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Abstract. The collisionless Boltzmann equation governing self-gravitat-
ing systems such as galaxies has recently been shown to admit exact
oscillating solutions with planar and spherical symmetry. The relation of
the spherically symmetric solutions to the Virial theorem, as well as
generalizations to non-uniform spheres, uniform spheroids and discs form
the subject of this paper. These models generalize known families of static
solutions. The case of the spheroid is worked out in some detail. Quasi-
periodic as well as chaotic time variation of the two axes is demonstrated
by studying the surface of section for the associated Hamiltonian system
with two degrees of freedom. The relation to earlier work and possible
implications for the general problem of collisionless relaxation in self
gravitating systems are also discussed.
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1. Introduction

In a recent paper, Sridhar (1989)—henceforth Paper 1—has shown that the collision-
less Boltzmann equation (CBE) which is used to describe stellar systems has fully self-
consistent oscillatory solutions. The general strategy is to choose uniform density
models with a time-dependent gravitational potential quadratic in the space co-
ordinates. The phase-space density f (x, v, £) (mass per unit phase volume) of the model
is chosen to be a function of integrals of motion in this potential, thereby automatically
satisfying the CBE by Jeans’ theorem (see e.g. the text by Binney & Tremaine 1987).

An integral due to Lewis (1968) for the time-dependent harmonic oscillator plays the
same role for these oscillating models as energy does for the corresponding static
models. Apart from Lewis’ original paper, Goldstein’s (1980) well-known text gives a
nice discussion of the Lewis invariant. The existence of such an invariant follows from
the linearity of the equations of motion of the oscillator. A set of points in phase space
lying on an ellipse will continue to do so after a linear transformation of x and v. An
invariant quadratic in x and v with time-dependent coefficients must therefore exist.

This paper first makes explicit the relation between the Virial theorem and the
spherical systems constructed in Paper 1. We then go on to construct oscillating
spheroidal solutions of the CBE. In Section 2 we discuss the consistency of the general
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spherical model with the Virial theorem. A particular “cold” model with easily
visualized dynamics is given in Section 3. Steady-state uniform-density spheroids are
generalized to oscillating models by the replacement of energies by the corresponding
Lewis invariants in Section 4. In contrast to the spherical case there is now a pair of
coupled equations for the oscillations of the a; and a; axes of the spheroid. Section 5
gives the behaviour of the solutions, using the Poincare surface of section for the
Hamiltonian system with two degrees of freedom which governs the evolution of «
and az. Section 6 gives our conclusions and some implications of these result in the
more general context of time-dependent behaviour in collisionless gravitating systems.

2. The virial theorem and the time-dependent spherical models
In Paper 1 we showed how to construct time-dependent uniform-density spheres

starting from the distribution function describing static spheres. The time dependence
of the radius was shown to be governed by a simple differential equation (Equation 22,

Paper 1)
342 LOTI -0
g e (1)

where ¢ is proportional to the radius and ®, is a constant. In this section we derive
Equation (1) from the Virial theorem. Apart from being a rederivation, the calculations
make explicit the physical significance of the terms entering (1).

We start with the distribution function of a static uniform-density sphere written in
the form (Equation 13, Paper 1)

fo=f(Ejwg, L*; g, Ry). )

The mass (M ), potential energy (W) and the kinetic energy (7;) are easily calculated
for a uniform sphere of radius R,

2R3 JwiR} W,

M(,:E‘.’BG_@.‘ e 0 0 g PO 3)

The time-dependent sphere is constructed by replacing E/w, in (2) by _#
f=f('ﬁt L?; wo, Ry)

where
rro1

I =t |Ev—Cr]2
252 2 G b ! (4)
Direct calculations in the time-dependent case based on (3) and (4) yield
mass = M = M,,
radius =R = /®&R,,

potential energy = W=W, /&. \/w,,
mean velocity = vy(t, ) = (£ /),

v 'A%
bulk kinetic energy=T; ;,:J“} 3 d’r= (—) To. ©)

Wo
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heat (kinetic energy associated with local peculiar velocities) = T, =%J [v—
VP f v & r=Ty/ wo &

total kinetic energy = T= T+ T},

2
I={prtd’r= -2-5—
g
The Virial theorem is
{i=2T+W. (6)

Using the formulas for /, T7,,, T, and W from (5) in (6), we see that
¢+ /w0 /E2—1/E2=0

which is what we set out to verify. The term (—1/&%) resembles the centrifugal term
occurring in the radial equation for a central force problem and is clearly proportional
to Ty/Z,; it makes good physical sense that the system is hottest when it is maximally
compressed and that the heat makes the system bounce back. The total energy

E=T+W=2_I°_(..£f__\@+ ! ) (7
¢ 2

Wy \ 2 2

-
£
]

Equation (1) admits a first integral

7 é \;"'a 1
=3 — + 25 (3
Therefore
2T,
E=—"=].
o, ©)

When A =0, the solutions to (1) are unbounded as r—oo, while for A <0, the solutions
are bounded and time periodic. From (9) we see that these correspond to positive and
negative total energies respectively.

3. Models made up of nonintersecting spherical shells

Paper 1 described a general approach using which oscillating generalizations of
uniform density spherical models could be constructed. One of the special cases
mentioned there was a uniform density sphere made up entirely of particles on circular
orbits, i.e. having minimum energy for a given angular momentum. This model is
radially “cold”, i.e. there is a unique value (zero) of v,, the radial component of the
velocity at a given position r. The corresponding oscillating model is obtained by
populating those orbits which have the lowest possible value of the Lewis invariant for
a given value of the angular momentum. At a given radius r, this is achieved by setting
dr o ¢
& rTE
(this implies r (f) o« &(f) for a given particle). The model is still cold radially. In other
words, the particles can be grouped into spherical shells which oscillate without
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crossing. This special class of models is worth a separate discussion because it admits
of a straightforward physical interpretation and an interesting generalization.

To visualize the particle motions, consider a spherical shell made up of particles in
elliptical Kepler orbits with a fixed period and eccentricity, all starting with the same
orbital phase, e.g. apocentre. Let the tangential velocities be isotropically distributed
so that all possible orbital planes are equally represented. The shell will clearly pulsate
with its size obeying the radial equation of the Kepler problem (since & oc 7 and ¢ obeys
the radial Kepler equation—see Equation 1).For self consistency, we need to maintain
the Kepler motion by providing a spherically symmetric mass distribution with fixed
mass within this shell (no crossings). This can clearly be done by more such shells,
pulsating similarly and in phase with the first with the same period and eccentricity.
The constant period implies M(<a) oc a® where a is the semi-major axis. This implies
uniform density, which can be achieved by a suitable choice of masses and radii of the
shells.

The physical interpretation of the radially cold uniform density model suggests the
following generalization. Let the different shells still oscillate in phase with the same
period. The eccentricity e is now allowed to vary from shell to shell in such a manner as
to avoid crossings. The distribution of mass with respect to the semimajor axis a is the
same as before, but the density is clearly nonuniform because » is a nonlinear function
of a (e.g. at apocentre)

r- =a (1 + e(a)).

4. Oscillations of homogeneous spheroids

We use the method presented in Paper 1 to study oscillations of uniform-density
spheroids. The method is applicable because the interior potential of a homogeneous
spheroid is quadratic in the spatial coordinates. A spheroid with axes (a; , @, , a3 with
a, = a,) along the x, y and z directions respectively and mass density o, has an interior
potential (see e.g. Chandrasekhar 1969).

1‘2 22
p=Qf ~+wj=; ri=x?+)? (10)
2 2
where 2
Q5=2nGpyA,(m),
wg=2nGpoA;3(m), (11)
m=a/a,,
axis ratio

m 1

h(m)=sin~' (/1—m?)//T—m?; m<1,
=In(m+./m*~1)//m>=1; m>1. (13)

Since ¢ and p satisfy V?p = 42Gp , we have the following relation between A4; and
A3:
As(m)=2—2A4,(m). (14)
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Some examples of phase-space distribution functions for static uniform spheroids are
Freeman’s rotating spheroid (or the related nonrotating version due to Zel’dovich and
Bisnovatyi-Kogan) which is cold in the plane of rotation and Polyachenko’s hot
spheroid (see e.g. Fridman and Polyachenko (FP), 1984 for details and references).

We first explain the general strategy and then go to details. The distribution
functions of these models depend on the following integrals of motion

2 2 N
>0

Ei=5 45ty
v2 g2

Ez=_£+w355

L=xv,~—yv, (15)

The time-dependent model is constructed from the static distribution function by
replacing E, / Qy and Ez/ w, by the corresponding Lewis invariants (see Equation 19).
The axes are proportional to &(f) and #(f) (see Equation 24) which from the
construction of the Lewis invariants satisfy Equations (21). Self-consistency eliminates
the explicit time dependence in these equations and yields a pair of autonomous,
coupled, second order, ordinary differential equations for £ and # (Equation 26).

Uniform spheroids are characterized by at least three parameters determining the
mass M, axes a; , as. For convenience we choose the parameters to be Q,, o, a;. Then,
the density pg is determined from Poisson’s equation.

4nGpo=2Q2% + w}

while a; is determined by Equation (11)
Ay(a3/a;)=QF/27Gp,

and
47 5
M = T po a 1 a 3.
We write the distribution function for any static uniform spheroid in the form
E, E,
ﬁ)=f(n—:,m—;,L;Qo,mojal). (16)

The density  po= J‘j[] d*v=V?¢p/4nG.

Therefore,
2 2 72 b 22
-[‘f(z_é“‘i‘zﬁy‘i“no_zh»ﬁ'“"m(}?':xv,v‘-yvx;QU’ wO‘al)dav (17)
0 0 o
P2 g2
=(2Q% +w}3)/4nG when a—l-!-;él:(] otherwise
1 3
Defining

X=./Qx, Y=\/i1_0y, Z=J/wyz
Ux=u,/\/f2_{;, Uy=1,//Q, Uz=0/\/wy,
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we have
UZ UZ XZ Y2 UZ ZZ
Jf(-;-+-5"-+——%—~-,—2—z+v-i—, XUy—YUy; Qq, 00, a,)dJU
— X2+y* 72
=(2Q% + w)/AnGQy/w, When aua? +$0-££1
= 0 otherwise. (18)

The time-dependent model is constructed from the static distribution function by
replacing E, /Ay and E, /o, respectively by the corresponding Lewis invariants (see
Paper 1)

2
L=gatzln =t =505 vi=(a0,,0)
2

z¢ 1 . s
=2 (o, — 2. 19

The interior potential is

22

3
where Q(f) and w’(¢) are determined from the density p(r, z, £) and the time-dependent
axis ratio by formulas similar to Equation (11).

olr, z, r)=Q2{t)%+ @?(t) (20)

& n are any solutions to
E+QXE-1/8=0;  £>0,
ii+w(n—1/n*=0; 7>0. Q1)

The time-dependent distribution function is
f=fI, Iy, L; Qo, 0o, ay).

The density is
p=[fd%.

Therefore

o1 z? 1. .
p=J‘f(§EZ-+51djv.‘——ér!2,—2F+§{nu,—nz)2,xuy—yvx;ﬂo,wo,al)d%.

Defining

X'=x/§ Y=y/§ Z'=z/y,
FX=€|";':|:! ;’=€va U’Z="vv

1 X"I-{- )/"2 U'2+U*2 Z!I U!l
:aJ\f('__'“—i-—x—_r—,'_"f'-—z-,X’U'r__‘Yr };Qo,wg,al)d:sv- (22)

p 2 2 2 T2
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From (18) and (22)
1 (2Q3+wd) X*+y?* Z* &1
pP=3-~————7/— when T g7 TS
&N 4nGQy ./ wo 04} 043
(23)
= 0 otherwise.
Therefore the new axes are
bl =b2=,g‘Qoalé,
by=/woas1,
and the axis ratio u = b; /b;. (24)
From (11)
Q2=2nGpA, (1),
w*=2nGpA;(u). (25)
. 205+03 . [0 8 . . .
Writing € 20 \/w_’ K= ﬁ:;l-,- and using (23),(24) and (25) in Equations (21) we
U] 0
get the following equations governing the behaviour of the axes of the homogeneous
spheroid
. C Kn 1
E+—A (-—)—~—=0
égt\¢) e
. C Kn 1
'”Ef"‘s(?)‘n‘f"' @9

5. Some properties of the oscillations of uniform spheroids
5.1 Hamiltonian Formulation

In this section we point out some general features of solutions to (26). Equations (26)
can be recast in Hamiltonian form by a simple scaling.

x=¢, y=Kn. 27)
The axes
bi=vQaix,  by=\/Qoa,y,
(28)
while the axis ratio (ellipticity) is
u=by/b,=y/x. (29)

Introducing a function

hiu)—
g="0 (30)
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we can express 4; and A3 in terms of g:

Al (H) Lol ug(u)s
A3 (u)=2—2ug(u). 3D

For convenience we shall use constants o and f in place of C and K

w3 a3 \*
— K4 —_0(%3
=K Q%(“l)’
3=CK=VQG/Q(03/91)s

O<a, B<oo. (32)
Written in terms of x, y, o and f, Equation (26) reads

B

i+lg L=,
+x2g x3

. 2
7+ (1= ug) = %5 =0. 63)

To see that (33) can be derived from a Hamiltonian, we need the following identity for g

(l—uz)g—i=3ug—2. (34)

Using (34) it is easy to verify that (33) is generated by the Hamiltonian (with parameters
a and S in the potential ¥ )

pz
'3?’=?x+p§+¥”(x,y)

Where
1 a p
VI L
2x2+4y2 x

An immediate consequence is that is a constant of motion Direct calculations using
the Virial theorem and (33) show that

[u—(1—u?)g]. (35)

SE

W=
2MQqa?

(36)

where M and E are total mass and energy of the model. The time-independent
Hamiltonian structure of (33) guarantees that oscillations of these uniform spheroids
do not damp asymptotically. Another advantage is that we can use Poincare’s method
of the surface of section (see e.g. Lichtenberg & Lieberman 1983) to understand the
nature of these oscillations.

For every allowed value of o and g, ¥ has a minimum whose location (xy, yo is
determined by  §¥/dx=d¥"/dy=0. Equivalently with u = yo/x,,

a=2ud(1—uog(uy))/g(uo),

1

xog(uo)-

(37
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The Solutions are unique; (o, f) < (Xo, Vo). The minimum in ¥ corresponds to a static
spheroid with axis ratio uy. From (37) it is clear that u, depends only on a implying
that o alone determines the ellipticity of the underlying static model (while o is
dimensionless,  has dimensions of(time)"? ). u, is an increasing function of o implying
that prolateness of the static model increases with increasing o. For a =1, the static
model is a sphere. Away from the minimum and toward the coordinate axes, ¥ rises
indefinitely. Fig. 1 shows a contour plot of % for a= 1 and f = 3/2. The minimum is at
xo =1, yo = 1 where ¥ = —0.75. The contours of 4 for other values of a and f are
topologically similar. The value of¥ at (x,, yo) is

2
Vo=g—2£[u%g—g—uo]<0- (38)

5.2 A Preliminary Study of Orbits

a) Variation of ellipticity: It is clear from (36) that s >0 implies that E>0. Stellar
systems with positive total energy eventually disperse to infinity. Therefore (x, )
should asymptotically increase without bound for #>0. One such orbit is shown in
Fig. 2 for s# =0.1. The orbit can be interpreted as a collapse from infinity followed by
bounce and expansion back to infinity at a different ellipticity.

Under what circumstances will ellipticity be conserved? We should look for
conditions under which u is constant while x and y change with time; if y/ x=y/ x at

Figure 1. Level surfaces of ¥°(x,y) for a=1, f= 3/2.
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20

Figure 2. An unbounded orbit a # = 0.1 showing the changes in ellipticity.

Some time under what circumstances is j/x=y/x. Using (33) we require

oy —2p/x* (1 —ug) _
X B

Since u is assumed to be constant, we can use (37) to set

o=2u*(1—ug)/g. (39)

Using the identity (34) for g(u), we get the condition

dg
—yh)Z =
(1—u?)3-=0.

g is an increasing function of u. Therefore u = 1; the only self-similar oscillations
allowed are spherical oscillations. When u=1, g = 2/3 and a = 1. Then (33) reduces to

. (2873) 1
X+ “';C—'z—" — ‘F =0,
We determine S from (33). Since o= 1, Q, = ®y and a; = a3 from the very definitions of

oo and Q in terms of a; and a3. Therefore f=, /mo/g(1)=-§\ /wg . Using this we get

B
o
o

(40)

x  x

which is identical to Equation (1) as expected.
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b) General features: We have solved equations (33) numerically for a = 1 and = 3/2
using a simple first-order symplectic scheme (update momenta and then coordinates).
The suitability of the scheme was tested on the Toda Hamiltonian (Lichtenberg &
Lieberman 1983) with satisfactory results—no spurious chaos induced by discretiz-
ation or round-off was found. Fig. 3 shows a surface of section (p , versus y at x = 1,
p > 0) for # = —0.45. The (unstable) fixed point on the upper left corner corresponds
to oscillations of uniform spheres. For # < —0.45, this fixed point is stable (although
we do not show the section here). At s# =~ —0.45, the oscillating sphere is unstable to
spheroidal modes and bifurcates into a periodically oscillating spheroid. It should be
noted that this is not necessarily a general feature of all uniform-density oscillating
spheres. The class of uniform density spheroids is much more restricted than the class
of uniform density spheres. So the present work allows us to note only that the
instability occurs for the subset of spheres that are members of a sequence of uniform
spheroids.

The stable fixed point on the right-hand side with its accompanying islands
corresponds to oscillations that are roughly “orthogonal” to the oscillations of spheres
(i.e. they represent oscillations of ellipticity). The chain of islands in between is due to
orbits trapped near a 5:3 resonance.

F]gure 4 is a section at x = 2~5:px >0 for @ =— 0.3. At this hlgh value of the basic
instability of the spheres has given birth to chaotic oscillations of spheroids. The
oscillation “orthogonal” to spherical oscillations is still stable and large regions of
phase space around this are filled with regular orbits.

5.3 Discs and Needles

We briefly discuss the extreme oblate/prolate limits of the spheroidal model. These
correspond to discs and needles respectively.

T I
g Wi i
i o ‘\‘ IR
k ..o'_: ! S v. > L]
\ A AR
'\-_-".. . - ow
. LA s
E I P -
or AP ,..'_;;}’ : ".f j’ -
. ..:"_,.;.- " .|
oL w‘(’r e
.!-' .".""1-_ i
',.. 0 S ‘\.‘ 1
. — e W
oFr . -
1 M
i 1
0 1 2 3
Y

Figure 3. Surface of section (x= 1, p ,>0) for 2 =-0.45.
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Figure 4.  Surface of section (x =2.5, p,>0) for # =-0.3.

a) Discs

In the static model we let a;—0, while keeping the mass (M) fixed. The oscillations
perpendicular to the disc are described by the time-dependent behaviour of b;. Since
we are looking for solutions that correspond to highly flattened configurations, we let
b3 —0,
When
a,~0, m=a,/a,—0.

Also g(m) = w2 and Qé =3nGM/4a3/1 in this limit. From Equation(32), S
=/ Qo /g(m) —=2Q  / m. We recall that b;=\/Qo0; y and b;=./Q,a; y. Since b; —0,

and both,/Q, and a, are finite, y—>0. The oscillations in the plane of the disc are
described by the first of the Equations (33):

., B 1
X+ 59(y/x)——5=0.

Since y —0, we replace g(y/x) by g(0)=n/2 and write

¥ X (41)

which governs the oscillations of the radius (b)) of the disc with surface density oc
(1 — r*/b*)"* obtained by projecting a uniform density spheroid onto its plane of
symmetry.
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b) Needles

This extremely prolate limit of spheroids corresponds to a;— 0 in the static model, the
mass of which is kept constant at M. When a,—0, m = as/a; — o and asymptotically

3GMa;\'* x 3GMa;\'* y
bl= — 2 . —_— b3= __2__ _
Jm Jm

The equilibrium values of x and y are determined by setting b;=a; and b; = aj;:

3IGM\ 4+ | IGM\ V4
v () g ne(m) Ve

The oscillations of the length of the needle are described by the second of the
Equations (33)

. o
y+-€[l—-ug)——3=0.
X y

Since the equilibrium value of x—0 when m,—»w we set u =y/x = m in the above
equation

7428 ma(1 — mg(m)] — % =0, 42)

y y
As m —>w 5 .

wifa

a=Q_§(a?) —-2m?Inm,

3GM 1/4
B=./Q, /g(m)_.(_z.a_s_) m2, 43)
3

m%(1 —mg)—Inm,
IGM 1/2
Q -2
° (2aa) "

Also, since y— o we need to work with b3 =/Q, a; y. So, with y = b3 /a1 /Q, , We
have

b+3GM (In m)[l_2 - “—';‘,]=0. (44)
by b3

This is the equation of motion for a particle in a potential well that is infinitely deep at

by = as. Strictly speaking the original CBE is not applicable to 2 and lower dimen-

sional systems (Rybicki 1972). The calculations on discs and needles given above

continue to describe systems in which the thickness is finite but small compared to the

other dimensions.

6. Conclusions

There has been earlier work on the oscillations of uniform spheres and spheroids by
Chandrasekhar & Elbert (1972, hereafter CE) and SomSunder & Kochhar (1985,1986,



292 S. Sridhar & R. Nityananda

hereafter SK I and SK II). The approach of CE was to apply the scalar form of the
Virial theorem to a sphere. The moment of inertia term and the potential term could be
expressed in terms of the instantaneous radius, a, and the kinetic energy followed from
energy conservation. The resulting equation for the variation of a with time is identical
to that derived in Paper I. Notice that application of the Virial theorem in this manner
presupposes the existence of undamped oscillations, while the application of the Lewis
invariant proves it. CE used the tensor Virial to study the oscillations of spheroidal
systems. There are now two independent kinetic energy terms along the a; and a3 axes,
so energy conservation alone is insufficient. CE introduced an additional postulate
setting these equal to each other at all times (an algebraic error was rectified by SK I).
SK 1II criticized this assumption as unnatural and instead assumed that the mean
Streaming velocity in the stellar system was a linear function of the coordinates. This
hypothesis was a natural one to make sure that the uniform density and spheroidal
shape are preserved as for fluid ellipsoids. This assumption enabled them to derive a
pair of coupled equations for @; and a; which are identical to Equation (26) of this
paper. This connection is to be expected since the Lewis invariant / (Equation 4)
depends on velocity in the combination |&v — &r]>. When the distribution function
depends on v through it is clear that the mean value of v is a linear function of r. In
brief, the distribution functions presented in this paper provide underlying detailed
dynamical models realizing the assumptions of CE for spheres and SK II for spheroids.
We know of no way to provide a similar basis for general (e.g. Gaussian) density
profiles studied in CE and SK II. We should also mention that the limiting case of a
cold collapsing spheroid has been studied by Lin, Mestel & Shu (1965).

The method presented in this paper can be used to construct a time-dependent

2 BN
sity ~(1 —%—ﬁ—z) which gives rise to a potential that is quadratic and x and y The
a

distribution function is a function of Eyx and Ey So, replacing the energies by the Lewis
invariants would give rise to a pair of coupled, second-order, autonomous, ordinary
differential equations describing the oscillations of the axes. It is not clear whether
similar generalization of Freeman’s (1966b) homogeneous, triaxial ellipsoid is possible.

The stability of these oscillating solutions is an important question that remains
unanswered. If a given oscillating solution is stable, it implies the existence of nearby
solutions which do not have precisely uniform density, but share its nonrelaxing
properties. We know that the stability of static models depends on the details of the
distribution function—there is a trend for hotter models in general to be stable. When
the parent static uniform sphere or spheroid is stable, one might expect models with
sufficiently small oscillations to be stable as well. At present we only have numerical
evidence (see Paper 1) for the stability of the oscillations of a system consisting of plane
parallel sheets. The existence of nonrelaxing solutions would probably be missed by
numerical codes which directly attack the CBE (e.g. White 1986) because of the
unavoidable dissipation produced by finite grid size.
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