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Abstract. The theory of gravitational lensing of background quasars by 
stars in the halo of a galaxy is considered. In the limiting case of small ‘optical 
depth’, only one star is close enough to the beam to cause strong scattering, 
and the effect of all the other stars is treated as a perturbation with both 
systematic and random components. The perturbation coming from weak 
scattering can increase the number of images and the amplification in those 
cases where the amplification is already high; such events are preferentially 
selected in flux limited observations. The theory is applicable to the apparent 
association of background quasars with foreground galaxies. A comparison 
with earlier work on the same problem is given. The relevance of these results 
to gravitational lensing by galaxies as perturbed by random inhomogeneities 
surrounding the ray path is also briefly discussed.
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l. Introduction 

 
The possibility that the luminosity function of quasars derived from observations could 
be significantly influenced by gravitational lensing was originally proposed by 
Barnothy & Barnothy (1968) and more recently considered by Turner (1980). Avni 
(1981) and Peacock (1982) have subsequently examined this problem, including small 
effects due to the deamplification which is implied by flux conservation. The 
fluctuations in the intensity of the gravitationally lensed image of the quasar 0957 +561 
due to ‘mini-lensing’ by stars close to the beam were considered by Chang & Refsdal 
(1979) and Gott (1981). The latter emphasised the unique opportunity this affords to 
detect low mass ( ~ 0.001 Mʘ) objects in galactic halos. Yet another aspect of lensing by 
stars in galactic halos was pointed out by Canizares (1981), viz., that it could produce an 
apparent association between quasars and foreground galaxies. Vietri & Ostriker 
(1983) have reconsidered this problem, including not only the effects of individual stars 
but also that of the galaxy as a whole as well as flux conservation. They also introduced 
the very useful concept of an optical depth τ for significant amplification (defined 
below). All the problems described above centre around the distribution of amplifi-
cations produced by an encounter with a single galaxy. The basic concepts involved are: 
(1) lensing by individual stars; (2) superposition of the weak amplification caused by 
many distant encounters with strong amplification caused by a close encounter; 
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(3) effect of the smoothed-out potential of the galaxy; (4) the deamplification required 
by flux conservation. The present analysis of the problem closely follows Vietri & 
Ostriker (1983, hereafter VO). They use a formalism similar to radiative transfer and 
treat the case τ    1. As discussed in the next section, we take an alternative view of the
same problem which clarifies and extends their work. Most of the new results concern 
situations in which weak lensing effects are combined with a strong event. We find that 
such weak events do not simply superpose with the strong ones but can have a. sig-
nificant, even surprisingly large, effect on the total amplification and on the number 
and geometry of the images. As Turner, Ostriker & Gott (1984; hereafter TOG) have 
shown, lensing events in a flux-limited sample are predominantly those with high 
amplification, and hence they are the ones where the effects discussed in this paper 
could be important.

The plan of this paper is as follows. In Section 2 we discuss two alternative points of
view on gravitational lensing to clarify the issues of deamplification and flux 
conservation. Section 3 reviews the basic definitions, notation, and equations. Section 4 
treats the superposition of weak and strong amplifications and Section 5 includes the 
smooth potential of the galaxy. Section 6 is a discussion and summary.
 
 

2. Filled and empty beams, flux conservation and negative amplification 
 
There are two equivalent viewpoints in gravitational lensing which differ in the zero
order description of the propagation of light. In the first, which we call the ‘filled-beam’
approach, the matter is first smoothed out to make the cosmology truly homogenous. 
One then considers under and over-densities which cause a beam of light to diverge or 
converge giving deamplification or amplification with respect to the flux calculated for
a homogenous universe. In the alternative ‘empty-beam’ approach, the starting point is
an evacuated tube in an otherwise homogenous universe. If the matter in the real 
universe is sufficiently lumpy so that we view at distant sources via empty regions, this may 
be a better first approximation. Zeldovich (1964) and Feynman (quoted by Gunn 1967) 
pointed out that this reduces the angular size and flux with respect to the filled-beam 
case. Gunn (1967) discussed the fluctuations produced by the discreteness of the matter 
outside the beam. In their classic paper on the lensing effects of a cosmological 
distribution of point masses, Press & Gunn (1973) used the empty beam approach. In 
this approach all density fluctuations are positive and act to increase the observed flux.

It is of course possible that a substantial fraction of the mass density in the universe is
more smoothly distributed than the galaxies. One can then use a tube in which the 
density of galaxies alone has been removed. For reference, we give the deamplification 
as a function of redshift for an Ω = 1 universe in which a fraction Ωg of the density has 
been removed from a tube enclosing the beam. With the definitions
 

(1) 
 
the effect of removing a fractional density Ωg is to multiply the flux from point sources 
by the factor A g(Ag < 1) given below (Dashevskii & Slysh 1965) 
 

(2) 
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For an empty tube (Ω g = 1), this takes the simpler form (Zeldovich 1964)
 
 

(3) 
 
 
To take a somewhat extreme example, an empty tube in an Ω = 1 universe produces 
deamplification by a factor 0.42 at a redshift of 3. So long as we are dealing with smaller 
redshifts, it is clear that deamplification effects amount to a fraction of a magnitude and 
cannot be more important than the comparable or greater uncertainties which are 
already present in the quasar luminosity function. The effect of this deamplification on 
the observed surface density of quasars also depends on the slope of the relation 
between number counts and apparent magnitude (VO). Typically, the fractional change 
in the number counts at a given magnitude due to deamplification is less than the 
fractional flux change. In the association problem considered by Canizares (1981), one 
compares the density of quasars in two fields one of which is close to a foreground 
galaxy. The deamplification is common to both the fields and hence does not affect the 
result. 

The same empty and filled beam approaches also apply to lensing by stars in galaxies.
VO use the filled beam approach and represent the galaxy by a smooth mass 
distribution. Individual stars are then represented by point masses with surrounding 
compensating negative mass spheres to avoid double counting. In the present paper, we 
use the empty beam approach and thus deal only with overdensities and amplification.
 
 

3. Review of lensing definitions and equations
 
We briefly review the basic equations governing lensing, following the treatment of 
Young (1981). The geometry of a gravitational lensing event is shown in Fig. 1. The 

 
Figure 1. Geometry of a gravitational lensing event. Rays from the background source 
(quasar) at Q at redshift zq  undergo a proper vector deflection θ at a redshift z1 and propagate to 
the observer. x and y are transverse proper distances. xQ is the intercept on the deflector plane of 
the unperturbed ray from Q to the observer. D1 and D2 are affine distances. 
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source (quasar) is located at a red shift zq and the lensing object (also called the 
deflector) at a red shift z1 We use proper distances in the deflector plane as Cartesian 
coordinates x, y. The unperturbed ray connecting the quasar and the observer in the 
absence of gravitational lensing cuts the deflector plane at xq, yq. The deflection at a 
point x, y in the deflector plane is a vector θ whose components θx and θy are expressed 
in terms of the Newtonian gravitational potential φ (x, y, z) in the weak field limit
(Bourassa & Kantowski 1975).
 
 
 

(4) 
 
 
 
We have denoted the integral of the gravitational potential along the line of sight 
(z direction) by Φ(x, y) in (2). This is related to the surface density Σ (x, y) by Poisson’s 
equation 
 

(5)
 
Strictly speaking, the potential due to a two-dimensional mass distribution suffers from 
a logarithmic divergence if it is required to vanish as x, y → ∞. We can cure this by 
choosing any (finite) point as the zero of potential, without affecting the gradient of the 
potential which determines the deflection of a ray. This ‘two-dimensional’ view of 
lensing is valid so long as the extent of the deflector along the line of sight is much 
smaller than its distance from either the source or observer. Turner, Ostriker & Gott 
(1984) have shown how a uniform sheet of matter at a different red shift from a given 
galaxy can be replaced by an equivalent sheet at the same red shift so that the two-
dimensional picture can then be used.

In the ‘empty-beam’ approach, the rays are regarded as travelling in an evacuated
tube in the universe, with deflections by galaxies and stars put in through Equation (4). 
Press & Gunn (1973) have introduced a particularly convenient coordinate system 
(shown in Fig. 1) in which distances along the line of sight are measured in terms of the 
affine parameter* λ. In the transverse direction, the proper lengths x and y are used. Of 
course, it is assumed that x and y are much smaller than characteristic distances along 
the ray. In this coordinate system, light rays close to the axis are straight lines so long as 
there is circular symmetry around the beam and no matter. In a Friedman cosmology 
with a scale factor a(t), we have dλ = ca(t)dt. The affine length normalized in this way 
agrees with the proper distance at the present epoch, and is less than it by the factor 
1 + z at earlier epochs. The angles in Fig. 1 are thus 1 + z times proper angles. From the 
geometry of Fig. 1, we have the following relation between x, the image position, and 
xq, the unperturbed quasar position.
 

(6) 
 
It is convenient to define the effective distance D by
 

(7) 
 
* The properties of the affine parameter are treated in the texts by Misner, Thorne & Wheeler (1972) and 
Hawking & Ellis (1973).
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For a given quasar position xq one can solve for the values of x, each corresponding to 
an image of the source. Further, the Jacobian of x with respect to xq gives the 
amplification A. Young (1981) has used the concepts of shear κ and convergence γ of an 
infinitesimal bundle of rays (defined below) to write the amplification A in a simple 
form. 
 

(8) 
 

(9)  
 
We can substitute the expression (4) for the deflection into the definition (8) of the 
convergence, which turns out to be proportional to the two-dimensional Laplacian (5) 
of the potential, i.e., to the surface density Σ (x, y). The convergence thus vanishes when 
there is no matter in the beam. The shear γ represents tidal deformation produced by 
matter not in the beam. Note that κ and γ2 are scalars under rotation by an angle α in the 
x-y plane while γ1 and γ2 transform as components of a second-rank symmetric tensor, 
viz.
 

(10) 
 
It is also clear from (9) that for weak scattering (κ   1, γ   1), the convergence makes a
first-order contribution to the amplification while the shear appears only in the second 
order, since it involves expansion in one direction and contraction in the perpendicular 
one. 

We now review briefly the lensing properties of a point mass (VO give more details).
There is a critical radius r0 in the deflector plane given in terms of the Schwarzschild 
radius rs and the effective distance D by
 

(11) 
 
When the unperturbed ray approaches within r0 of the point mass, the amplification is 
significant (greater than 1.34) and the two images become of comparable intensity (the 
intensity ratio is less than 6.9). Thus πr²0 is a natural cross section for a strong lensing 
event. VO introduce the optical depth τ in terms of the density n of stars by
 

 
 
When all the lensing matter lies at the same red shift, r0 is effectively constant and the 
optical depth can then be expressed in terms of the surface density n s of stars
 

(12)
 
For small optical depth (τ   1), circles of radius r0 around the projected position of 
each star in the x-y plane do not overlap and are in fact separated typically by ~ τ–1⁄2 r0 
which is greater than r0. For a τ   1, strong lensing event is due to the beam passing
within ~ r0 from a single star. The effect of the other stars can be treated as a 
perturbation (see Section 4 below).

The finite angular size of the source and the breakdown of geometrical optics can
both limit the amplification produced by lensing. This was discussed briefly by Gott 
(1981) and VO; we go into some more details here. For high amplification A, the closest 
approach r of the unperturbed ray is less than the critical radius r0 and we have A = r0/r.
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To ensure that the amplification does not vary appreciably over an extended source for 
which r varies by Δr we must have Δr < fr where f is a safety factor less than 1. This 
defines a critical linear size in the deflector plane, below which we obtain the same 
amplification as for a point source.
 

Δr < fr0 / A. (13)
 
Gott (1981) and VO used the weaker condition 
 
 
which implicitly assumes that the amplification is isotropic. For a point mass the 
amplification is entirely in the tangential direction and our condition (11) applies. This 
correction raises by a factor A, the minimum mass of a star which can act as a ‘mini-lens’ 
for a quasar of a given angular size. The interpolation formula given by Peacock (1982) 
for the amplification of extended sources is consistent with the criterion (13) since the 
maximum amplification scales inversely as the source size.

We now consider the possible breakdown of geometrical optics which involves two
distinct effects. A ray connecting the source and the observer represents a path of 
stationary phase. We can draw the so-called Fresnel zone (cf. Born & Wolf 1975) in the 
deflector plane with a radius rF around each image. Paths passing within this zone differ 
by less than half a wavelength and hence contribute significantly to the observed 
intensity. In terms of the effective distance D and the observed wavelength W0, we have 
 

(14) 
The geometry of point-mass lensing shows that an event with amplification A involves
rays which pass within r0/2A of the critical radius r0. To ensure that the amplification
does not vary significantly over rF, we need 
 

 
 

 
(15) 

 
VO give a similar criterion for a typical lensing event (A – 1 of the order of unity). It is 
interesting that apart from red shift and amplification-dependent factors, the scale of 
wavelengths is set by the Schwarzschild radius of the lensing mass. We note, as a 
consequence of (15), that geometrical optics breaks down more easily, i.e., at shorter 
wavelengths, for high amplification events. We note that even for high amplification 
(A ~ 10) and small masses (10–² Mʘ) the criterion (15) is comfortably fulfilled upto 
decametre wavelengths and geometrical optics is valid.

Even after fulfilling the condition (15) which guarantees the validity of geometrical
optics for the intensity of each ray, we can get interference effects between the two 
images for a source of small enough angular size. From Fig. 1, the two rays part at the 
angle 2r0/D1 (1 + zq) at the source. They will be incoherent only for wavelengths 
Satisfying 
 

(16) 
 
where 2rq is the linear size of the source. This is basically the same as Gott’s (1981) 
condition that the gravitational lens of size 2r0 should be able to resolve the source of 
 

Δr < fr0/A1 2, 

fr 0/2A     rF >

or equivalently
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angular size 2r0 /D1. For smaller source or lens sizes, one can obtain fringes—but 
subject to one more condition. Given a path difference between the two rays of n 
wavelengths, one needs a fractional bandwidth of less than 1/n. The path difference is 
directly related to the time delay between the two images which has been calculated by 
Refsdal (1964). Using this result we find
 n = (1+z1) rs / Aw0. (17)

 Comparing (17) and (15), we see that the fractional bandwidth has to be less than a 
critical value to get two beam interference.

 Δw0/w0 < f 2/2A. 

 
4. Superposition of weak and strong amplifications 

 
Gott (1981) has shown that rays from background objects which are not doubly imaged 
by an isothermal galaxy encounter an optical depth due to individual stars that is less 
than 1/4. The condition τ   1 applies to all the cases of interest in this paper. We thus
have two possibilities: (1) rays which pass at a distance significantly greater than r0 
from the projected position of all stars, (2) rays which pass one star at a distance ~ r0 
and hence typically at > r0 from all the others. In case (1) we are dealing with the 
superposition of weak amplifications. VO (in their Appendix A) show that it is correct, 
on the average, to multiply the amplifications which individual stars would have 
produced acting on their own. In case (2), we have to combine a weak and a strong 
amplification. Although VO have used the superposition principle in this case as well, 
the result proved in their Appendix A actually applies to the superposition, on the 
average, of the shears F1 and F2 produced by two stars. Since the relation (9) between 
shear and amplification is nonlinear, we do not expect the superposition principle to 
hold for the amplification in case (2) as shown below.

Let the image considered lie at the origin and let (ri θ 
i) be the polar coordinates of 

stars of mass m. The shear components γ1, γ2 defined in (8) can easily be evaluated 
 

(18) 
 
For example, we consider the case when a close encounter with one star produces a 
shear F1 of magnitude close to one (strong amplification) and is at a polar angle zero, 
while a second star has a shear F2   1 at polar angle θ. The amplification A is given by
 
 

(19) 
 
The average amplification Ā is given by averaging over θ: 
 

(20) 
 
We can compare this to the result given by the superposition principle.
 

(21) 
We see from (20) and (21) that even for F2   1, if we have F2 ∼1 – F2, the true
amplification can be significantly greater than that given by superposition. In the 
 

1
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limiting case A1

–1  = 1 – F2
1          1, F2      1, we find 

 
(22) 

 
This shows that a weak shear F2 is boosted by a factor of the order of A1 the 
amplification due to the strong scattering alone.

In the rest of this section, we treat the problem of gravitational lensing by a point
mass, perturbed by a weak shear γ    1 produced by neighbouring masses. As suggested 
by (22), the imagi 2 ∼1–F2, i.e., for amplifications of the ng is strongly perturbed for F
order of γ–1. As shown below, one can even obtain four images instead of two. For a 
surface density ns, typical nearest neighbour distances are given by r ∼ ns

–1⁄2. From 
(18), the shear γ is typically given by
 

(23)
 
We evaluate the probability distribution of the shear γ and average the probability 
distribution of amplifications over it. This approach to the problem does full justice to 
the tensorial nature of the shear, the deviations from the superposition principle, and 
the random distribution of the projected star positions.

As just noted, a weak shear γ significantly affects high amplification events with
A ∼ γ –1. The equations governing lensing by a point mass in the presence of shear were 
given by Chang & Refsdal (1979) in the context of the Β image of the quasar 0957 + 561 
(Walsh, Carswell & Weymann 1979). Since γ ∼ 1 in this case, the problem had to be 
solved numerically. We need the case γ    1. Defining dimensionless distances in the 
deflector plane by 
 

X ≡ (X1, X2) ≡ x/r0; Xq ≡ (Xq1, Xq2) ≡ xq/r0, (24) 
 the basic lensing Equation (3) reads 
 

(25) 
 
The first term on the right sides of (24) and (25) represents the deflection produced by a 
point mass and the second that due to the shear γ.The amplification (9) now reads
 

(26) 
 
In terms of polar coordinates defined by 
 
 
we can rewrite (24) and (25) as radial and tangential equations  

(27)  
 

(28)  
 with the amplification give by 
 

(29) 
 
Further, in the high amplification limit we can set 
 

1
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As is clear from (29), we have δR ~ γ for A ∼ γ –1. Retaining terms of order  γ, Equations
(27) and (29) simplify to
 

2δR = Rq cos(θ – θ q) + γ cos 2θ, (30) 
 

— Rq sin(θ –θq) =γ sin 2θ, (31)
 

A –1 = 4δR + 2γ cos 2θ. (32) 
 
Equations (30)–(32) describe the high-amplification limit of lensing by a point mass 
with weak external shear. Equation (31) gives the angular position of the image, giving 
four solutions for Rq   γ and two for Rq   γ. For each value of θ satisfying (31), one can
compute the radial position of the image from (30) and the amplification from (32). It is 
clear from (30)–(32) that Rq R and A all scale with the shear γ and we only need to solve 
for Aγ in terms of Rq/γ and θq. 

Figure 2 shows the probability distribution of amplifications obtained by numerical
solution of (30)–(32). At low amplifications, we have P(A) ∝ dA /A3 as for isolated 
point masses (VO). As the amplification approaches γ–1 , the probability falls below its
unperturbed value. This is consistent with Equation (22) which predicts that shear shifts 
events to higher amplification. Then, at A= γ –1 there is a sharp rise in P(A), due to the 
onset of events with four images instead of two. At still higher values of A, the curve 
returns to its A –3 form. The net effect of the shear is thus to shift a certain fraction of
the events with A ~ γ-1 to amplifications higher by a factor of two or more.

Just as we define a cross-section σ0 = πr2 for strong lensing events, one can define a
cross-section σ4 for events in which the shear is typically strong enough to produce four 
images. This is comparable to the cross-section for producing amplifications higher 
than τ–1. We have σ4 ≃ σ0 τ2, for small optical depth. As τ approaches 1, it is more and 
more probable that more than two images form.
 
 

5. Effect of the smooth potential of the galaxy 
 
So far, we have discussed lensing by individual stars, perturbed by the random shear 
produced by their neighbours close to the ray, as if they made up a homogeneous sheet. 
However, there is also a systematic potential acting on a light ray produced by the overall 
mass distribution of the galaxy. For clarity, we first look at the case when this mass is 
dominated by stars which act as point masses, rather than something like neutrinos 
which act as a continuous distribution. There are two basic effects: (1) a systematic 
shear γg and (2) an increase, by a factor of 1 + 2τ, of observed solid angles over those in 
the absence of lensing. 

Imaging by a galaxy has been discussed by Gott & Gunn (1974) and reviewed more
recently by VO and TOG. The smoothed-out potential of the galaxy idealised as a 
singular isothermal sphere, produces a constant deflection angle θ g given by 
 

θ 
g = 4πσ2 / c2,                                  (33)

 
where σ is the one-dimensional velocity dispersion of the matter making up the 
isothermal. The critical radius rg defined by 
 

r g = Dθg                                                                             (34)
 
plays a role similar to that of r0 in the case of a point mass with the cross-section for

0
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Figure 2, Probability distribution AP(A) (in arbitrary units) of finding amplification A in a 
given logarithmic interval. The amplification along the x-axis is measured in units of γ–1 where γ 
is a shear (see Equations 30–32).
 
 
galaxy lensing given by πr2

g. There is significant amplification accompanied by
formation of two images with comparable intensity when the impact parameter is less 
than r g. For impact parameters greater than r g , only one image is formed. Gott (1981) 
has shown that the optical depth τ for scattering by the stars making up the galaxy seen 
by rays passing at a distance r from the centre is given by
 

τ(r) = r g/2r (35)
 
This result is independent of the stellar mass so long as geometrical optics holds, i.e., 
condition (15) is fulfilled. 

The convergence κ and shear γ produced by the smooth potential of an isothermal
 



Gravitational lensing by stars in a galaxy halo 245
 
galaxy can be calculated from Equations (8), (33) and (35), the result being 
 

κg(r) = – γg(r) = rg/2r = τ(r). (36) 
 
We now show that the rays which propagate in between the stars experience the shear γ 
but not the convergence κ. The argument is similar to that used in discussions of the 
Lorentz local field in dielectrics (cf. Kittel 1966). We use the fact that the spacing 
between the stars (projected onto the deflector plane) is five or six orders of magnitude 
smaller than length-scales like rg and r associated with the lensing galaxy. It is therefore 
possible to choose an area element at r with radius rd with the following properties: 
(1) The surface density ns does not vary appreciably within rd. (2) The discreteness of
the mass distribution outside the circle rd can be neglected in calculating the shear and 
convergence of rays near the centre. The distribution of the matter outside rd is thus 
that of a smooth galaxy with a uniform disc of radius rd removed. The convergence κ is 
entirely produced by the local surface density (as noted following Equations 8 and 9) 
and hence vanishes when the disc is removed. The removal of a circularly symmetric 
disc leaves the shear γg unaffected. We are still left with the contribution of the stars 
within rd. A single star at a distance l produces a shear proportional to 1/l2 

(Equation 18). The area element ldl translates into a γ –2 dg probability for shear γ. We 
show in the appendix that the distribution of the random as well as the total shear is in 
fact dominated by nearest neighbour contributions and has a γ–2 tail.

We now discuss the effect of lensing on solid angles in the sky. As just shown, the
magnification produced by a smooth galaxy does not apply to a beam (coming from a 
sufficiently small source) which slips in between the stars. Nevertheless, this magnifi-
cation does apply to extended sources and hence to the angles between quasars on the 
sky. There is no paradox involved here, just a difference of scales. Fig. 3 shows rays 
from two point sources which undergo a relative deflection ~ θg as computed from the 
smooth galaxy potential. If either or both underwent a close encounter with a star, this 
would contribute extra deflections of the order of r0 / D. The correction coming from the 
discreteness of the mass distribution is thus of the order
 

r 0/Dθg ∼ (mstar / mgalaxy) –1⁄2 ∼ N –1⁄2 (37)
 

 
Figure 3. Magnification of the angle between two point sources S1 and S2 by a galaxy. S ́ and
S ́ are their images. As argued in Section 5, the relative deflection of the two rays is dominated by
the smooth potential of the galaxy.

star

1

2
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and hence small. Basically, the deflection produced by a point mass falls off slowly (as 
1/r). The relative deflection of two rays separated by many stars is thus not dominated 
by nearest neighbours and the continuum picture applies with small corrections. Solid 
angles at a distance r from the centre of an isothermal galaxy are scaled up by a factor
 

A ≃ [1 – κg(r)] –2 ≃ 1 + 2τ(r), (38) 
 
where terms of order τ2 have been neglected. The number of quasars per unit solid angle 
goes down by the same factor.

It is now straightforward to deal with the case when there is a significant amount of
smoothly distributed matter in the galaxy, in addition to the stars. The convergence κs 
due to the surface density of this matter should be included in (9) while calculating the 
amplification. As before, the stars do not contribute to κ.
 
 

6. Discussion and summary 
 
The main purpose of this paper has been to discuss the problem of imaging background 
sources such as quasars by point masses (such as low-mass stars) distributed in an 
isothermal halo around a galaxy, stressing the compound effect of weak and strong 
lensing. We have tried to include in a consistent way, the lensing by a single mass as 
modified by its neighbours and the potential of the whole galaxy. The importance of 
this modification is measured by the optical depth τ and the calculations presented in 
this paper are valid for τ < 1. In practice, this includes all lines of sight which pass more 
than 10 kpc from the centre of a typical massive galaxy. Two new points are (1) weak 
shear can strongly perturb high amplification encounters multiplying the number of 
images, and (2) the probability distribution of the random shear coming from 
neighbours of a given point mass has a tail extending to many times the typical shear. 
Combining these, the net effect is that an appreciable fraction of events with 
amplifications of the order of    τ–1 are further brightened by approximately one 
magnitude. This should be important for the QSO–galaxy association problem 
(Canizares 1981, VO). 

The general idea that weak shear can appreciably perturb high-amplification events
is applicable to the cosmological situation where quasars are lensed by galaxies along 
the line of sight. TOG have pointed out that there is a strong bias towards high 
amplification events in flux limited observations of gravitationally lensed quasars. They 
estimate that the average amplification of a lensed quasar could be in the range 10–40 or 
even higher. The basic reason for this bias is the steep fall in the luminosity function of 
quasars at the bright end. At a given observed flux, this favours higher amplification of
intrinsically fainter sources. Such events will be sensitive to the random cosmological 
shear coming from the lumpiness of matter in the universe which is always present 
(Gunn 1967). This random shear is of the same order as the optical depth for lensing by 
galaxies which TOG estimate to be 0.05–0.1. We therefore have a situation where the 
distributed cosmologically-induced shear can play a significant role in determining 
image geometry and amplification. In addition, the lensing galaxy can be in a cluster as 
in the case of the QSO 0957 + 561 (Young et al. 1981). While TOG emphasize the role 
of the convergence produced by the cluster potential in increasing image splittings, 
there is also a significant shear produced by the cluster, especially when it is not centred 
on the beam. We hope to return to these applications in detail in a future publication. 
 

1 
2 
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Appendix 
 

Probability Distribution of the Shear by Randomly Distributed Stars 
 
The tidal force (that is, shear) produced at the origin by a star at (ri, θi) falls as ri

–2. The 
law of superposition of shears, expressed by (18), shows that we can regard the total 
shear as the result of a random walk with steps of length (r2/r2) and direction 2θi .
Chandrasekhar (1943) has reviewed the Holtsmark-Markoff method of calculating the 
distribution of the net displacement in such random walks and we follow it here.

It is convenient to use the following scaled variables to present the coordinates of the
stars and the shear components occuring in (18),
 
 

(A1) 
 
 
Equation (18) for the shear produced by a random collection of stars then reads
 

(A2) 
 
The probability distribution P(S1, S2) of the scaled shear components is easier to 
compute in terms of its Fourier transform, the so-called characteristic function 
Q(t1, t2) defined by 
 

(A3) 
 
Let all the stars which lie at distances less than rd be included in (A2). In terms of scaled 
variables, we have 
 

(A4) 
 
The probability distribution of R i is uniform over the disc Ri < Rd. 
 

(A5)
 
The total number of points is given by
 

(A6) 
 
with small fluctuations since rd is chosen to enclose many points. 

The characteristic function Q in (A3)is the expectation of a product in Ν independent

0 i
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random variables and hence factors
 

(A7)
 
 

It is convenient to introduce polar coordinates related to t 1, t2 by 
 

t1 = t cos φ, t2 = t sin φ (A8)
 
Using (A5), one of the factors in (A7) reads 
 
 
 
 

(A9) 
 
 

J0 is the usual zero-order Bessel function. Clearly, q is very close to 1, but raised to a 
very high power in (A7). Substituting (A9) into (A7), we have
 

(A10)
 
Making the substitution  

u = t/R2 
 

and using the integral 
 

 
we can take the limit of large Rd in (A10) which simplifies to 
 

Q(t, φ) = e–πt. (A11)
 
As expected for circular symmetry, there is no φ dependence. The probability 
distribution of S1 and S2 is given by inverting the Fourier transform in (A3) 
 

(A12) 
 
 

The probability is a function of the magnitude S of the shear and can be written
 

(A13) 
 
Fig. 4 shows the function P(S). 

We now superpose a systematic shear S0, taken for convenience to be along the 
x-axis. The new probability distribution P ́(S1, S2) is obtained from the old one by a 
shift along the S 1 direction. 
 

(A14) 
 
The corresponding characteristic function Q’(t1, t2) is given 
 

(A15) 
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Figure 4.   Probability distribution of the normalised shear S defined in (Al). The dot dashed
line is the probability distribution P(S) defined in (A 13) which includes only the random part of 
the shear. The solid line gives the probability distribution P" (S) defined in (A l7) which includes 
the systematic shear produced by the smoothed-out galaxy potential. The dashed line gives the 
asymptotic form S –2 dominated by the contribution of one star very close to the beam.
 
 
Equations (A14) and (A15) show that the problem is no longer circularly symmetric 
about S1, S2 = 0. However, we are only interested in the magnitude S  of the shear and 
can therefore average (A14) over θ, which is equivalent to averaging (A l5) over φ. The 
resulting characteristic function Q"(t) and probability distribution P"(S) are given by
 

(A16) 
 

(A17)  
 
In the case when the galaxy is entirely made out of stars with no smooth component, we 
can use Equation (36) to evaluate the scaled systematic shear S0. 
 
 
The probability (A17) is also plotted in Fig. 4 for this case. Also shown in the figure is
the function πS–2. Simple arguments show that Ρ and P" approach this form asymp-
totically. At large S, we have one star at a distance R   1, with the shear given by
 

S = R–2. 
Since the surface density of stars has been scaled to one in (Al), the probability
distribution of S is given by
 
 
This asymptotic form, dominated by the nearest neighbour contribution, also follows 
from the πt cusp at the origin in the two-dimensional Fourier transform (A11) of the 
probability distribution.
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Note added in proof 
 
K. Chang & S. Refsdal (1984, Astr. Astrophys., 132, 168) have recently published a 
detailed numerical study of Lensing by a star in a galaxy which provides additional shear
and convergence. M. Vietri (private communication) has pointed out that many of the 
claimed cases of quasar-galaxy associations correspond to large angular separations 
where the probability of Lensing would be very small. We thank M. Vietri for drawing
our attention to the work of Chang & Refsdal and also for his close and critical reading 
of the manuscript. 


