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Abstract. The maximum entropy method (MEM) of image reconstruct- 
tion is discussed in the context of incomplete Fourier information (as in 
aperture synthesis). Several current viewpoints on the conceptual 
foundation of the method are analysed and found to be unsatisfactory. 
It is concluded that the MEM is a form of model-fitting, the model being 
a non-linear transform of a band-limited function. A whole family of 
‘entropies’ can be constructed to give reconstructions which (a) are 
individually unique, (b) have sharpened peaks and (c) have flattened 
baselines. The widely discussed 1nB and – B1nB forms of the entropy 
are particular cases and lead to Lorentzian and Gaussian shaped peaks 
respectively. However, they hardly exhaust the possibilities–for example, 
B1/2 is equally good. 

The two essential features of peak sharpening and baseline flattening are 
shown to depend on a parameter which can be controlled by adding a 
suitable constant to the zero spacing correlation ρ00. This process, called 
FLOATing, effectively tames much of the unphysical behaviour noted in 
earlier studies of the MEM. A numerical scheme for obtaining the 
MEM reconstruction is described. This incorporates the FLOAT feature 
and uses the fast Fourier transform (FFT), requiring about a hundred 
FFTs for convergence. Using a model brightness distribution, the 
MEM reconstructions obtained for different entropies and different 
values of the resolution parameter are compared. The results sub- 
stantiate the theoretically deduced properties of the MEM.

To allow for noise in the data, the least-squares approach has been 
widely used. It is shown that this method is biased since it leads to deter- 
ministic residuals which do not have a Gaussian distribution. It is suggest- 
ed that fitting the noisy data exactly has the advantage of being unbiased 
even though the noise appears in the final map. A comparison of the 
strengths and weaknesses of the MEM and CLEAN suggests that the 
MEM already has a useful role to play in image reconstruction.
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1. Introduction
 
In a pioneering paper, Ables (1974) drew the attention of astronomers to the maxi- 
mum entropy method (MEM) of restoring a spectrum from partial knowledge of 
its Fourier components (autocorrelations) and exhibited examples showing that (i) 
artifacts such as sidelobes could be suppressed and (ii) resolution could be increased. 
Since many fields e.g. aperture synthesis, very-long baseline interferometry (VLBI), 
speckle interferometry, share the common problem of incomplete Fourier informa- 
tion, it is natural that the MEM should have received a great deal of attention (see 
for example the conference proceedings edited by van Schooneveld 1979). In X-ray 
astronomy, some use on real data has begun (Willingale 1981; Pye et al. 1981) but 
it seems fair to say that the method has not lived up to its initial promise. We attribute 
this to two factors: (i) There has been a continuing and inconclusive discussion 
of the merits of different ‘entropies’ such as lnB and – BlnB (B being the surface 
brightness), each backed by statistical/thermodynamic/information-theoretic/combi- 
natorial reasoning; (ii) A clear picture of the properties of MEM restorations is 
lacking and a method of controlling the resolution and sensitivity to noise is not 
available. Numerical implementation has also been a problem, although the 
scheme of Gull and Daniell (1978) has been found satisfactory by later workers 
(Willingale 1981). In this paper we attempt to give the MEM an alternative 
motivation and discuss its practical implementation. Section 2 discusses the need 
for nonlinear restoration methods in general, thus arguing in favour of ‘non- 
classical’ techniques such as the MEM. In Section 3 we summarise earlier work 
on the MEM and introduce our basic approach. In Section 4 we discuss the 
whole family of restoration methods based on maximising the integral of some 
function f(B) of the brightness. The popular lnB and – BlnB entropies are 
members of this family. Criteria for the choice of f and the properties of 
different choices are given. A parameter R, which is a measure of the resolution in 
the restored map, is identified and a scheme for controlling R by adding a constant 
to the zero-spacing correlation (‘FLOATing’) is introduced. Section 5 discusses 
numerical schemes for implementing the MEM and Section 6 compares and contrasts 
the restorations obtained with various choices of f as well as with the CLEAN algo- 
rithm. Section 7 is devoted to the effect of noise in the data and shows that the 
Standard least-squares approach leads to a bias in the restoration. It is argued that 
our methods, though fitting the data exactly, have desirable properties in the presence 
of noise. In Section 8 we summarise our conclusions. The MEM is compared with 
CLEAN, bringing out the strengths and weaknesses of both the methods. We con- 
clude that the MEM is now sufficiently well understood to be applied in certain prac- 
tical situations. Some problematic areas calling for further work are identified. 
Appendix A discusses the uniqueness of the MEM solution, Appendix Β considers 
the appearance of delta functions in MEM restorations and Appendix C discusses 
a multidimensional restoration scheme proposed by Newman (1977, 1978) which is 
shown to be incorrect.
 

2. The need for nonlinearity in restoration methods 
 
Let us, for simplicity, consider a function in the range 0   (x, y)   1. It is specified
completely by its Fourier coefficients ρm, n where 
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ρm, n = ∫ ∫ B(x, y) exp [– 2π i (mx + ny)]dx dy. (1)
 
If we are given measurements of ρm, n for some specified values Μ, Ν belonging to
the set Κ(for known.), we can form the so-called principal solution Bp(x, y) by
restricting the summation in Equations (1) to this range
 

(2) 
 
Bp(x, y), as is well known, is the convolution of B(x, y) with the so called ‘dirty 
beam’ d(x, y) which is. a function with Fourier coefficients 1 for (M, N) ∈ Κ 
and zero otherwise. 

Any attempt to improve on Bp(x, y) without modifying the measurements would 
need to make some nonzero choice for the unmeasured autocorrelations viz. ρm,n for 
(m, n) ∈ U (U for unknown). One might at first think that the standard methods of
interpolation and extrapolation would suffice for this. These methods are linear.
Let us therefore restrict ourselves to restored maps Βr(x, y) resulting from linear
operations on Bp(x, y). Let us also require that the operation should be translation
invariant, i.e. that a given source should be restored in the same way regardless
of its position. These two requirements restrict our linear operation to a
convolution 
 
Br(x, y) = ∫ ∫ dx′ dy′ Bp (x′, y′) K(x – x′, y – y′).                           (3)
 
This means that the non-vanishing Fourier coefficients ρM, N are multiplied by
KM, N [the transform of K(x, y)] and ρm, n for (m, n) ∈ U continue to remain zero. Of 
course, this is what the classical weighting schemes achieve at the cost of modifying
the measurements. We therefore conclude that (a) to leave the measured ρM, N 

unaltered, (b) to retain translation invariance and (c) to give nonzero values to the 
unmeasured ρm, n, we need to make Br(x, y) a nonlinear function of Bp(x, y). This 
generates new spatial frequencies in a manner that is well known in the time domain. 
Another way of appreciating the need for nonlinearity is to consider model-fitting 
procedures. For example, if we have to fit a given data set to the sum of three 
gaussian peaks, adding the fits obtained with two data sets would give six peaks 
whereas fitting the sum of the data would give us three. Thus we again have a non- 
linear operation being performed on the data. 

The MEM is a non-linear technique as discussed below. The above arguments 
show that this is inevitable. However, the nonlinearity leads to some peculiar 
properties which one should thoroughly understand before applying the technique. 
This is further discussed in the rest of the paper. 
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3. Prevailing views on the MEM 
 
The ME methods of restoration are all based on choosing the unmeasured Fourier 
coefficients to maximise a quantity which is the integral of a function f(B) of the 
brightness; i.e., maximise
 
E{B(x, y)} = ∫ ∫  f(B) dx dy.                                (4)
 
Since B(x, y) should satisfy the measurements,
 
∫ ∫ B(x, y) exp [ –2πi(Mx + Ny)] dx dy = ρMN , (M, N) ∈ K.        (5)
 
Equations (5) represent constraints to be obeyed in maximising Equation (4). It is 
clear from the form of Equation (4) that the restoration is translation invariant.

Before discussing our interpretation of Equations (4) and (5), we summarise some 
of the views prevalent in the literature on the nature of the MEM. If one is given 
only the integral of the brightness viz. ρ00

, it is clear that a uniform brightness distri- 
bution maximises Ε in Equation (4) for the usual choices f = lnB, –BlnB. This has 
perhaps led to the view that the MEM would like to produce as featureless a map as 
is consistent with the data (Ponsonby 1973), and that it is maximally noncommittal 
with regard to the unmeasured data (Ables 1974). A related point of view (Gull and 
Daniell 1978, 1979) is to define the ‘most probable’ map consistent with the data. The 
difficult step in this approach is assigning an a priori probability distribution for bright- 
ness maps in general. Gull and Daniell (1978, 1979) have adopted a combinatorial 
approach, based on building up a map by random distribution of ‘quanta’, to estimate 
the a priori distribution.* Others (e.g. Kikuchi and Soffer 1977; Ponsonby 1979)
have invoked the Bose-Einstein distribution for photons over available modes. An- 
other approach to the MEM has been through time series. Parzen (1968) and van 
den Bos (1971) have pointed out the relationship between the MEM and the auto- 
regressive model for a time series. However, attempts to generalise this to two 
dimensions (Newman 1977, 1978) have not been successful (see Appendix C). Yet 
another very interesting approach is that of Komesaroff and Lerche (1979) in which 
the positivity constraint confines the first unmeasured Fourier coefficient (in one 
dimension) to a circle in the complex plane, and the MEM is shown to be equivalent 
to choosing sequentially the centre of each such, circle. In fact, this approach was 
used by Komesaroff and the present authors (Komesaroff, Narayan and Nityananda 
1981) to study the properties of one-dimensional MEM restorations in some detail. 
However, our attempts to generalise this approach to two or more dimensions have
not been successful. Meanwhile, Högbom (1979) and Subrahmanya (1979, 1980)
have suggested that the successes of the MEM are simply because of the ‘penalty’ 
which functions like lnB and – BlnB impose on the undesirable baseline ripples in 
the brightness distribution. In their view, the choice of an entropy function is just a 
means of incorporating a priori information into the reconstruction.
 
*The referee has drawn our attention to a recent preprint by Gull and Skilling (1982) giving a new
information-theoretic derivation of the – BlnB form and a criticism of other forms. This does
not affect our subsequent discussion, which is concerned with the influence of different ‘entropies’
on the reconstructed image. 
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In this paper, we adopt and extend the last-mentioned approach. We find it
difficult to assign, in any reasonable way, an a priori probability distribution for the 
brightness levels in a map. The argument from statistical mechanics (Kikuchi and 
Soffer 1977; Ponsonby 1979) is surely inappropriate since the photons from different 
parts of the source, corresponding to different cells in the map, have hardly been in 
thermal contact with one another. The combinatorial argument (Gull and Daniell, 
1978, 1979) again seems to have in mind a specific model for how the ensemble of 
sources which we observe was generated. It appears to us that seeking a universal 
a priori probability distribution for map brightness levels is too rigid an approach.
We have therefore explored the implications of a whole family of restorations, not in 
terms of underlying statistical principles (which may not exist), but in terms of their 
impact on specific features of the restored map, viz. peak width, peak shape, baseline 
and sensitivity to noise. It turns out that this family of ME restorations has two 
parameters which influence the degree of peak sharpening and baseline flattening in 
the restoration process, as well as the sensitivity to noise. In fact, Subrahmanya 
(1979, 1980) has emphasized that useful reconstruction schemes contain one or more 
parameters to be set by the user. 
 

4. The family of maximum entropy restorations 
 
We return to the problem of maximising the ‘entropy’ (4) subject to the constraints (5). 
Differentiating Equation (4) with respect to an unknown Fourier coefficient ρmn, we get 
 

 
(6)

 
This implies that the Fourier coefficients of f'(B), which we denote by σmn, vanish
outside the set (m, n) ∈ K. We call such a function band limited [the principal
solution Bp (x, y) is an example]. We thus have
 

(7)

 
Denoting the inverse of the function f' by g, we have from Equation (7)
 

(8)

 
Equations (7) and (8) also follow from maximising Equation (4) subject to the cons- 
traints (6) by the method of Lagrange multipliers, whose role is played by the σMN. 
 

It is important to ensure that there is only one function maximising the entropy 
expression (4). For a set of nonlinear equations such as (5) and (6), there is no
general way of determining whether the solution is unique. However, it is shown
in Appendix A that f"(B) < 0 is a sufficient condition for unique solutions and we
therefore consider only such functions in this paper. Another natural question is
whether a solution of the form (8) can be found at all. This again places restrictions
[ 
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on the choice of the function f depending on the dimension d of the space over which
the map Β is defined. This problem is discussed in Appendix Β which shows that
with the familiar lnB entropy, for instance, one may sometimes find no solution of the
form (8) in three and higher dimensions.

Equations (7) and (8) state that the restored brightness distribution Br(x, y), after 
undergoing the nonlinear transformation f'(Br), becomes a band-limited function. 
We can use this fact to identify the particular features of f' that are important for 
obtaining ‘good’ restorations. To do this, we introduce a priori knowledge about 
Βr(x, y), namely that it has a.flat baseline and sharp peaks.* In contrast, the band- 
limited function f'(Br) has a rippled baseline and rounded peaks. The schematic 
argument in Fig. 1 shows that the two required characteristics (of flat baseline and 
 sharp peaks) can be achieved if the ‘amplification factor’ f"(B) is large for small Β 
and small for large B. We thus see that in addition to f"(B) < 0 (required for 
uniqueness), we also need f'"(B) > 0. When these requirements are met, the 
transformation g defined in Equation (8) constructs B(x, y) by sharpening the 
peaks and suppressing the baseline ripple in the band-limited function σ(x, y) (Fig. 1). 
From the above arguments, it is also clear that there are no sign restrictions on 
either f(B) or f' (B). 
 

 
Figure 1. Illustration of the peak-sharpening and baseline-flattening properties of the MEM.
The case shown is f (B ) = lnB. According to Equation (7) f'(B) = 1/B is a band-limited function,
shown to the right of the vertical axis. The function shown below is B. It is clear that the large
slope [f"(B)] of the curve of f'(B) vs. Β at small B ensures a flat baseline, and the small slope at large
Β ensures sharp peaks. 
 
*It is noteworthy that this is similar to the assumptions made in the CLEAN algorithm (Högbom
1974) though the information is used in a different way.
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To lowest order, one expects the restoration to be determined by the two extreme
values f" (Bmin) and f" (Bmax). Since the absolute scale of f is immaterial, we
define the following ratio.
 
R = f″ (B min) / f″ (Bmax) (9)
 
which decides how nonlinear the transformation in Equation (8) is. R thus measures 
the extent of peak sharpening and baseline flattening compared to a band-limited 
function such as the principal solution. Alternatively, we can think of R as a measure 
of how far we are extrapolating the measured Fourier coefficients. Surely, such an 
important characteristic of the restoration process should be chosen by the user, 
whereas in most present realisations of the MEM, the ratio R would be decided by the 
value of ρ00 (the average of the map) and therefore predetermined by the data. 
Bhandari (1978) had suggested that ρ00, should be varied to achieve useful results and 
had illustrated this in one dimension. There is a very simple technique by which the 
value of R can be set by the user. In our implementation of the MEM, a suitable 
constant C is added to the map so that f" (Bmin) / f" (Bmax) equals the preassigned 
number R. We refer to this process as ‘FLOATing’ the map. Those who regard ρ00 

as a sacred part of the data not to be modified could instead imagine that we are 
maximising f(B+C) instead of f(B). As pointed out by R. D. Ekers (personal 
communication), the true value of 00 in many aperture-synthesis observations at 
high frequencies would be dominated by the 3 Κ background which most practi- 
tioners of the MEM would regard as irrelevant! We note in this context that 
CLEAN makes no use of ρ00. 

Having chosen a suitable value for R (examples are given in Section 6), we can next 
classify the different functions f as ‘soft’ or ‘hard’ depending on whether the transition 
from the high value of f" at small Β to the small value at large Β is rapid or slow. We 
expect that the soft functions will only affect the low-level features of the map leaving 
the peaks relatively unsharpened, while the hard functions will sharpen the peaks 
significantly with correspondingly lower efficiency in flattening the baseline. Let us 
consider a family of functions f with f" being negative and varying as an inverse power 
of Β (hence f"′>0). In this family, the cases f" ∝ –1/B2 and –1/B correspond 
to the lnB and – BlnB entropies. For brightness distributions Β varying from 0 to 
1 and a given value of R, the normalised form of f" is
 

(10)
 

Fig. 2 shows the shape of f " (B) at R=10 for typical values of n. For large n,
Equation (10) asymptotically tends to the form – exp( – BlnR) , which is the hardest
entropy in the above family. At the other end, we notice that as n→0, f" (B) is
a constant over most of the range, rising (in absolute value) from 1/R to 1 only for Β 
very close to zero. Since the amplification factor f" tends to a constant, the 
restoration tends to a band-limited function. More directly, n=0 corresponds to 
f(B)=½B2 which implies that f'(B) = B  is a band-limited function. A band-limited 
restoration which fits the data is of course nothing but the principal solution. An- 
other limit in which we obtain the principal solution is as R→1, since f″ (Β) then
 

ρ 

n

n

n
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Figure 2. Variation of f"(B) vs. Β for various entropies characterised by f" = 1/(B + C)n. f" 
varies from –10 to – 1 as Β varies from 0 to 1. The values of n go from 0·5 to 16 and are indicated 
against the corresponding curves. Note that all the entropies with large n tend to a single curve 
(corresponding to the exponential entropy f = – e–αβ). The ‘softer’ entropies with smaller values
of n produce a flatter baseline and blunter peaks than the 'hard' entropies with large n.
 
tends to a constant as shown in Equation (10). This case is realised when we add 
a large constant C to ρ00. Since Bmin/Bmax tends to 1, so does R. Bhandari (1978) 
noted that for large ρ00 the ME restoration tends to the principal solution and proved 
it analytically in the one dimensional, f = 1nB case. We now see that the result 
is completely general. 

From the above arguments we see that there is a two-dimensional family of ME 
reconstructions described by two parameters R and n. R gives a measure of the 
compression of the baseline relative to the peaks when compared to a band-limited 
function. The parameter n in the expression f"(B)∝ – 1/Bn is a measure of how far 
this flattening effect extends upwards from the baseline. As n→0, the ‘soft’ limit, only 
the very lowest features in the map undergo the nonlinear transformation and we 
tend to the principal solution. The common form – BlnB is near this end. Resto- 
rations with this entropy would have flat baselines but relatively wide peaks (though 
the peaks could be sharpened by increasing R). As n increases, we obtain ‘harder’ 
entropies which are less efficient at baseline flattening but are better at sharpening 
peaks (i.e. increasing the resolution). The lnB entropy is ‘harder’ than – BlnB while 
– exp (– BlnR) is the hardest in the whole family. However, we should point out that R 
and n can only be semiquantitative measures of the above tendencies, since even at a 
fixed value of R, the properties of the restoration obviously depend on the data as 
well. We have chosen Bmin and Bmax as representing the baseline and peak 
regions but it could happen for example that Bmin is only an isolated fluctuation 
and much of the baseline lies above it. Similarly a single large peak may get 
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sharpened relative to lower-level peaks. This latter tendency was noted by Kome- 
saroff, Narayan and Nityananda (1981).

We now show that the parameter n can also be interpreted as introducing a priori
information on the shapes of peaks. Let us expand the band-limited function σ(x, y) 
in Equation (7) about any minimum:
 
σ (x, y) = σ 0 + ax2 + by2.                                    (11)
 
For convenience, the minimum has been chosen as the origin of x and y and the axes 
have been chosen to make the second-order term a sum of squares. For the two 
entropies f1 = lnB and f2 = – BlnB, f′ = l/B and f' = – 1 – lnB. The shape of 
the peak thus becomes (from Equations 7 and 8), 
 
B (x, y) ≃ [σ0 + ax2 +  by2]–1                                for f1,

≃ exp (–1 – σ0 – ax2 – by2)     for f2                                                                                          (12)
 
We thus have a generalised Lorentzian peak for f1 and a gaussian peak for f2. Each 
choice of f(B) similarly leads to a corresponding peak shape. These results are valid 
when the width of the peak in Β is much less than the width of the minimum in σ(x, y), 
so that the Taylor expansion in Equation (11) is accurate. This will be true for high 
values of R, as discussed earlier. Apart from the earlier arguments regarding baseline 
flattening and peak sharpening, the required peak shapes in the restored map could 
also be used as a criterion to select the form of entropy f(B). The question of peak 
shapes is discussed further in Appendix Β.
 

5. Numerical procedures for obtaining the MEM reconstruction 
 
We now describe the numerical procedures that we have used to implement the MEM. 
We are given a set of Fourier coefficients ρMN, (M, N) ∈ K and are required to find 
values for ρmn, (m, n) ∈ U satisfying Equation (6), which is the condition that the 
entropy be maximised. A Standard approach to maximisation of any function Ε is 
to start from a trial solution and evaluate the gradient of Ε there. In this case the 
components of the gradient are given by σ_m, _n, the Fourier coefficients of f' (B). 
We have 
 

(13)
 
In practice, the integrals in Equations (1) and (4) and hence also in Equation (13) are 
replaced by discrete sums with x and y varying on an N×Ν grid, where Ν is usually a 
power of 2 in order to implement the Fast Fourier Transform (FFT) conveniently. 
Correspondingly, m and n also vary on an N×N grid. The number of unknown 
Fourier coefficients to be determined is therefore finite. A more convenient form of 
Equation (13) is obtained by introducing the real and imaginary parts (denoted by 
single and double primes) of ρ, δσ, and σ. We have
 
δ E = 2 σ″mn δ ρ″mn + 2 σ′mn δ ρmn′. (14) 
 
A.A.–5 

21
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From Equation (14), we identify the derivatives of Ε with respect to  ρ'mn and  ρmn to be
2 σ'mn and 2 σ"mn. In the gradient method of implementing the MEM, one increments 
the unknowns by a multiple µ of the gradient
 

(15) 
 
The coefficient µ is chosen so as to reach the highest value of Ε on the line defined by 
Equation (15). In practice, this is achieved by making a small shift in the ρmn propor- 
tional to δµ and computing the gradient at the new point. By linear extrapolation, 
one can find the value of µ at which the component of the gradient vector parallel to 
the search direction is zero. Starting with the new values of ρmn, one again computes 
the gradient and repeats the process iteratively.

An essential part of the gradient scheme as we implement it is the choice of ρ00  

In each Iteration the ratio of the highest and lowest values of if is computed. It is 
then possible to add a suitable constant C to all values in the map such that 
f"(Bmin + C)/f"(Bmax + C) is equal to the preassigned value of the ratio R. 
Such a ‘FLOAT’ step may be introduced at every cycle, or every few cycles, but is 
mandatory whenever Bmin is negative at any stage. 

A well-known improvement to the gradient method is the conjugate gradient 
method (Fletcher and Reeves 1964). In this method, each search direction is a 
weighted sum of the previous search direction and the present gradient, with the 
weights involving squared gradients. Without going into details, we point out that 
all the quantities required for this scheme are readily computable via the FFT, as 
shown by Equation (13). We have implemented the conjugate gradient method, with 
each cycle requiring four FFT’s. At a value of R=100, for a 32×32 map, we need 
typically about 40 iterations for convergence. Much of the improvement in the map 
really takes place within the first 10 iterations. Execution time on a minicomputer 
system (PDP 11/34) is about 15 min for the above example. The time required for 
convergence increases with R, which is to be expected since R measures the degree 
of extrapolation of the data. 

We have also explored the so-called fixed-point iteration scheme which exploits the 
fact that f' (B) is a band-limited function. For concreteness, we describe the case 
f=lnB, f' =1/Β. The stages are: (i) One starts from the principal solution, (ii) The 
reciprocal of the map is taken after FLOATing. (iii) The Fourier transform is then 
computed. In general, it will not vanish outside the known set i.e. σmn ≠ 0, (m, n) ∈ U. 
(iv) These values are set equal to zero and σ(x, y) is computed from σΜ, N using Equation 
(7). (v) After a FLOAT step, the reciprocal is taken to obtain a map which is then 
transformed to give a new set ρmn . (vi) This will not agree with the measured ρMN which 
are therefore reset to their true values. However, we have now extrapolated ρMN 

outside the measured region. The new map is computed and the entire cycle from 
(ii) to (vi) is repeated until convergence is obtained.

Our experience is that the straightforward scheme described above converges only 
for small R. For the large values of R which are of interest, it is necessary to improve 
upon step (iv). Setting the σmn for m, n ∈ U equal to zero is not the best strategy since, 
in any case, they become nonzero after one iteration. The following alternative 
approaches have proved to be quite successful. In the first iteration, the σmn are set 
 

''
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equal to zero. At the next iteration, one now finds new nonzero values σmn  We can 
express these in the form 
 

(16)
 
where the vector Ƭmn is orthogonal to σmn . The motive behind Equation (16) is to find 
a pattern in the as which, after one iteration, repeats with a constant multiple α. The 
Ƭmn represent the error or noise in this simplified picture. Setting σmn

 to zero gives 
σmn  in the next iteration. Instead we set σmn equal to βσmn where β is given by 
 

(17) 
 
One can check by linear interpolation that this choice will give σmn= 0 in the next 
iteration. The argument is illustrated in Fig. 3. In practice, the presence of the Ƭmn 
term leads to a non zero residual and the process has to be repeated.

The following refinement of the above technique has proved quite effective. Using 
a simplified linear picture, we may consider (1 – α) to be the ‘eigenvalue’ of the 
approximate eigenvector σmn for the transformation corresponding to one cycle of the 
fixed point algorithm. At each iteration, one can obtain the ‘eigenvalue’ of the 
previous set of σmn. By keeping track of the largest and smallest eigenvalues, one can 
optimize β in Equation (17) for maximum convergence in the residuals. We have 
had good results with this approach. This scheme is related to the one described by 
Willingale (1981) but has a more flexible procedure of averaging successive iterations 
to achieve fast convergence.
 

6. Illustrative examples of ΜΈΜ reconstructions 
 
In this section we present some examples of two-dimensional reconstructions with 
different choices of the function f(B) to illustrate the general ideas put forward in 
 

 

 

Figure 3. Illustrating the fixed-point iterative scheme for numerical computation of the MEM 
solution. The space of the Fourier coefficients of the reciprocal (for the lnΒ entropy) of the bright- 
ness, is shown. It is desired to reach the origin, σmn = 0(ρmn not measured). In the simplest 
 

scheme, σmn, the values at the Nth iteration, are set equal to zero and after one cycle they take the 
values σ (N+1), which are decomposed into ασ(N) plus ‘noise’ Ƭ mn. The dashed vectors labeled 
 

‘input’ and ‘output’ show the shifts from the original position before and after one iteration. It is 
possible to improve the scheme to make the ‘output’ vector terminate near the origin (Equation 17)
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(N)
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Section 4. These results were all computed by the conjugate gradient method 
described in the previous section. We also compare our results with those obtained 
with the widely used CLEAN algorithm (Högbom 1974). 

The model source is represented in Fig. 4 and consists of two strong unequal 
anisotropic gaussian peaks near each other and a broader low-level feature further 
off. The values of brightness were sampled on a 32×32 grid and Fourier trans- 
formed to produce the visibility function ρmn. The values of ρmn for |m |, |n| greater 
than 3 were then set equal to zero. The response to a point source is now the ‘dirty 
beam’ shown in Fig. 5. The ‘dirty map’ obtained by transforming the truncated data 
back to the map plane is shown in Fig. 6. The two strong features have merged and 
their sidelobes drown the weak feature. The contours in the figures have been chosen 
to highlight the low-level features in the map since the improvement obtained by using 
the MEM or CLEAN is most apparent there.
 

 

Figure 4. A model source consisting of two strong anisotropic overlapping gaussian peaks with a
weaker circular peak some distance away. The three peaks are at (13, 9), (11, 17) and (27, 21) on a 
32 × 32 grid with peak heights 1, 1 and 0·1. Their major axes are located at position angles 135°, 
100° and 90° and the pairs of rms values in the two principal directions are (3, l·5), (3, 2) and (2, 2) 
respectively. In all the following figures the x axis runs downwards and the y axis from left to 
right. The contour levels are 0·01, 0·03, 0·05, 0·1, 0·2, 0·3, 0·5, 0·7, 1·0, 1·5 in all the 'maps shown in 
this paper except those in Fig. 12. 
 

 

Figure 5. The reconstruction of a point source using only Fourier coefficients ρmn with |m |, | n |    3.
This is the so-called dirty beam. Negative contours are shown by broken lines.
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Figure 6. The dirty map made with the Fourier coefficients ρmn of the model in Fig. 4 (|m|, |n|   3).
This is the convolution of Fig. 4 with Fig. 5.
 

For comparison with the MEM solutions given later, Fig. 7 shows the result of 
applying the CLEAN algorithm with a gain factor of 0·25 to the dirty map of Fig. 6. 
Figs 7a, b and c are the results for CLEAN restoring beams of decreasing half 
width. Clearly the resolution in Fig. 7c is too large and false detail appears while 
Fig. 7a has degraded the resolution of the original map (Fig. 3). The suppression of 
the ripple, revealing the weak component, is excellent in the CLEAN restorations.

Now we look at the restorations performed with the lnΒ MEM with R values of 
25 and 100 respectively. These are given in Figs 8a and b. The enhanced peak 
sharpening and baseline suppression for R=100 relative to R=25 are readily apparent. 
One can also see that in this case, the restoration with R=100 is probably more faith- 
ful to the original than any of the CLEAN restorations in Fig. 6. Of course, we only 
take this to mean that the a priori information introduced by the MEM was more
appropriate for this map. Figs 9a and b give the restorations with f = – BlnB and
R=25 and 100. Note the approximate correspondence with Figs 8a and b, showing 
that R is a good measure of resolution, approximately independent of the form of 
entropy. We find that Fig. 9b is very close to the original. This can be understood 
since the starting model has gaussian peaks, which are naturally produced by the 
– BlnB entropy (Section 4). 

Figs 10a and b show reconstructions from the dirty map of Fig. 5 using an un 
conventional form of ‘entropy’, B1/2. It is notable that this form, with nothing in it 
to suggest the name ‘entropy’, is as good as either of the other two shown in Figs 8 
and 9. In terms of our one-parameter classification of entropies, B1/2 is midway 
between –BlnB and lnB. Table 1 clearly illustrates the gradation in properties from 
–BlnB to B1/2 to lnB. At a constant R, peak height as well as ripple (maximum 
negative value) both increase down the sequence. For a given entropy, increasing R 
leads to an increase in peak height and decrease in ripple. Using the two parameters 
R and n one should be able to achieve independently the desired degree of peak 
sharpening and ripple suppression. 

Figs 11b and 11a illustrate reconstructions with the same data as before with two 
choices – e–aB, R=25 and B3/2, R=100 which represent very ‘hard’ and very ‘soft’
functions respectively, as explained in Section 4. As expected, the peak sharpening in
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Figure 7. Restored brightness distribution obtained by applying to Fig. 6 Högbom’s CLEAN
algorithm with gain factor 0·25. (a), (b) and (c) correspond to gaussian restoring beams of σ = 2,
1·75 and 1·5. Note the false detail in (c) and the lowering of the peak height in (a).
 

 

Figure 8. MEM restoration starting from the data of Fig. 6 with the lnB entropy; resolution
darameter R = 25 (a), and R= 100 (b).
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Figure 9. MEM restoration starting from the data of Fig. 6 with the –BlnB form of entropy; 
(a) R = 25, (b) R = 100.
 

 

Figure 10. MEM restoration starting from the data of Fig. 6 with the B1/2 form of entropy;
(a)R = 25, (b)R = 100. 
 
Table 1. Gaussian map of Fig. 4 restored with different forms of the MEM and with CLEAN. 
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Fig. 1 la is tremendous with very little ripple suppression. In fact at R = 100, this form 
of entropy is so active that it begins to split peaks. This form is obviously not recom- 
mended for radio astronomy applications though it could have its uses elsewhere. 
The reconstruction with B3/2 has flatter peaks than any of the earlier figures as expected 
but surprisingly has more ripple than some of the harder forms. The reason is that 
the series of entropies going from B1+∈ to B2–∈ (i.e. n going from – l + ∈ to – ∈) are
in a separate class. These forms do not have an infinite barrier at B=0 and positivity 
can be maintained only by FLOATing. By this argument, –BlnB is the last of the 
positivity-enforcing entropies. The form B3/2 is interesting for another reason.
Since reconstructions with this entropy have B1/2 band limited, this means Fourier
extrapolation does not exceed twice the measured range (this, in fact, explains why 
the baseline cannot be flattened beyond a point). 

Figs 12ad show an interesting example of a case where the MEM as well as 
CLEAN fail. The true map (Fig. 12a) is an elliptic plateau. When the ‘measured’ 
range is restricted to |m |, |n |   3, one obtains the dirty map in Fig. 12b. The MEM 
reconstruction with the –BlnB entropy at R=100 is shown in Fig. 12d. The ripple 
at the base has been largely removed but the ripple at the top of the plateau has 
actually increased. This is a two-dimensional analogue of an effect first discussed by 
Komesaroff, Narayan and Nityananda (1981) for one-dimensional plateaus. As a 
matter of interest we show in Fig. 12c the CLEAN reconstruction with gain=0·5. 
CLEAN, being peak seeking (as is the MEM), has fitted peaks on the plateau. More- 
over, being a sequential technique (which the MEM is not), it has broken the 
symmetry of the map. Fig. 12e is discussed in Section 8. 

The –BlnB MEM (for example) has introduced sharp ripple whose wavelength is 
related to the cutoff in the data. Since this method has been interpreted as maximi- 
sing a certain α priori probability for brightness distributions (Gull and Daniell 1978, 
1979), we conclude that this α priori distribution does not agree with usual ideas on 
which features in a map are reasonable and which ones are artefacts. In our way of 
looking at the MEM, it is clear that the assumption of sharp peaks at high Β and a 
flat baseline at low Β (Section 4) has been violated. The ripples on top of the plateau 
 

 

 

Figure 11. Reconstruction from the data of fig. 6 using (a) a very ‘soft’ entropy –B3/2 with R = 100
(note the ripple in the baseline and rounded peak), (b) a very hard entropy – exp (–α B) with
R = 25; note the very sharp peaks and rippled baseline.
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Figure 12.  (a) Model source consisting of an elliptic plateau. The contour levels are 0.01, 0.03, 
0.05, 0.1, 0.5, 0.9, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.1. the contour levels have been chosen so as 
to bring out the low-level ripple as well as the ripple on the plateau, whose parameters are give in. 
Table 3.  (b) Dirty map obtained from (a) by retaining only Fourier components ρmn with | m|, 
| n |      3.   Dashed contours represent negative values while dotted contours indicate depressions in 
which the height decreases inwards. (c) Restoration by CLEAN starting from (b). The gain factor 
used is 0·5 and the rms of the restoring gaussian beam is σ= 2. Note the effective suppression of 
low-level ripple accompanied by spurious, symmetry-breaking peaks on top of the plateau. 
(d) Restoration by –BlnB MEM with R = 100. Note that low-level ripple is suppressed. How 
ever, the spurious features on the plateau are similar to and even stronger than those in the dirty 
map. 
 
have been treated as peaks to be sharpened. Clearly, CLEAN also fails because its 
underlying α priori assumptions about the map are not true in this case.
 

7. Treatment of noise in the measurements 
 
In any real problem the measured Fourier coefficients ρmn will have errors which we 
take, for simplicity, to be gaussian with rms σ (please note that σmn and σ are different 
objects!). The superscript (m) stands for ‘measured’ and we continue to use ρmn for 
 

(m)
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Figure 12.   (e) Restoration with a modified entropy in (B + C1) + ln (C2 – B) with C1 and C2 
FLOATing constants determined by (Bmax + C1)2/ (Bmin + C1)2 = 100, Bmin + C1 = C2 – Bmax. 
with this entropy the ripple has disappeared both from the low-lying region and the plateau.
 
the Fourier coefficients of the reconstructed brightness distribution (which need not 
agree with the measured values). Ables (1974) suggested that in the presence of 
noise one should satisfy the condition
 

(18) 
(m, n)∈K 
 
where Ν equals the number of (complex) correlations measured. We refer to this 
approach as least-squares MEM. Ables’ suggestion was implemented by Gull and 
Daniell (1978). Willingale (1981) has given the appropriate generalisation for the 
deconvolution problem in X-ray astronomy where the errors (σ) vary over the map. 
The condition (18) would appear to be reasonable since it gives deviations of the right 
overall size between the model and the measurements. However, we show below that 
these deviations (ρMN — ρMN ) are far from randomly distributed and indeed 
introduce a systematic bias into the reconstruction.

We introduce a Lagrange multiplier λ for the single constraint (18) (which replaces
the set of constraints (4) in the noise-free case). We thus have
 
 

 
 
 
 (19)

 
 
where we again use the real and imaginary parts ρ' and ρ" of the Fourier coefficients. 
For clarity, we discuss the f = lnB case though the argument is general. Differentiat- 
ing with respect to an unmeasured Fourier coefficient gives the same result as before 
viz. Β is the reciprocal of a band-limited function σ(x, y). Differentiating with respect 
to a measured coefficient ρMN in Equation (19) gives

(m)
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i.e. 
 

(20)
 

Equation (20) immediately suggests an iterative scheme for implementing Equation 
(19). We can find the MEM solution with zero noise (λ=∞), which has ρMN=  MN, by
any of the methods already described in Section 5. We then have available a good 
first approximation to the coefficients σΜΝ in Equation (20). It is now easy to choose 
λ to satisfy Equation (18). Equation (20) would then give modified values of ρMN in 
the measured range. Since–in practical cases–the shifts are expected to be small, 
the process can be iterated and convergence is quite rapid. 

The important lesson of the iterative scheme described by Equation (20) is that the 
residuals (ρΜΝ – ρ(m)) are just proportional to the Fourier coefficients of the reciprocal 
of the MEM brightness distribution(!) and have no relation to the true errors in the 
measurements. Fig. 13 illustrates the nature of the bias which least-squares MEM 
can introduce. Schematically, we have a 2Ndimensional space of data in which the 
coordinates of a point are the 2N measured Fourier coefficients. P0 represents the 
true values of ρMN and a sphere of radius σ√2N around P0 represents the data sets 
obtained with various realisations of the noise. Given any point P1 on this sphere, 
the least-squares MEM method modifies the measurements by the same residuals 
 

 
 
 

Figure 13. The space of measured Fourier coefficients. P0 represents the true values, while P1, P1′ 
etc. represent the values that would be obtained in measurements with different realisations of the 
noise. P1, P1' etc. lie on a sphere of radius σ√2N where 2N is the number of (real) measurements 
and σ the rms of each. Starting from the noisy data, P 1, P1  etc; the least-squares approach moves 
a distance σ√2N to P2, P2  etc. The average over all realisations of the MEM solutions P2, P'2  
etc. is the point A which has a systematic and predictable bias P0A from the true data. The vectors 
P1P2, P1' P'2 represent the residuals and, for small σ , are independent of position on the sphere, 
pointing in the direction of increasing entropy, perpendicular to the constant entropy contours. 
At the centre of these contours is the unconstrained maximum entropy solution viz. a flat map 
(ρ00 is assumed fixed). 

MN

ρ (m)

'

'
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since, by Equation (20), these are dominated by the zero-order values of σΜΝ (i.e. 
those corresponding to the noise-free case). The average of the solutions obtained 
with different realisations of the noise is not the same as the noise-free solution but 
differs from it to first order in σ(Fig.13). We can treat the two vectors P0P1 and P1P2 
in Fig. 13 as orthogonal since there is no correlation between the noise, represented 
by P0Pl, and the residuals introduced by the MEM, represented by Ρ1Ρ2. Therefore 
P0P2   √2 P0P1, showing that the MEM has really taken us further from the true 
data. 

An alternative approach is to fit the noisy data exactly, using the methods described 
in Section 5. The noise will propagate to the unmeasured correlations as well. 
However, there is the advantage that the measurements are not further degraded or 
biased. Fig. 14 illustrates the two approaches to noise. Fig. 14a shows the result of 
 

 

Figure 14. Illustration of the different ways of treating nosy data with the MEN.  (a) R = 100,
–BlnB MEM map of Fig. 9b with gaussian noise of rms = 1 added to the Fourier coefficients ρmn 
|m |, | n |    3;   (b) –BlnB MEM restoration from the noisy data in (a) with R = 100 fitting the 
data exactly; (c) –BlnB MEM restoration fitting the data in (a) by the least-squares method with 
σ = 1. Note that the result is not less noisy than (b) but has rounded off the peaks and distorted 
the ripple so that it no longer goes negative.

–~
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adding random noise with, a gaussian distribution of standard deviation 1 to the 
known coefficients ρmn(|m |, |n |   3) of the MEM map of Fig. 9b. Fig. 14b shows 
a reconstruction (–BlnB entropy, R=100) which fits the noisy data exactly. It is 
seen that the spurious features are not identical to those in Fig. 14a, since the noise 
has also affected the values of extrapolated coefficients. Fig. 14c shows the result 
of using the least-squares MEM scheme (Equations 1820). It can be seen that 
the spurious features have been modified more than in Fig. 14b. The peak and 
baseline values given in Table 2 confirm this. The reason is that now not only 
unknown but even measured coefficients have been changed. It is clear that this 
change has not reduced the effects of noise. In fact, the rms deviation of the 
ρmn(|m|, |n|   3) from the true values is 1 for the reconstruction in Fig. 14b but 
1·32 for Fig. 14c, showing that the least-squares approach is taking us further 
from the noise-free MEM solution by approximately the √2 factor expected.

The unphysical nature of the residuals in conventional least-squares MEM has 
been pointed out by Bryan and Skilling (1980). They have proposed a new algorithm 
which forces the residuals to have a gaussian distribution. This indeed represents 
the use of additional a priori information, though with added computational comple- 
xity. The bias discussed above is not basically surprising. When the measurements 
are inaccurate, the a priori distribution of brightness levels can make its presence felt 
and pull the solution towards the global maximum–a flat distribution. This is 
illustrated by the constant entropy contours in Fig. 13, which enforce a specific 
choice of the error vector normal to them (Bryan and Skilling 1980). The net effect 
on the map is to flatten and raise the baseline and lower the peaks. 

We illustrate this in Fig. 15. Fig. 15a shows the result of adding uncorrelated 
gaussian noise of rms 0·25 to all the correlations of Fig. 9b. The result of the least- 
squares MEM procedure treating all the correlations as measured is shown in 
Fig. 15b. Here, there is no question of extrapolation and we see quite clearly that the 
least-squares approach has not suppressed the noise but only modified it by removing 
the negative parts. Table 2 gives the peak and baseline values for the two maps in 
Fig, 15.

We conclude that using a priori information to solve for the noise is likely to lead to 
bias. This bias should always be kept in mind in interpreting maps made by the 
least-squares method. In many situations the alternative approach of fitting the 
noisy data may be preferable. 
 
Table 2.  Peak and minimum values of restorations from noisy data with the – ΒlnΒ MEM.
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Figure 15. (a) A map obtained by adding gaussian noise with rms = 0.25 to all the Fourier co-
efficents of Fig. 9b. (b) Result of applying the least-squares method with σ =0.25 to the map in 
(a). There is no extrapolation of the data involved here. Comparing (b) to (a) show off the 
last-squares method distorts (and increases) the noise already present in (a) so as to round off the 
peaks and remove negative regions. 
 

8. Summary and discussion 
 
The major conclusions of our study are the following: 

(a) The MEM is basically a model-fitting procedure which works well if the re- 
construction is required to be peaky with a flat baseline. We do not agree that it is 
‘maximally noncommittal’ with respect to the missing data. In fact, the unknown 
correlation values are ‘committed’ to developing peaks and a baseline in conformity 
with the model. Nor is it right to say that the reconstruction is as featureless as 
possible. Given the wrong problem, such as the plateau in Fig. 12, MEM produces 
spurious features stronger than even those in the dirty map! Regarding peak 
strengths and widths, it should be noted that higher peaks are likely to be sharper 
and stronger than lower ones. This result was pointed out by Komesaroff, Narayan 
and Nityananda (1981) for the one-dimensional lnB entropy. We have been able to 
generalise it to all entropies and all dimensions in this paper. Moreover, the re- 
constructed peaks could sometimes have very curious properties, as discussed in 
Appendix Β. All these peculiarities should be kept in mind in practical applications 
of the MEM. 

(b) We have shown that the common—BlnB and lnB forms of entropy are members 
of a continuous family of functions characterised by a parameter n (see Equation 
10). All these functions satisfy the important restrictions f"(B) < 0, f'"(B) > 0, 
which are necessary for acceptable reconstructions. The character of the recon- 
structions changes gradually from one end of this family to the other. For any parti- 
cular application, depending on the requirements, a restricted range of n would be 
suitable [see (c) below]. What we would like to emphasize, however, is that no 
single form of ‘entropy’ can be considered fundamental and better than all others. 
This has been a source of considerable controversy, with two schools backing the 
— BlnB and lnB entropies respectively. Arguments and analogies from statistics, 
thermodynamics and information theory have all been applied in order to identify 
the best entropy. However, the results of Fig. 12 (which can be obtained with any 
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form of entropy) show that any ‘ideal’ entropy would fail badly if the conditions 
are not right. 

To settle the controversy we recommend widespread use of the B1/2 entropy. This is 
midway between – BlnB and BlnB and gives equally good reconstructions. As a 
major benefit, there is no temptation to associate any information-theoretic or thermo- 
dynamic concept with it. We also believe the misleading name of ‘Maximum 
Entropy Method’ should be changed to something more appropriate such as ‘Varia- 
tional Method’. 

(c) If fundamental arguments are not appropriate, how should one select the form 
of f ? We suggest the following criteria, discussed in Section 4.

 
(i) Soft functions (small but positive values of n in Equation 10) generate fairly 

broad peaks but extremely flat baselines. On the other hand, hard functions 
(large n) reconstruct sharp peaks and leave a lot of residual ripple. For radio 
astronomy applications, soft functions are probably more appropriate.

(ii) The shapes of peaks reconstructed by any f(B) can be predicted approximately.
For gaussian peaks one should use – BlnB entropy, for Lorentzian peaks 
lnB, etc. It should, of course, be kept in mind that all the functions consi- 
dered are geared towards sharp peaks and flat baselines. If this is not an 
appropriate model in a particular case, then the results can be poor. Thus, 
in the case of the plateau (Fig. 12), if one knew in advance about the flat top, 
then a more appropriate function to maximise would be ln (C1 + B) + ln 
(C2 – B) where C1 and C2 are FLOATing constants. Fig. 12e shows the 
remarkable improvement that this can make. 

 
(d) There are two basic symmetries in all forms of the MEM. 

 
(i) The reconstructions are translationally invariant in the sense that if the data are 

modified to correspond to a shift in the origin of (x, y), the reconstructed map 
also displays the same shift, but does not otherwise change.

(ii) If the data are scaled by a constant, so is the reconstruction. However, an 
important symmetry is missing in MEM reconstructions.

(iii) If one trivially modifies the dirty map by adding a constant to B(x, y) at all 
x, y, the MEM reconstruction shows non-trivial changes.

 
One way of understanding this is to note that all the forms of the MEM with n   0 

in Equation (10) impose positivity. If one adds a large constant to the map, positi- 
vity becomes a weak or irrelevant consideration, while if one subtracts a constant, 
one may even end up with no positive solution at all. Thus, the form of the recon- 
struction is apparently at the mercy of the experimental value of ρ00 (the zero Fourier 
coefficient). If one had a large value of ρ00, the MEM would give back the principal 
solution, a lower value would give a ‘good’ reconstruction, a still lower value would 
give a highly spiky function, etc. (Bhandari 1978; Komesaroff, Narayan and Nitya- 
nanda 1981). 

The modification of the MEM which we call FLOAT avoids this undesirable 
feature and has the added advantage that the user, can control the resolution of the 
restored map. In our scheme, we maximise the integral of f(B + C) where C is 
a number which is set as follows. We have identified the ratio R = f" (Bmin + C)/ 
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f" (Bmax + C) (see Equation 9) as a measure of the resolution in the restoration. C 
is chosen so that R attains a preset value. As R increases, the resolution also in- 
creases. We have found that R = 100 gives good maps. The results are however 
not significantly changed for a fairly large range of R.

When the FLOAT feature is incorporated, the results are insensitive to ρ00 and 
MEM becomes identical to the classical methods of restoration as far as symmetries 
are concerned. Another point to be noted is that one is no longer strictly enforcing 
positivity. It is Β + C which is positive. In fact most of the restorations displayed 
in this paper go negative at some point. 

(e) Komesaroff, Narayan and Nityananda (1981) showed that, for fixed ρ0, 
as the noise in the measured data increases, MEM restorations in one dimension 
with the lnB entropy become progressively more peaky until, at a given noise level, 
there are no positive functions which fit the data. This is no doubt a feature of all en- 
tropies and all dimensions. However, with the FLOAT modification, this is not a 
problem. Since R is specified, a larger constant will be automatically added when the 
data are noisy, and the res
one could even empirically reduce the value of R with increasing noise.

olution of the restoration is not affected. If necessary 

An alternative approach to noise is the least-squares approach (Ables 1974; Gull 
and Daniell 1978, 1979) which allows the map to deviate from the measured data, 
thus ensuring positivity. In this scheme, the resolution is apparently automatically 
reduced with increasing noise level. The main criticism we have of this apprroach
is that the residuals between the fitted and measured data are biased (see Section 7). 

(f) Although the method CLEAN (Högbom 1974) was proposed at about the same 
time as MEM, it has found far wider acceptance in radio astronomy. Most observa- 
tions are CLEANed while MEM maps are a rarity. Based on the results of this and 
earlier papers, we make a comparison of the two methods.

(i) Both CLEAN and MEM are ideally suited to a map with well-separated point 
sources and an extensive fiat background. As the sources become extended, 
both methods become relatively less effective, but it appears that MEM may be 
marginally superior (see Figs 7–10 which correspond to a model with fairly
extended sources). 

(ii) CLEAN is excellent at ripple suppression even when the dirty beam has very 
large sidelobes. In the examples discussed so far in this paper, the sidelobe 
level is not very high because the uv coverage is compact (|u|, |ν |   3 in all 
cases). Fig. 16 shows a more diflicult case where the data are missing in two 
sectors (as could happen in a practical case when the source ‘sets’).* The 
CLEAN restoration is excellent. However the MEM restoration with – BlnB 
(the results are the same for other forms) is rather bad, with ripple suppression 
being relatively poor. The reason is not difficult to see. Equation (8) shows that 
the logarithm of the reconstructed brightness is band-limited with nonzero 
Fourier coefficients corresponding only to measured points. The large side- 
lobes of this function cannot be adequately removed by taking th

that the MEM generates the unmeasured ρ

e exponential 

mn by non-l

*Table 3 gives details of the missing data in the u-v plane.

inear operations on the 
unless very high values of R are used. An alternative explanation is to note 
 

 

We believe it is betterto fit the data exactly.
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Figure 16. (a) Result of a CLEAN restoration with the model of Fig. 4 When a sector of data in
the u –v plane is missing. Details of the missing sector are given in Table 3. (b) Result of the 
–BlnB MEN restoration with R = 100 on the same ‘sectored’ data as in (a). The method is now 
unable to suppress the sidelobes. 
 
Table 3. Particulars of Figs. 12 and 16. 
 
The plateau in Fig. 12 has the form 
 B(x, y) = 1/[1 + (gaussian function)–1] 
When the parameters of the gaussian are 
 strength = e4 = 54.598 
 position angle of major axis = 135º 
 rms along major axis = 4.5 
 rms along minor axis = 2.25 
 

The data in the uv plane used for Fig. 16: for each value of u the range of positive υ s is given 
(of course u, v is accompanied by – u, –v). The points (approximately) form a sector in the u–v 
plane. 
 

 

Band-limited function σ(x, y). In all earlier examples, the extrapolated values of 
ρmn were relatively small. However, in Fig. 16, some of the unmeasured ρmn 
have large values. To produce these by interpolation needs large non-linearity 
i.e. large R. At very large R, the numerical schemes converge very slowly.

(iii) One of the problems that prevents a deeper understanding of CLEAN is the 
sequential nature of the method. Schwarz (1979) has shown that the position 
and strength of each point source identified by CLEAN (with unit gain) can be 
understood as a least-squares fit to the current map. However, there is no 
least-squares interpretation of the entire collection of point sources. Because 
of this we believe one can at most expect to have only an empirical under 
standing of CLEAN. On the other hand, the MEM is a well-posed mathe- 
matical formulation and therefore in principle one should be able to appreciate 
its properties better. We hope the present paper has made a beginning in this 
direction. 

 
Α. Α.—6
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Appendix A 
 

Uniqueness of the MEM Reconstruction  
 
Burg (1975) has shown that the problem of maximising the entropy ∫ f(B(x)) dx 
(where x is a position vector in a d-dimensional space) keeping certain Fourier co 
efficients of Β fixed has a unique solution if f"(B) is negative. We give here a simpli- 
fied rederivation of this result. 

Let Β1(x) and Β2(x) be two brightness distributions which fit the same set of 
measurements. We can interpolate between them using a parameter p which goes 
from 0 to 1, and calculate the entropy E(p) corresponding to the interpolated function 
 

 
B (p) = (1 – P) B1 (x) + P B2 (x), (Al) 
 
E (P) = ∫ f [(1 –P) B1 + P B2] dx. (A2) 
 
Differentiating Equation (A2) twice with respect to p
 

(A3) 
 
The brightness distribution for each value of p satisfies the measured data since these 
are linear in Β (Equation Al). As we interpolate between two brightness distribu- 
tions, Equation (A3) shows that the graph of entropy versus p is convex upwards. 
If we now suppose that there are two maxima of E, we could interpolate between 
them and there would clearly have to be a minimum in between. Since this contra- 
dicts the convexity property just proved, the brightness distribution maximising the 
entropy is unique. 
 

Appendix B 
 

Limiting Behaviour of the MEM Restoration at High Resolution 
 
Komesaroff, Narayan and Nityananda (1981) showed that one-dimensional MEM 
reconstructions with f = ln Β approach a sum of δ functions as ρ0 is lowered (which 
is equivalent to increasing the resolution parameter R defined in Equation 9). In 
fact, the limiting map (as R → ∞) is uniquely fixed by the data and positivity, and is 
independent of the entropy form used. The behaviour in two and higher dimen- 
sions can be more complicated as shown by the following example.
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Take ρ01 = 1, ρ11 = 0·8, ρ
10

 = 0·8. Clearly, the lowest possible value for ρ00 is 1.
However, even after putting ρ00 = 1, we can fit the above data with a map of the 
form δ(y) b(x) where the function b(x) only has to fit one number (viz. 0·8). Thus 
even in the R → ∞ limit, there are many solutions consistent with the data, out of 
which each entropy selects one. 

In this appendix, we draw attention to another unexpected property of many of 
the forms of MEM in certain dimensions viz. the appearance of δ functions in the 
restorations, over a range of values of ρ0. Although the argument is general, it is 
convenient to treat the f = ln Β form of MEM in three dimensions and consider a 
specific example viz. ρ100 = ρ010 = ρ001 =1. Clearly, the lowest possible value of 
ρ000 is 1 and for any higher values, it is easy to find nonsingular maps–for example 
a gaussian like A exp [– α(x2 + y2 + z2)]–which fit the data. The ln Β MEM 
solution for this data set is the reciprocal of a band-limited function (Equation 8).
 

(B1)
 
where σ0 and σ1 are determined by the constraint equations
 
 
 
 

 
 

(B2)
 
 
 
 

 
 
 
 

(B3)
 
 
The crucial new feature in 3 dimensions is that the integrals in Equations (B2) 
and (B3) converge even when σ1 = σ0. This is because the denominator behaves as 
r2, r being the distance from the point where it vanishes. In ‘d’ dimensions, we 
thus have ∫r d–1 dr/r2 which converges for d   3. At the same time, it is impossible 
(because of positivity) to make σ0 less than σ1. Thus the ratio of ρ000 to ρ100 is 
restricted to the range over which the ratio of the two definite integrals defined in 
Equations (B2) and (B3) can vary. The ratio (I1/I0) = 0 at σ1/σ0 = 0 and increases 
monotonically to (0·516/1·516) = 0·34 at σ1/σ0 = 1. Thus, when ρ000/ρ00 becomes 
less than 2·94, there is no solution to the pair of equations (B2) and (B3). Put 
differently, this example shows that in three (or higher) dimensions, the reciprocal 
of a band-limited function is not able to fit a set of data with sufficiently low ρ0, even 
though these data are perfectly consistent with smooth positive maps. It is easy to
 



446 R. Nityananda and R. Narayan  
 
see that the entropy 1/Bn will encounter similar problems in d and higher dimensions 
if 2/(n + 1)< d. Thus, the (1/B) entropy is in trouble in two and higher dimensions, 
while this can happen for harder entropies even in one dimension. 

The question now arises–what is the nature of the solution when ρ000 becomes 
less than the critical value? A deeper study shows that we can still find generalized 
solutions which consist (for the f= ln Β case) of the reciprocal of a band-limited 
function plus δ-functions located at the places where the band-limited function 
vanishes. In the example considered earlier, when ρ000 < 2·94 we seek a solution 
of the form 
 

(B4) 
 
 
 
 
We give a non-rigorous justification of Equation (B4). The δ-function makes no 
contribution to the reciprocal* of (B4), which is therefore still a band-limited func- 
tion, thus fulfilling the condition for a maximum (Equation 6 of the main text) 
with respect to variation of the individual Fourier coefficients. We further have to 
verify that we have a maximum of the entropy with respect to variations in the 
strength and position of the δ function. Consider the equations
 

(B5) 
 

 
 

(B6) 
 
where Ν is a vector with integer components labelling the Fourier coefficients. 
Equations (B5) and (B6) represent the quantity Ε being maximized and the con- 
straints respectively. Again, using one of the standard representations of the δ-fun- 
ction, we can check that the value of Ε in Equation (B5) is independent of the ai and 
xi. Introducing a Lagrange multiplier for each constraint, we have to investigate 
the variation of Ε + Σ λNxN as we change the function σ (x) by δσ (x) and the posi- 
tions and strengths of the δ-functions by δxi and δai respectively. The 
result is 
 
 
 
 
 

 
(B7) 

 
 

*A general nonlinear function of the delta function is not defined, but in the case of the reciprocal 
we can justify putting it equal to zero by using any one of the sequences (e.g. gaussians) which tend 
to the δ-function. 

-
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where the differentiation with respect to xi has been transferred to x in the last term. 
Note that Equation (B5) is insensitive to ai and xi which appear only in the variation 
of Equation (B6). The variation with respect to δσ gives
 

(B8) 
 
implying that σ(x ) is a band-limited function as before. Varying with respect to xi 

in Equation (B7) gives
 

(B9) 
 
According to Equation (B9), the δfunctions can only be located at stationary points 
of σ(x). The variation of Equation (B7) with respect to ai gives 
 

(B10) 
 
Equation (B10) restricts the locations still further to the zeros of σ(x ) [at these places
Equation (B9) is automatically fulfilled since σ(x) is a nonnegative function].

As an example, we consider the problem ρ100 = ρ010 =  ρ001 = 1, ρ000 =2. The 
required solution is of the form (B4). To fit the data we require that
 

(B11) 
 

 
(B12) 

 
where a is the strength of the δ -function, located at the origin by the symmetry of the
data. I0 and I1 defined in Equations (B2) and (B3), have the values 1·516 and 0·516.
Equations (B11) and (B12) then give σ 0 = σ1 = 1, a =0·484. 
The appearance of δ-functions in the solution of a variational problem as a para- 
meter is varied, has a well-known physical counterpart in Bose condensation (see, for 
example, the text by Landau and Lifshitz 1969), where the number of particles with 
momentum p, is given by 
 
n(P) = {exp [(P2/2m – μ)/kB T] – 1}–1 
 
For temperature Τ above a value T0, the normalisation of n(p) is maintained by 
adjusting µ. At T0, µ becomes zero, but the integral of n(p) still converges in three 
dimensions. For Τ less than T0 we can no longer vary µ to obtain the correct number 
of particles, since it remains fixed at zero. The excess particles are accommodated in 
a δ-function at p=0. The quantity being maximised in this problem is the (thermo- 
dynamic) entropy, with the total energy and number of particles as constraints.

The arguments discussed above are true for the problem in which x, y,... are 
continuous variables. In any computational scheme, we are dealing with a discrete 
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set of points and a summation. Unlike an integral, a sum diverges if the value at any 
given point approaches infinity, however weakly. Thus, such a discrete computation- 
al scheme would be equivalent, in the example considered, to solving the equations 
(B13) and (B14) below instead of (B2) and (B3). 
 

 
(B13) 

 
 
 

(B14) 
 
 
 
We now see that the ratio ρ000/ρ100can vary from ∞ to 1 as (σ1/σ0) varies from 0 to 1, 
and there is no lower limit for ρ000 other than that set by positivity. However, one 
expects, even in the discrete case, that when r000 becomes less than the critical value 
below which there is no solution in the continuous case, there should be some qualitative 
differences in the reconstructed distribution. We conjecture that there will be an 
anomalous sensitivity to the grid size since the discrete analogue of the δ-function has 
a height varying inversely with the grid size.
 

Appendix C 
 
An apparently straightforward generalization of the lnB form of the MEM to two or 
more dimensions was given by Newman (1977, 1978). His starting point was the 
elegant one-dimensional form due to Burg (1967) in which Β is expressed as the 
reciprocal of a band-limited function (as in Equation 8). This band-limited, positive, 
function is in turn factorised into two complex conjugate terms, one with positive and 
the other with negative frequencies. That is

 

(C1)  
 

In the one-dimensional case, given ρ0, ρ1 . . . ρN, the nonlinear equations (5 and 6) 
for σn

 
(2N + 1 real unknowns) reduce to a system of linear equations for the quantities 

αn in the factorised form (C1) (Ν complex plus one real unknown).
In two dimensions, Newman (1977) writes by analogy  

(C2)  
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He presents a system of linear equations to solve for αmn in terms of ρmn (–N    m,n   N). 
There are now (2N +1)2 real data in the ρmn. However, since the αmn are restricted 
to positive frequencies, there are only 2[(N + 1)2 – 1] + 1 real free parameters in the 
factorised form (C2). Therefore, a general band-limited function of x and y cannot be 
factorised and the solution (C2) cannot fit a general data set (of ρmn’s). The failure 
of factorisation in two dimensions has been noted by Burg (quoted by Woods 1972) 
but apparently ignored in later discussions (Newman 1978, van Schooneveld 1979). 

The difficulty with Newman’s solution to the multidimensional MEM problem
can also be realised by considering the following alternative distinct factorised form 
 

 
(C3) 

 
 
 
Here, the allowed frequencies mn occupy the fourth quadrant of the m,n plane 
instead of the first (as in Equation C2). By symmetry, we must be able to find a 
general solution of the type (C3) if there is one of the type (C2). However, the true 
MEM solution is unique and is thus not of the form (C2) or (C3).

We present below a simple example illustrating the failure of Newman’s solution 
to fit the data. Table A1 gives a two dimensional autocorrelation measured at the 
points (0,0), (0,1) (1,0), (1,1) and (1, –1). The α and β coefficients corresponding to 
these ρ’s were computed using the method described by Newman (1977) and the 
corresponding brightness distributions were transformed to obtain the autocor- 
relations shown in Table A1. As expected, these do not agree with the original data. 
Newman (1978) has suggested that except for ‘pathological’ cases, his method will 
give the MEM solution. The simple arguments and example given above show that 
just the opposite is true. 
 
Table Al. A test of the two-dimensional MEM scheme proposed by Newman (1977). The α 
and β Solutions represent two variants of his method described by Equations (C2) and (C3).
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