
tent with the estimated leakage measured from system
engineering tests. Again, χ2

a and χ2
l were computed and

the results are shown in Fig. 2. The 150-MHz GMRT band
suffers from severe radio frequency interference (RFI). The
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1e-06

1e-05

0.0001

0.001

0 1 2 3 4 5 6 7 8 9 10

χ
2

Percentage leakge

χ2
a(normal antsol)

χ2
l (leaky antsol)

Fig. 1. Figure showing the results of the simulations. The
top curve is the value of χ2 using the classical antsol
(χ2

a). The bottom curve is the value of χ2 using the
leaky antsol (χ2

l ) as a function of the percentage po-
larization leakage.

sharp rise in the value of χ2
a around sample number 10 is

due to one such RFI spike. This spike is present in the
total power data from all antennas at this time. On an
average, the χ2 reduces by ∼ 60% when leakage calibra-
tion is applied (χ2

l ). This is consistent with polarization
leakage being a major source of non-closure at this fre-
quency.

4.2. L-band data with circular feed

The GMRT L-band feeds are linearly polarized. For the
purpose of a VLBI experiment conducted in December
2000, the L-band feed of one of the antennas was con-
verted to a circularly polarized feed. The rest of the L-
band feeds were linearly polarized and we took this op-
portunity to measure correlations between the circularly
polarized antenna with other linearly polarized antennas
using the source 3C147. Two scans of approximately one
hour long observations were done using the single side
band GMRT correlator. This correlator computes only co-

polar visibilities. With this configuration of feeds, visibili-
ties between the circularly polarized antenna and all other
linearly polarized antennas corresponds to correlation be-
tween the nominal X- and R-polarizations, labeled by RX,
were recorded in the first scan. The polarization of the cir-
cularly polarized antenna was then flipped for the second
scan to record the correlation between the nominal X- and
L-polarization states, labeled by LX.

0.002

0.0034

0.00578

0.009826

0.0167042

0 20 40 60 80 100 120 140

χ
2

Time (arbitrary units)

χa
2

χl
2

Fig. 2. Figure showing the results using GMRT data at
150 MHz for the compact Galactic plane source 1830-36.
The top curve is the value of χ2 using the classical antsol
(χ2

a). The bottom curve is the value of χ2 using the
leaky antsol (χ2

l ) as a function of time.

The VLA Calibrator Manual3 lists the percentage po-

larization (

√
Q2+U2+V 2

I
) for 3C147 at L-band < 0.1%. The

cross-polar terms in Eq. 2, which are assumed to be zero,
will therefore contribute an error of the order of 0.1%.
These cross-polar terms will be, however, multiplied by
gains of type gpi α

q

i
⋆
. Since gpi and αq

i are both assumed
to be uncorrelated between antennas, this error will man-
ifest as random noise in Eq. 3. Within the limits of other
sources of errors, the source 3C147 can therefore be con-
sidered to be a completely unpolarized source.

4.2.1. Results and Interpretation

The response of an ideal circularly polarized antenna to
unpolarized incident radiation can be expressed as a su-
perposition of two linear polarization states as ER

i,◦ =

EX
i,◦e

ιδ + EY
i,◦e

−ιδ where, the superscripts R, X and Y
denote the right circular and the two linear polarization
states respectively. δ is half the phase difference between
the two linear polarization states and is equal to π/4 for
right-circular polarization and −π/4 for left-circular po-
larization. Writing the general Eq. 1 for right-circularly
polarized antenna as ER

i = gR
i E

R
i,◦ + αL

i E
L
i,◦ and substi-

tuting for ER
i,◦ and EL

i,◦ we get

3 The VLA Calibrator manual is available on the web from
http://www.aoc.nrao.edu/˜ gtaylor/calib.html

http://www.aoc.nrao.edu/{$_\char 126$}
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Im
(α

q i /
 g

p i )

Re(αq
i / g

p
i )

C03RY

C03LY

C03LX

C03RX

Fig. 3. Figure showing the results using visibilities with
one circularly polarized antenna and all other linearly po-
larized antennas at L-band. The x- and y-axis denote the
real and imaginary parts of αq

i /g
p

i respectively. gpi and αq

i

were solved for every integration time (∼ 17s). All linearly
polarized antennas are close to the origin in this plot. The
solutions for the circularly polarized antenna (C03) are
the set of points away from the origin (shown by open
circles and triangles). The two sets of points for this an-
tenna, separated from each other by ∼ 180◦ are solutions
for the right- and left-circular polarization channel. The
points denoted by open circles are from correlation be-
tween the right- and left-circular polarization of C03 with
nominal linear X-polarization of the other antennas (la-
beled as C03RX and C03LX respectively). The points de-
noted by triangles are from correlation of C03 with nomi-
nal Y-polarization of the other antennas (labeled as C03RY

and C03LY).

ER
i =gR

i

(

EX
i,◦e

ιδ + EY
i,◦e

−ιδ
)

+

αL
i

(

EX
i,◦e

−ιδ + EY
i,◦e

ιδ
) (10)

Eq. 3 for the case of correlation between a circularly
polarized and a linearly polarized antenna, with polariza-
tion leakage in both the antennas, can be written as

XRX
ij =(gR

i e
ιδ + αL

i e
−ιδ)gX⋆

j +

(gR
i e

−ιδ + αL
i e

ιδ)αY ⋆

j

≡gX′

i gX⋆

j + αY ′

i αY ⋆

j

(11)

where gX′

i = gR
i e

ιδ+αL
i e

−ιδ and αY ′

i = gR
i e

−ιδ+αL
i e

ιδ.
The leaky antsol solutions for the circularly polarized
antenna in this case will correspond to gX′

i and αY ′

i .

Let Pi = αY
i /g

X
i (Pi = αY ′

i /gX′

i for the circularly po-
larized antenna). Then, the amplitude of Pi is a measure
of the fractional polarization leakage in the antenna while
the phase of Pi gives the phase difference between the
signal from one of the feeds and the leaked signal from
the other feed. For an ideal circularly polarized antenna,
|Pi| ≈ 1. A plot of the real and imaginary parts of this
quantity for all antennas should therefore clearly show Pi

for the circularly polarized antenna with an amplitude of 1
and at an angle of π/2 with respect to the nominal X-axis.

The real and imaginary parts of Pi for all antennas
from this experiment are shown in Fig. 3. The solutions
were computed for every integration cycle of ∼ 17 sec
and the points on this plot represent the tip of phasor
Pi. The collection of points near the origin are for all the
linearly polarized antennas while the collection of two sets
of points away from the origin, approximately an angle of
π from each other, are for the circularly polarized antenna.
The solutions found by leaky antsol match the expected
results quite well. This therefore constitutes a reasonably
controlled test with real data showing that the solutions
indeed provide information about the polarization leakage
in the system.

This experiment however provides much more infor-
mation about the polarization properties of the antenna
feeds used. The collection of points in the first quadrant
denoted by open circles are the values of Pi derived from
the correlation between the nominal right-circularly po-
larized signal and the linearly polarized signals along the
nominal X-axis from all other antennas. Points in the third
quadrant are similarly derived using the left-circular sig-
nals. The set of points denoted by triangles in the sec-
ond and fourth quadrant are derived using correlations of
right- and left-circularly polarized signals with the linearly
polarized signals along the nominal Y-axis from all other
antennas.

A larger spread in the solutions using the left-circularly
polarized signals indicates that the closure noise (from
other unknown sources) in these signals is higher. The fact
that the amplitude of Pi derived using the right-circularly
polarized signals is ≈ 0.5 indicates that the nominal cir-
cularly polarized feed is in fact elliptically polarized with
this axial ratio. The spread of ±1 − 2% about the ori-
gin is indicative of polarization leakage at the level of few
percent in the linearly polarized antennas as well. The
leakage in one of the linearly polarized antennas is signif-
icantly larger (≈ 4%). Since this kind of data is routinely
taken on primary calibrators during GMRT observations
for synthesis imaging, leaky antsol provides a useful di-
agnostic of system health, polarization performance and
numbers needed to correct the data in high accuracy work.

The following test was also carried out to check that
the closure phase on a triangle involving the circular feed
was indeed mainly due to polarization effects. The three
baselines making up this triangle were flagged as bad base-
lines from the input data and a new solution found for the
gains and leakages of all antennas. This solution predicted
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the same closure phase (to within errors) as actually ob-
served.

5. Closure phase and the Poincaré sphere

In this section we use right- and left-circular polariza-
tion states as the basis. A general elliptically polarized
state can be written as a superposition of two states rep-

resented by the vector

(

cos θ/2
sin θ/2 eιφ

)

. Clearly, θ = π/2

corresponds to linear polarization and θ 6= 0, π/2 to ellip-
tical polarization. Increasing φ by ζ rotates the direction
of the linear state or the major axis of the ellipse by ζ/2.
We can chose the phase of the basis so that φ = 0 cor-
responding to linear polarization along the x-axis. The
Poincaré sphere representation of the state of polariza-
tion maps the general elliptic state to the point (θ, φ) on
the sphere. The properties of this representation are re-
viewed by Ramachandran & Ramaseshan (1961). We are
concerned here with one remarkable property, discovered
by Pancharatnam (1956, 1975). Whenever there is con-
structive interference between two sources of radiation,
it is natural to regard them as in phase. An unexpected
property of this simple definition manifests itself when we
consider 3 sources of radiation of different polarization -
that if a source A is in phase with B and B in phase
with C, C in general need not be in phase with A. The
phase difference between A and C is known in the optics
literature as the geometric or Pancharatanam phase (see
also Ramaseshan & Nityananda (1986); Berry (1987)). We
show that this naturally occurs in radio interferometry of
an unpolarized source with three antennas of different po-
larizations.

Let the polarization states of the three antennas be

represented by

(

g1
α1

)

,

(

g2
α2

)

, and

(

g3
α3

)

in a circu-

lar basis. Denoting the vector

(

gi

αi

)

by ψi, one clearly

see that the visibility on the 1-2 baseline is propor-
tional to ψ†

1ψ2. Hence the closure phase around a tri-
angle made by antennas 1, 2, and 3 is the phase of the
complex number (also called the triple product) V123 =

(ψ†
1ψ2)(ψ

†
2ψ3)(ψ

†
3ψ1). In the quantum mechanical litera-

ture, this type of quantity goes by the name of Bargmann’s
invariant and its connection to the geometric phase was
made clear by Samuel & Bhandari (1988). With some
work, one can give a general proof that the closure phase
(phase of V123) is equal to half the solid angle subtended
at the centre of the Poincaré sphere by the points repre-
sented by ψ1, ψ2, and ψ3 on the surface of the sphere. For
the case where the polarization state of the three anten-
nas are same, this phase is zero in general. However, when
the polarization states of the antennas are different, this
phase is non-zero.

The well known result that an arbitrary polarization
state can be represented as a superposition of two orthogo-
nal polarization states translates to representing any point
on the Poincaré sphere by the superposition of two dia-

metrically opposite states on a great circle passing through
that point. For example, circular polarization can be ex-
pressed by two linear polarizations, each with intensity
1/

√
2. In the context of the present work, the nominally

circularly polarized antenna maps to a point away from
the equator on the Poincaré sphere (it would be exactly
on the pole if it is purely circular) while the rest of the
antennas map close to the equator (they would be exactly
on the equator if they are purely linear and map to a sin-
gle point if they were also identical). The visibility phase
due to the extra baseline based term in Eq. 3 due to polar-
ization mis-match is a consequence of the Pancharatanam
phase mentioned above. This phase, on a triangle involv-
ing the circularly polarized antenna, will be close to the
angle between the two linear antennas. For example, if

ψ1 =

(

1
ι

)

, ψ2 =

(

1
0

)

, and ψ3 =

(

cos γ
sinγ

)

, the phase

of V123 will be γ. This picture can be depicted by plotting
the real and imaginary parts of αq

i /g
p

i , which is done in
Fig. 3. The circularly polarized antenna can be clearly lo-
cated in this figure as the set of point away from the origin
while the linearly polarized antennas as the set of points
close to the origin. The collection of points located away
but almost symmetrically about the origin represents the
nominal right- and left-circularly polarized feeds. Points
on the equator, but significantly away from the origin rep-
resents an imperfect linearly polarized antenna. Note that
the average closure phase between the nominally linear an-
tennas is close to zero, which defines the mean reference
frame in Fig. 3.

6. Conclusions

Rogers (1983) pointed out that non ideal feed polariza-
tions of the individual antennas of a radio interferometer
can result into closure errors in the co-polar visibilities. In
this paper we describe and demonstrate a method to mea-
sure the polarization leakage of individual antennas using
the nominally co-polar visibilities for an unpolarized cali-
brator. This method can therefore be used as a useful tool
for studying the polarization purity of the antennas of ra-
dio interferometers from the observations of unpolarized
calibrators. However, since only unpolarized calibrators
are used, the actual solution for the leakage parameters is
subject to a degeneracy. This degeneracy does not affect
the correction of the visibilities and can be used to remove
the closure errors due to polarization leakage. Massi et al.
(1997) have shown that such polarization leakage induced
closure errors in the data from the EVN is the dominant
effect of instrumental polarization. For the EVN, this ef-
fect can be seen as a reduction in the dynamic range of the
images. Our method can be used for such data to remove
these closure errors for unpolarized sources.

The general elliptic state of the polarization of radia-
tion can be represented by a point on the Poincaré sphere.
The phase difference between three coherent sources of ra-
diation but with different states of polarization goes by the
name of Pancharatanam or geometric phase in the optics
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literature. We interpret the co-polar visibilities with po-
larization leakages on the Poincaré sphere and show that
the polarization induced closure phase errors in radio in-
terferometers is same as the Pancharatanam phase of op-
tics. The antenna based leakages also map to points on
the Poincaré sphere and the ambiguity in the solution can
be understood as a rigid rotation of the Poincaré sphere,
which leaves the leakage solutions unchanged relative to
each other.
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Appendix A: Non-uniqueness of solutions

We discuss the non-uniqueness of the solutions of Eq. 3,
and possible convenient conventions for choosing a specific
solution. One obvious degeneracy is that multiplication
of all the α’s by one common phase factor independent
of antenna, and all the g’s, by another, in general differ-
ent, common factor, does not affect the right hand side
of Eq. 3. Also, the equation was written in a specific ba-
sis, say right and left circular. But it would have had the
same form when using any other orthogonal pair as basis
since the source is unpolarized. Hence we are free to apply
this change of basis to one solution to get another solution
of Eq. 3. Under such a change, the coefficients transform
according to

(

g′

α′

)

=

(

cosφ eιγ sinφ
−e−ιγ sinφ cosφ

) (

eιζ1 0
0 eιζ2

) (

g
α

)

(A.1)

It is easy to verify that under this change, α′
iα

⋆′
j +

g′ig
⋆′
j = αiα

⋆
j + gig

⋆
j . Clearly, since χ2 is unchanged by

these transformations, an iterative algorithm will simply
pick one member of the set of possible solutions, deter-
mined by the initial conditions. Having found one such,
one could apply a suitable transformation to obtain a so-
lution satisfying some desired condition. For example, if
one has nominally linear feeds, one might impose the sta-
tistical condition that there is some mean linear basis with
respect to which the leakage coefficients will be as small as
possible. Such a condition has the advantage that a perfect
set of feeds is not described in a roundabout way as a set of
leaky feeds with identical coefficients, simply because the
basis chosen was different. Carrying out the minimization

of
∑ |gi|2 by the method of Lagrange multipliers, subject

to a constant χ2, we obtain the condition that
∑

α∗
i gi = 0.

This solution can be interpreted as requiring the leakage
coefficients to be orthogonal to the gains, and is reasonable
when we think about the opposite kind of situation, when
the leakages are ”parallel” to the gains, i.e. identical apart
from a multiplicative constant. In such a case, we would
obviously change the basis to make the new leakage zero.
If we have a solution which does not satisfy this orthogo-
nality condition, we can bring it about in two steps. First,
choose an overall phase for the α’s so that

∑

α⋆
i gi is real.

Then, carry out a rotation in the g−α plane by an angle θ
satisfying tan θ =

∑

α∗
i gi/(

∑

(gig
⋆
i −αiα

⋆
i ). This rotation

has been so chosen that it makes the leakage ”orthogo-
nal” to the gains, in the sense required above. Even after
this is done, we still have the freedom to define the phase
zero independently for the two orthogonal states. This is
because we are only dealing with unpolarized sources. Of
course, if we had a linearly polarized calibrator, the rela-
tive phase of right and left circular signals would not be
arbitrary.

A more geometric view of this degeneracy is obtained
when we think in terms of the Poincaré sphere represen-
tation of the states of polarization of all the feeds. The
cross correlation between the outputs of two feeds, both
of which receive unpolarized radiation, has a magnitude
equal to the cosine of half the angle between the represen-
tative points on the sphere. Measurements of all such cross
correlations with unpolarized radiation fixes the relative
geometry of the points on the sphere, while leaving a two
parameter degeneracy corresponding to overall rigid rota-
tions of the sphere. This degeneracy can be lifted by the
measurement of one polarized source at many parallactic
angles.

Finally, we note that for the purpose of correcting the
observations of unpolarized sources for the effects of non-
identical feed polarization, the degeneracy is unimportant,
because the correction factor is precisely the right hand
side of Eq. 3 which is unaffected by all the transformations
we have discussed.
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