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Abstract. The collisionless Boltzmann equation governing self-gravitat- 
ing systems such as galaxies has recently been shown to admit exact 
oscillating solutions with planar and spherical symmetry. The relation of 
the spherically symmetric solutions to the Virial theorem, as well as 
generalizations to non-uniform spheres, uniform spheroids and discs form 
the subject of this paper. These models generalize known families of static 
solutions. The case of the spheroid is worked out in some detail. Quasi- 
periodic as well as chaotic time variation of the two axes is demonstrated 
by studying the surface of section for the associated Hamiltonian system 
with two degrees of freedom. The relation to earlier work and possible 
implications for the general problem of collisionless relaxation in self 
gravitating systems are also discussed. 
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1. Introduction 
 
In a recent paper, Sridhar (1989)—henceforth Paper 1—has shown that the collision- 
less Boltzmann equation (CBE) which is used to describe stellar systems has fully self-
consistent oscillatory solutions. The general strategy is to choose uniform density 
models with a time-dependent gravitational potential quadratic in the space co- 
ordinates. The phase-space density f (x, v, t) (mass per unit phase volume) of the model 
is chosen to be a function of integrals of motion in this potential, thereby automatically 
satisfying the CBE by Jeans’ theorem (see e.g. the text by Binney & Tremaine 1987).

An integral due to Lewis (1968) for the time-dependent harmonic oscillator plays the
same role for these oscillating models as energy does for the corresponding static 
models. Apart from Lewis’ original paper, Goldstein’s (1980) well-known text gives a 
nice discussion of the Lewis invariant. The existence of such an invariant follows from 
the linearity of the equations of motion of the oscillator. A set of points in phase space 
lying on an ellipse will continue to do so after a linear transformation of x and v. An 
invariant quadratic in x and ν with time-dependent coefficients must therefore exist.

This paper first makes explicit the relation between the Virial theorem and the
spherical systems constructed in Paper 1. We then go on to construct oscillating 
spheroidal solutions of the CBE. In Section 2 we discuss the consistency of the general
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spherical model with the Virial theorem. A particular “cold” model with easily 
visualized dynamics is given in Section 3. Steady-state uniform-density spheroids are 
generalized to oscillating models by the replacement of energies by the corresponding 
Lewis invariants in Section 4. In contrast to the spherical case there is now a pair of 
coupled equations for the oscillations of the a1 and a3 axes of the spheroid. Section 5 
gives the behaviour of the solutions, using the Poincare surface of section for the 
Hamiltonian system with two degrees of freedom which governs the evolution of a1 
and a3. Section 6 gives our conclusions and some implications of these result in the 
more general context of time-dependent behaviour in collisionless gravitating systems. 
 
 

2. The virial theorem and the time-dependent spherical models 
 
In Paper 1 we showed how to construct time-dependent uniform-density spheres 
starting from the distribution function describing static spheres. The time dependence 
of the radius was shown to be governed by a simple differential equation (Equation 22, 
Paper 1) 
 

(1) 
 
where ξ is proportional to the radius and ω0 is a constant. In this section we derive 
Equation (1) from the Virial theorem. Apart from being a rederivation, the calculations 
make explicit the physical significance of the terms entering (1). 

We start with the distribution function of a static uniform-density sphere written in 
the form (Equation 13, Paper 1) 
 (2) 

The mass (M 0), potential energy (W0) and the kinetic energy (T0) are easily calculated 
for a uniform sphere of radius R0  
 

(3) 
 
The time-dependent sphere is constructed by replacing Ε/ω0 in (2) by ℐ: 
 
 
where 
 (4)

Direct calculations in the time-dependent case based on (3) and (4) yield 
 
mass = M = M0, 
 
radius =R =   
 

potential energy = W=W0 /ξ.  
 
mean velocity = vm(r, t) = (ξ /ξ)r, 
 
bulk kinetic energy=Tb=   d3r=             To. (5)
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heat (kinetic energy associated with local peculiar velocities) = Th =½∫ |v– 
 

νm |2 f d3 v d3 r=Τ0 / ω0 ξ2 
 
total kinetic energy = T= Tb+ Th , 
 

 
 
 
The Virial theorem is 
 (6)

Using the formulas for I, Tb , Th and W from (5) in (6), we see that 
 
 
which is what we set out to verify. The term (—1/ξ3) resembles the centrifugal term 
occurring in the radial equation for a central force problem and is clearly proportional 
to Τh/ξ; it makes good physical sense that the system is hottest when it is maximally 
compressed and that the heat makes the system bounce back. The total energy 
 

(7)
 
 
Equation (1) admits a first integral 
 

(8) 
 
 

(9) 
 
When λ   0, the solutions to (1) are unbounded as t→∞, while for λ <0, the solutions
are bounded and time periodic. From (9) we see that these correspond to positive and 
negative total energies respectively. 
 
 

3. Models made up of nonintersecting spherical shells 
 
Paper 1 described a general approach using which oscillating generalizations of 
uniform density spherical models could be constructed. One of the special cases 
mentioned there was a uniform density sphere made up entirely of particles on circular 
orbits, i.e. having minimum energy for a given angular momentum. This model is 
radially “cold”, i.e. there is a unique value (zero) of vr, the radial component of the 
velocity at a given position r. The corresponding oscillating model is obtained by 
populating those orbits which have the lowest possible value of the Lewis invariant for 
a given value of the angular momentum. At a given radius r, this is achieved by setting 
 
 
 
(this implies r (t) ∝ ξ(t) for a given particle). The model is still cold radially. In other 
words, the particles can be grouped into spherical shells which oscillate without 
 

Therefore
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crossing. This special class of models is worth a separate discussion because it admits 
of a straightforward physical interpretation and an interesting generalization. 

To visualize the particle motions, consider a spherical shell made up of particles in
elliptical Kepler orbits with a fixed period and eccentricity, all starting with the same 
orbital phase, e.g. apocentre. Let the tangential velocities be isotropically distributed 
so that all possible orbital planes are equally represented. The shell will clearly pulsate 
with its size obeying the radial equation of the Kepler problem (since ξ ∝ r and ξ obeys 
the radial Kepler equation—see Equation 1).For self consistency, we need to maintain 
the Kepler motion by providing a spherically symmetric mass distribution with fixed 
mass within this shell (no crossings). This can clearly be done by more such shells, 
pulsating similarly and in phase with the first with the same period and eccentricity. 
The constant period implies M(<a) ∝ a3 where a is the semi-major axis. This implies
uniform density, which can be achieved by a suitable choice of masses and radii of the 
shells. 

The physical interpretation of the radially cold uniform density model suggests the
following generalization. Let the different shells still oscillate in phase with the same 
period. The eccentricity e is now allowed to vary from shell to shell in such a manner as 
to avoid crossings. The distribution of mass with respect to the semimajor axis a is the 
same as before, but the density is clearly nonuniform because r is a nonlinear function 
of α (e.g. at apocentre)  

r> = a (l + e(a)). 
 
 

4. Oscillations of homogeneous spheroids 
 
We use the method presented in Paper 1 to study oscillations of uniform-density 
spheroids. The method is applicable because the interior potential of a homogeneous 
spheroid is quadratic in the spatial coordinates. A spheroid with axes (al , a2 , a3 with 
a1 = a2) along the x, y and z directions respectively and mass density ρ0 has an interior 
potential (see e.g. Chandrasekhar 1969). 
 

(10) 
 
 
 

(11) 
 
 
 

(12) 
 
 

(13) 
 
Since φ and ρ 0 satisfy ∇2φ = 4πGρ 0 , we have the following relation between A1 and 
A3: 

(14) 

where

axis ratio
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Some examples of phase-space distribution functions for static uniform spheroids are 
Freeman’s rotating spheroid (or the related nonrotating version due to Zel’dovich and 
Bisnovatyi-Kogan) which is cold in the plane of rotation and Polyachenko’s hot 
spheroid (see e.g. Fridman and Polyachenko (FP), 1984 for details and references). 

We first explain the general strategy and then go to details. The distribution
functions of these models depend on the following integrals of motion 
 
 
 
 
 

(15)
 
The time-dependent model is constructed from the static distribution function by 
replacing E⊥ / Ω0 and ΕZ/ ω0 by the corresponding Lewis invariants (see Equation 19). 
The axes are proportional to ξ(t) and η(t) (see Equation 24) which from the 
construction of the Lewis invariants satisfy Equations (21). Self-consistency eliminates 
the explicit time dependence in these equations and yields a pair of autonomous, 
coupled, second order, ordinary differential equations for ξ and η (Equation 26). 

Uniform spheroids are characterized by at least three parameters determining the
mass M, axes a1 , a3. For convenience we choose the parameters to be Ωο, ω0, a1. Then, 
the density p0 is determined from Poisson’s equation. 
 
 
 
while a3 is determined by Equation (11) 
 
 
 
and 
 
 
 
We write the distribution function for any static uniform spheroid in the form 
 

(16) 
 
 
The density  
 
Therefore, 
 

(17) 
 
 

otherwise 
 
Defining 
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we have 
 
 
 

when 
 

= 0 otherwise. (18) 
 
The time-dependent model is constructed from the static distribution function by 
replacing Ε⊥ /Ω0 and Ez /ω0 respectively by the corresponding Lewis invariants (see 
Paper 1) 
 
 
 

(19) 
 
The interior potential is 
 

(20) 
 
where Ω2(t) and ω2(t) are determined from the density p(r, z, t) and the time-dependent 
axis ratio by formulas similar to Equation (11). 
 
ξ, η are any solutions to 
 
 

(21) 
 
The time-dependent distribution function is 
 
 
 
The density is 
 
 
Therefore 
 
 
 
 
Defining 
 
 
 
 
 
 

(22) 
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From (18) and (22) 
 

when 
 
 

= 0 otherwise. 
 
Therefore the new axes are 
 
 
 
 
and the axis ratio u = b3 /b1.       (24)
From (11) 
 
 

(25) 
 
Writing    , and using    (23), and using (23),(24) and (25) in Equations (21) we 
  
get the following equations governing the behaviour of the axes of the homogeneous 
spheroid 
 
 

 
 (26) 

 
5. Some properties of the oscillations of uniform spheroids 

 
5.1 Hamiltonian Formulation 

 
In this section we point out some general features of solutions to (26). Equations (26) 
can be recast in Hamiltonian form by a simple scaling. 
 

(27) 
The axes 
 

(28) 
while the axis ratio (ellipticity) is 
 

 
(29) 

Introducing a function 
 

(30) 

(23)
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we can express A1 and A3 in terms of g: 
 
 
 
 
For convenience we shall use constants α and β in place of C and Κ 
 
 
 
 
 
 
Written in terms of x, y, α and β, Equation (26) reads 
 
 
 
 
 
 
To see that (33) can be derived from a Hamiltonian, we need the following identity for g 
 
 
 
Using (34) it is easy to verify that (33) is generated by the Hamiltonian (with parameters 
α and β in the potential  ) 
 
 
 
Where 
 

(35)
 
An immediate consequence is that  is a constant of motion Direct calculations using 
the Virial theorem and (33) show that 
 

(36) 
 
 
where Μ and Ε are total mass and energy of the model. The time-independent 
Hamiltonian structure of (33) guarantees that oscillations of these uniform spheroids 
do not damp asymptotically. Another advantage is that we can use Poincare’s method 
of the surface of section (see e.g. Lichtenberg & Lieberman 1983) to understand the 
nature of these oscillations. 

For every allowed value of α  and  has a minimum whose location (x0, y0 is 
determined by  Equivalently with u = y0/x0,  

 
 
 

(37) 

(34)

(33)

(32)

(31)
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The Solutions are unique; (α, β)  (x0, y0). The minimum in    corresponds to a static 
spheroid with axis ratio u0. From (37) it is clear that u0 depends only on α implying 
that α alone determines the ellipticity of the underlying static model (while α is 
dimensionless, β has dimensions of(time)1/2 ). u0 is an increasing function of α implying 
that prolateness of the static model increases with increasing α. For α =1, the static 
model is a sphere. Away from the minimum and toward the coordinate axes,   rises 
indefinitely. Fig. 1 shows a contour plot of    for α= 1 and β = 3/2. The minimum is at 
x0 =l, yo = l where   = –0.75. The contours of   for other values of α and β are
topologically similar. The value of     at (x0, y0) is 
 

(38) 
 
 

5.2 A Preliminary Study of Orbits 
 
a) Variation of ellipticity: It is clear from (36) that >0 implies that E>0. Stellar 
systems with positive total energy eventually disperse to infinity. Therefore (x, y) 
should asymptotically increase without bound for >0. One such orbit is shown in 
Fig. 2 for  =0.1. The orbit can be interpreted as a collapse from infinity followed by 
bounce and expansion back to infinity at a different ellipticity. 

Under what circumstances will ellipticity be conserved? We should look for
conditions under which u is constant while x and y change with time; if y/ x=y/ x at 
 
 

 
Figure 1. Level surfaces of (x,y) for α=1, β= 3/2. 

 

⇔ 

. .
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Figure 2.. An unbounded orbit at  = 0.1 showing the changes in ellipticity. 
 

 
Some time under what circumstances is y/x=y/x. Using (33) we require 
 
 
 
 
Since u is assumed to be constant, we can use (37) to set 
 

(39) 
 
Using the identity (34) for g(u), we get the condition 
 
 
 
g is an increasing function of u. Therefore u = 1; the only self-similar oscillations 
allowed are spherical oscillations. When u=1, g = 2/3 and α = 1. Then (33) reduces to
 
 
 
We determine β from (33). Since α= 1, Ωο = ω0 and a1 = a3 from the very definitions of 
 

ω0 and Ω0 in terms of a1 and a3. Therefore                         Using this we get 
 

(40) 
 
which is identical to Equation (1) as expected. 

.. ..
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b) General features: We have solved equations (33) numerically for α = 1 and ß = 3/2 
using a simple first-order symplectic scheme (update momenta and then coordinates). 
The suitability of the scheme was tested on the Toda Hamiltonian (Lichtenberg & 
Lieberman 1983) with satisfactory results–no spurious chaos induced by discretiz- 
ation or round-off was found. Fig. 3 shows a surface of section (p y versus y at x = 1, 
p x > 0) for  = –0.45. The (unstable) fixed point on the upper left corner corresponds 
to oscillations of uniform spheres. For  < –0.45, this fixed point is stable (although 
we do not show the section here). At  ~ –0.45, the oscillating sphere is unstable to 
spheroidal modes and bifurcates into a periodically oscillating spheroid. It should be 
noted that this is not necessarily a general feature of all uniform-density oscillating 
spheres. The class of uniform density spheroids is much more restricted than the class 
of uniform density spheres. So the present work allows us to note only that the 
instability occurs for the subset of spheres that are members of a sequence of uniform 
spheroids. 

The stable fixed point on the right-hand side with its accompanying islands 
corresponds to oscillations that are roughly “orthogonal” to the oscillations of spheres 
(i.e. they represent oscillations of ellipticity). The chain of islands in between is due to 
orbits trapped near a 5:3 resonance. 

Figure 4 is a section at x = 2.5, px > 0 for  = – 0.3. At this high value of the basic
instability of the spheres has given birth to chaotic oscillations of spheroids. The 
oscillation “orthogonal” to spherical oscillations is still stable and large regions of 
phase space around this are filled with regular orbits. 
 
 

5.3 Discs and Needles 
 
We briefly discuss the extreme oblate/prolate limits of the spheroidal model. These 
correspond to discs and needles respectively. 
 

 
Figure 3. Surface of section (x= 1, p x >0) for  = – 0.45. 

~
–
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Figure 4. Surface of section (x = 2.5, px>0) for  = – 0.3. 

 
 
a) Discs 
 
In the static model we let a3→0, while keeping the mass (M) fixed. The oscillations 
perpendicular to the disc are described by the time-dependent behaviour of b3. Since 
we are looking for solutions that correspond to highly flattened configurations, we let 
b3 →0, 

When 
 
 
Also g(m) = π/2 and Ω2 =3πGM/4a3/1 in this limit. From Equation(32), β 
= /g(m) →2Ω 0 / π . We recall that b1= α1 χ and b3= a1 y. Since b3 →0, 
and both  and a1 are finite, y→0. The oscillations in the plane of the disc are 
described by the first of the Equations (33): 
 
 
 
 
Since y →0, we replace g(y/x) by g(0)=π/2 and write 
 
 

(41) 
 
which governs the oscillations of the radius (b1) of the disc with surface density ∝ 
(l – r2/b2)1/2 obtained by projecting a uniform density spheroid onto its plane of 
symmetry. 

0
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b) Needles 
 
This extremely prolate limit of spheroids corresponds to α1→ 0 in the static model, the 
mass of which is kept constant at M. When a1→0, m = a3/a1 → ∞ and asymptotically 
 
 
 
 
The equilibrium values of x and y are determined by setting b1=al and b3 = a3: 
 
 
 
 
The oscillations of the length of the needle are described by the second of the 
Equations (33) 
 
 
 
Since the equilibrium value of x→0 when m,→∞ we set u =y/x ≃ m in the above 
equation 
 
 
 
As m →∞ 
 
 
 
 
 
 
 
 
 
 
Also, since y→ ∞ we need to work with b3 =  α1 y. So, with y = b3 /a1  , we 
have 
 

(44)

 
This is the equation of motion for a particle in a potential well that is infinitely deep at 
b3 = a3. Strictly speaking the original CBE is not applicable to 2 and lower dimen- 
sional systems (Rybicki 1972). The calculations on discs and needles given above 
continue to describe systems in which the thickness is finite but small compared to the 
other dimensions. 
 
 

6. Conclusions 
 
There has been earlier work on the oscillations of uniform spheres and spheroids by 
Chandrasekhar & Elbert (1972, hereafter CE) and SomSunder & Kochhar (1985,1986, 
 

(42)

(43)
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hereafter SK I and SK II). The approach of CE was to apply the scalar form of the 
Virial theorem to a sphere. The moment of inertia term and the potential term could be 
expressed in terms of the instantaneous radius, a, and the kinetic energy followed from 
energy conservation. The resulting equation for the variation of α with time is identical 
to that derived in Paper I. Notice that application of the Virial theorem in this manner 
presupposes the existence of undamped oscillations, while the application of the Lewis 
invariant proves it. CE used the tensor Virial to study the oscillations of spheroidal 
systems. There are now two independent kinetic energy terms along the a1 and a3 axes, 
so energy conservation alone is insufficient. CE introduced an additional postulate 
setting these equal to each other at all times (an algebraic error was rectified by SK I). 
SK II criticized this assumption as unnatural and instead assumed that the mean 
Streaming velocity in the stellar system was a linear function of the coordinates. This 
hypothesis was a natural one to make sure that the uniform density and spheroidal 
shape are preserved as for fluid ellipsoids. This assumption enabled them to derive a 
pair of coupled equations for a1 and a3 which are identical to Equation (26) of this 
paper. This connection is to be expected since the Lewis invariant I (Equation 4) 
depends on velocity in the combination |ξv – ξr|2. When the distribution function
depends on ν through  it is clear that the mean value of ν is a linear function of r. In 
brief, the distribution functions presented in this paper provide underlying detailed 
dynamical models realizing the assumptions of CE for spheres and SK II for spheroids. 
We know of no way to provide a similar basis for general (e.g. Gaussian) density 
profiles studied in CE and SK II. We should also mention that the limiting case of a 
cold collapsing spheroid has been studied by Lin, Mestel & Shu (1965). 

The method presented in this paper can be used to construct a time-dependent 
 

sity ∼            which gives rise to a potential that is quadratic and x and y The 
 

distribution function is a function of Ex and Ey So, replacing the energies by the Lewis 
invariants would give rise to a pair of coupled, second-order, autonomous, ordinary 
differential equations describing the oscillations of the axes. It is not clear whether 
similar generalization of Freeman’s (1966b) homogeneous, triaxial ellipsoid is possible. 

The stability of these oscillating solutions is an important question that remains 
unanswered. If a given oscillating solution is stable, it implies the existence of nearby 
solutions which do not have precisely uniform density, but share its nonrelaxing 
properties. We know that the stability of static models depends on the details of the 
distribution function—there is a trend for hotter models in general to be stable. When 
the parent static uniform sphere or spheroid is stable, one might expect models with 
sufficiently small oscillations to be stable as well. At present we only have numerical 
evidence (see Paper 1) for the stability of the oscillations of a system consisting of plane 
parallel sheets. The existence of nonrelaxing solutions would probably be missed by 
numerical codes which directly attack the CBE (e.g. White 1986) because of the 
unavoidable dissipation produced by finite grid size. 
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